
Mathematical Gems and Curiosities Sophie Morier-Genoud and

Valentin Ovsienko, Editors

Variations
on the Tait–Kneser
Theorem
GIL BOR, CONNOR JACKMAN, AND

SERGE TABACHNIKOV

This column is a place for those bits of contagious

mathematics that travel from person to person in the

community, because they are so elegant, surprising, or

appealing that one has an urge to pass them on.

Contributions are most welcome.

� Submissions should be uploaded to http://tmin.edmgr.com or

sent directly to Sophie Morier-Genoud (sophie.morier-genoud@

imj-prg.fr) or Valentin Ovsienko (valentin.ovsienko@univ-reims.fr).

AA
smooth plane curve with nonvanishing curvature
has at every point an osculating circle that is tangent
to the curve at that point and shares its curvature.

That is, the osculating circles are second-order tangent to
the curve at every point. At some points, the osculating
circle may be tangent to higher order. Such points are
called vertices, and these are the critical points of the
curvature.

THEOREM 1. (Tait–Kneser). The osculating circles of a

vertex-free plane curve with nonvanishing curvature are

disjoint and nested, as illustrated in Figure 1.

This theorem is more than a century old [17]. It has
numerous variations and ramifications; see the survey [9].

The osculating circles of a curve with monotone curva-
ture form a foliation of the annulus bounded by the
osculating circles at the endpoints of the curve. We leave it
to the reader to mull over the seemingly paradoxical
property of this foliation: the curve is tangent to the leaves
at every point, but it is not contained in a single leaf. (Is it
not similar to a nonconstant function having everywhere
vanishing derivative?)

Tait’s original proof was very short, just two paragraphs
long; it made use of the notions of evolute and involute of a
curve. We present a different proof of Theorem 1 that will
also work in the variations to follow.

A circle in R
2 is given by an equation of the form

ðx � aÞ2 þ ðy � bÞ2 ¼ r2. Denote by R
1;2 the three-dimen-

sional pseudo-Euclidean space with coordinates a, b, r

equipped with the indefinite quadratic form jða; b; rÞj2 :¼
�a2 � b2 þ r2 (we use this notation even though the form

assumes negative values). The space of circles in R
2 is

parameterized by the upper half-space

R
1;2
þ :¼ fða; b; rÞ j r [ 0g.

Figure 1. Osculating nested circles along a curve with

monotone nonvanishing curvature: the lower part of a

parabola (left) and an Archimedean spiral (right).
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The null cone with vertex v0 2 R
1;2 is the set of points

v 2 R
1;2 such that jv� v0j2 ¼ 0, and its interior consists of

points v with jv� v0j2 [ 0. We next describe when two
circles are nested, that is, the interior of one of them is
contained in that of the other.

LEMMA 2. Given two circles and the corresponding points

v1; v2 2 R
1;2
þ , the circles arenested if andonly if jv1 � v2j2 � 0,

with equality when the circles are nested and tangent.

That is, the circles are nested when one of the corre-

sponding points in R
1;2 lies in the light cone whose vertex

is the other point. See Figure 2.

PROOF. Let the radii of the circles be R � r , and let the

distance between their centers be d. The nesting condition

is d þ r � R, or jv1 � v2j2 ¼ �d2 þ ðR � rÞ2 � 0; with

equality if and only if d þ r ¼ R, that is, the circles are

tangent. (

Let cbe a plane curve with nonvanishing curvature and let

C � R
1;2 be the curveof osculating circles of c. The vertices of

c correspond to singular points of C, and C is regular if c is
vertex-free (see (1) in the proof of the next lemma).

A curve in R
1;2 is said to be null if its tangent vector is

tangent to the null cone at every point.

LEMMA 3. The curve C is a null curve.

PROOF. Let cðtÞ ¼ ðxðtÞ; yðtÞÞ be an arc-length parameter-

ization of c. Then j ¼ x0y00 � y0x00 is the curvature of c, and

the osculating circle at a point (x, y) of c is given by the

equation ðX � aÞ2 þ ðY � bÞ2 ¼ r2 with

ða; bÞ ¼ ðx; yÞ þ rð�y0; x0Þ; r ¼ 1

j
:

Since CðtÞ ¼ ðaðtÞ; bðtÞ; rðtÞÞ, one has

C0 ¼ � j0

j2
ð�y0; x0; 1Þ þ ðx0; y0; 0Þ þ 1

j
ð�y00; x00; 0Þ

¼ � j0

j2
ð�y0; x0; 1Þ;

ð1Þ

the last equality due to the equation ðx00; y00Þ ¼ jð�y0; x0Þ.
Since ðx0Þ2 þ ðy0Þ2 ¼ 1, one has jC0j2 ¼ 0, as claimed. (

Here is a ‘‘hand-waving’’ argument that gives the intuition
behind the above proof. An osculating circle C passes
through three ‘‘consecutive’’ points of the curve, say
cðt � eÞ; cðtÞ; cðt þ eÞ. The ‘‘next’’ osculating circle shares
two of these points, cðtÞ; cðt þ eÞ, with C. In the limit e ! 0,
this implies that the curve C is tangent to the cone whose
vertex is the circle C and consists of the circles tangent to it.

The last ingredient of our proof of the Tait–Kneser
theorem is the next lemma.

LEMMA 4. A regular null curve C : ½t0; t1� ! R
1;2 satisfies

jCðt1Þ � Cðt0Þj2 � 0, with equality if and only if C is the null

line segment connecting its endpoints.

PROOF. Let CðtÞ ¼ ðaðtÞ; bðtÞ; rðtÞÞ, and let �CðtÞ ¼
ðaðtÞ; bðtÞÞ be the projection on the horizontal plane. The

nullity condition ðr 0Þ2 ¼ ða0Þ2 þ ðb0Þ2 on C implies that the

length of �C is jrðt1Þ � rðt0Þj. This length is at least the dis-

tance �Cðt1Þ � �Cðt0Þj j between the endpoints, with equality

if and only if �C is the straight line segment.

It follows that jCðt1Þ � Cðt0Þj2 ¼ �j�Cðt1Þ � �Cðt0Þj2þ
jrðt1Þ � rðt0Þj2 � 0, with equality if and only if �C is the line

segment. By the nullity condition, this is equivalent to C
being a null line segment. (

Theorem 1 follows. Let c be a plane curve with nonvan-
ishing monotone curvature. Consider two osculating circles
C0;C1 along c and the regular null curve C connecting the

corresponding points v0; v1 2 R
1;2. By the above lemmas,

either jv1 � v0j2 [ 0, in which case C0;C1 are nested, or

jv1 � v0j2 ¼ 0, in which case C is a null segment connecting
v0 to v1. The latter case corresponds to a family of circles
tangent at a point, which is impossible for a family of

osculating circles to a curve in R
2.

REMARK 5. The Lorentzian geometry of the space of cir-

cles and the relation between the osculating circles of a

curve with null curves are investigated in [13].

r

Figure 2. ‘‘Lines’’ of circles. A timelike line (green): nested disjoint circles. A null line (blue): nested circles tangent at a point. A

spacelike line (orange): intersecting circles, tangent to a pair of lines.
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Centroaffine Geometry: Hooke Orbits
A smooth plane curve c is said to be star-shaped with
respect to the origin if ½c; c0� 6¼ 0 (the bracket is the deter-
minant made by a pair of vectors). Such a curve can be
parameterized so that ½cðtÞ; c0ðtÞ� ¼ 1. Then c00 ¼ �pc,
where the function p(t) is called the centroaffine curvature
of c. For example, the origin-centered circle of radius r has

p ¼ 1=r4.

A central conic ax2 þ 2bxy þ cy2 ¼ 1 has p ¼ ac� b2,

the determinant of the coefficient matrix a b
b c

� �
. Central

conics are the trajectories of mass points subject to Hooke’s
law: the radial force is proportional to the distance to the
origin. If the force is attractive, the trajectory is a central
ellipse with p [ 0, and if it is repulsive, the trajectory is a
hyperbola with p \ 0. Central conics play the role of cir-
cles in centroaffine geometry.

The osculating central conic of a star-shaped curve c with
nonvanishing centroaffine curvature is the central conic tan-
gent to c and sharing its centroaffine curvature at the tangency
point. It coincides with c to second order at the point of tan-
gency, and the order is higher if p0 ¼ 0 at this point.

Here is a centroaffine version of the Tait–Kneser
theorem.

THEOREM 6. The osculating central conics of a star-

shaped plane curve with monotone nonvanishing cen-

troaffine curvature are disjoint and nested; see Figure 3.

The proof of Theorem 6 goes along the same lines as
our proof of the Tait–Kneser theorem.

The space of central conics is three-dimensional with
coordinates (a, b, c). This space has a pseudo-Euclidean

metric given by the determinant of the quadratic form

ac� b2, and we identify it with R
1;2.

There is an analogue of Lemma 2:

LEMMA 7. Let C1;C2 be two central conics of the same type

(ellipses or hyperbolas). If detðC2 � C1Þ � 0, then they are

nested, and equality implies that they are tangent. (We denote

a conic and the quadratic form defining it by the same letter.)

PROOF. We use the well-known fact from linear algebra

that two real quadratic forms, one of which is definite

(positive or negative), can be diagonalized simultaneously.

In dimension 2, a quadratic form is definite if and only if its

determinant is positive.

Now, if C1;C2 are ellipses, then the quadratic forms are

both positive definite, so without loss of generality, by the

above fact, the ellipses are x2 þ y2 ¼ 1 and ax2 þ by2 ¼ 1,

with a; b [ 0. The condition detðC2 � C1Þ � 0 is then

ða� 1Þðb� 1Þ � 0, which is equivalent to a; b � 1 or

a; b � 1. In both cases, the ellipses are nested, with

equality when they are tangent.

If C1;C2 are hyperbolas, suppose that

detðC2 � C1Þ [ 0. Then �C :¼ C2 � C1 is a definite quad-

ratic form, and by interchanging the conics if necessary, it is

positive. Hence �C and C1 can be transformed to ax2 þ
by2 ¼ 1 and x2 � y2 ¼ 1, with a; b [ 0. Then C2 is

ðaþ 1Þx2 � ð1 � bÞy2 ¼ 1, and since it is a hyperbola, we

have 0 \ b \ 1. Renaming the constants gives that C2 is

Figure 3. Osculating central conics. Left: along the upper part (red) of the circle ðx � 0:75Þ2 þ y2 ¼ 1 (green). Right: along the

upper right part (red) of the hyperbola ðy � 0:5Þ2 � x2 ¼ 1 (green).

� 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature



ðx=aÞ2 � ðy=bÞ2 ¼ 1, 0 \ a \ 1 \ b: It is now easy to see

that C1 is nested in C2. See Figure 4.

The case detð�CÞ ¼ 0 is the limiting case of

detð�CÞ [ 0, since being nested is a closed condition. (

REMARK 8. Although we do not use it, we note that the

converse of Lemma 7 holds for ellipses (as follows easily

from the above proof), but not for hyperbolas. For exam-

ple, the hyperbolas x2 � y2 ¼ 1 and ðx=3Þ2 � ðy=2Þ2 ¼ 1

are nested, but their determinants are negative. We do not

dwell on the precise algebraic condition for a pair of

quadratic forms to determine a pair of nested hyperbolas.

Lemma 3 also has an analogue (with the same hand-waving
explanation as before). Again we denote byC the curve in the
space of Hooke conics that osculate a centroaffine curve c.

LEMMA 9. The curve C is a null curve.

PROOF. Let cðtÞ ¼ ðxðtÞ; yðtÞÞ, where xy0 � yx0 ¼ 1, and let

p(t) be the centroaffine curvature. A direct calculation

shows that the osculating central conic is given by the

equation aX2 þ 2bXY þ cY 2 ¼ 1, with

a ¼ py2 þ ðy0Þ2; b ¼ �ðpxy þ x0y0Þ; c ¼ px2 þ ðx0Þ2

(one needs to check that ax2 þ 2bxy þ cy2 ¼ 1,

ðax þ byÞx0 þ ðbx þ cyÞy0 ¼ 0, and p ¼ ac� b2).

Then another calculation shows that

a0 ¼ p0y2; b0 ¼ �p0xy; c0 ¼ p0x2;

and hence a0c0 � ðb0Þ2 ¼ 0, as claimed. (

Now Lemma 4 applies, both for ellipses and hyperbolas,
thereby completing the proof of Theorem 6.

Let us add that the Tait–Kneser theorem is closely rela-
ted to another classical result, the four-vertex theorem,
which, in its simplest form, states that a plane oval has at
least four vertices. As the example in Figure 3 shows, its
analogue does not hold in centroaffine geometry: the circle
of radius 1 centered at (0.5, 0) has only two ‘‘vertices,’’ that
is, hyperosculating central conics.

REMARK 10. The Lorentzian geometry of the space of

central conics is studied in [16].

Kepler Orbits
A Kepler orbit is a plane conic (ellipse, parabola, or
hyperbola) with a focus at the origin. These are the tra-
jectories of mass points subject to Newton’s inverse-
square law (either attractive or repulsive): the radial force
is proportional to the inverse square of the distance to the
origin. For attractive force, the orbits are ellipses,
parabolas, or hyperbola branches bending around the
origin. For repulsive force, only hyperbolas appear, the
branches left out by the attractive force hyperbolas. See
Figure 5.

A Kepler conic is the orthogonal projection on the

horizontal plane of the intersection of the cone x2 þ y2 ¼
z2 in R

3 with a plane ax þ by þ cz ¼ 1, c [ 0 [8]. Thus the

space of Kepler conics is parameterized by the space R
1;2
þ

with coordinates (a, b, c) and the quadratic form

jða; b; cÞj2 ¼ �a2 � b2 þ c2. The null cone jða; b; cÞj2 ¼ 0

parameterizes Kepler parabolas, its interior jða; b; cÞj2 [ 0
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Figure 4. For the proof of Lemma 7. A pair of nested hyperbolas is shown in each figure, x2 � y2 ¼ 1 (blue) and ðx=aÞ2 �
ðy=bÞ2 ¼ 1 (red). Left: if the pair has timelike difference, detðC2 � C1Þ [ 0, then either 0 \ a \ 1 \ b or 0 \ b \ 1 \ a, and the

pair is nested. Right: timelike difference is not a necessary nesting condition; if a \ b \ 1 or 1 \ b \ a, then the difference is

spacelike, but the hyperbolas are still nested.
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parameterizes ellipses, and its exterior jða; b; cÞj2 \ 0
parameterizes hyperbolas.

As before, a smooth star-shaped curve with nonvanish-
ing centroaffine curvature can be second-order approxi-
mated at every point by its osculating Kepler conic; this
osculating conic may hyperosculate, that is, approximate
the curve to higher order.

We have the following analogue of the Tait–Kneser
theorem.

THEOREM 11. Consider a star-shaped curve, free from

hyperosculating Kepler conics. Then its osculating Kepler

conics are nested. See Figure 6.

One can prove Theorem 11 along the same lines as
before. We present only an analogue of Lemmas 2 and 7.

LEMMA 12. Two Kepler conics corresponding to points

v1; v2 2 R
1;2
þ are disjoint if and only if jv1 � v2j2 [ 0.

Thus for Kepler conics, being nested and disjoint are
equivalent.

PROOF. The system of equations

a1x þ b1y þ c1z ¼ 1; a2x þ b2y þ c2z ¼ 1; x2 þ y2 ¼ z2

has no solutions if and only if the system

ða1 � a2Þx þ ðb1 � b2Þy þ ðc1 � c2Þz ¼ 0; x2 þ y2 ¼ z2

has no nonzero solutions, if and only if the vector ða1 �
a2; b1 � b2; c1 � c2Þ lies in the interior of the cone

x2 þ y2 ¼ z2, which is equivalent to the condition

jv1 � v2j2 [ 0. See Figure 7. (

Unlike the situation for Hooke conics, one has a version
of the four-vertex theorem for Kepler conics. Let c be a
simple closed star-shaped curve, and let us call a point at
which it is approximated by a Kepler conic to third order
(higher than usual) a vertex.

THEOREM 13. The curve c has at least four distinct

vertices.

PROOF. A Kepler conic, in polar coordinates ða; rÞ, is

given by the formula

r ¼ c

1 þ e cosðaþ uÞ ;

where c; e;u are constants. Let q ¼ 1=r . Then qðaÞ is a first

harmonic, whence q000 þ q0 ¼ 0 for all a. This equation

characterizes Kepler conics.

Figure 5. Kepler orbits share a focus at the origin (the black dot; the gray dot is the other focus, not shared). The blue curves

(ellipse, parabola, hyperbola) bend around the origin, due to an attractive force. The red curve (hyperbola) bends away from the

origin, due to a repulsive force.

Figure 6. Osculating Kepler conics (blue) along a vertex-free arc (red) of a Hooke conic (green). Left: along a Hooke ellipse.

Right: along a Hooke hyperbola.
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The curve c is given by its function qðaÞ, and its vertices

are precisely the points where q000 þ q0 ¼ 0. It remains to

use the fact that such an equation has at least four distinct

roots for every periodic function q, a particular case of the

Sturm–Hurwitz theorem, which asserts that a smooth 2p-

periodic function has at least 2n roots, where n is the

number of the first harmonic in its Fourier expansion (see,

e.g., [15, Appendix 1]). The case at hand is n ¼ 2: the

function q000 þ q0 is free from the constant term and the first

harmonics. (

Odds and Ends
Identifying the plane with C, consider the square map

z 7!z2. This map takes Hooke conics to Kepler conics [1, 3].
It thus provides a direct connection between the results of
the above sections on Hooke and Kepler conics.

A more general statement relates the trajectories of mass
points subject to radial forces proportional to powers of
distances to the origin; see [1] for a modern treatment.

THEOREM 14. (Bohlin–Kasner [3, 11]). Consider two cen-

tral force laws in the plane, with the force proportional to ra

and to rb, where r is the distance to the origin. Let

ðaþ 3Þðbþ 3Þ ¼ 4. Then the map z 7!zðaþ3Þ=2 takes the

trajectories of motion in the first field to those in the second

field.

The Hooke and Newton attraction laws are respectively
a ¼ 1 and b ¼ �2. These cases are distinguished among
central force laws.

THEOREM 15. (Bertrand [2]). Assume that all the trajec-

tories of a mass point subject to a central force that depends

on the distance to the origin and whose energy does not

exceed a certain limit are closed. Then the law of attraction

is either Hooke’s or Newton’s.

One notes that the family of circles of Hooke conics and
that of Kepler conics each depend on three parameters,
which is why they can approximate smooth curves to
second order.

More generally, given a field of forces in the plane, the
trajectory of a mass point depends on its initial position and
velocity, and hence the trajectories form a three-parameter
family. Which three-parameter families of plane curves are
obtained in this way? This problem was thoroughly studied
by Edward Kasner, who obtained a complete answer to this
question [10, 11].

Other examples of three-parameter families of curves for
which a version of the Tait–Kneser theorem holds are

parabolas y ¼ ax2 þ bx þ c, the graphs of quadratic poly-

nomials; and hyperbolas ðx � aÞðy � bÞ ¼ c2, the graphs of
linear fractional transformations (see [9]). Our proof works

in these cases as well, with the metrics given by ds2 ¼
db2 � 4ðdaÞðdcÞ and ds2 ¼ dc2 � ðdaÞðdbÞ, respectively.

One can describe the graphs of three-parameter families
of functions y(x) by third-order differential equations
y000 ¼ Fðx; y; y0; y00Þ. For example, the equation y000 ¼ 0
describes the vertical parabolas, and the graphs of linear
fractional transformations are described by the vanishing of
the Schwarzian derivative:

y000

y0
� 3

2

y00

y0

� �2

¼ 0:

Given such a three-parameter family of curves F , one
defines null cones whose rulings consist of the curves that
are tangent to a fixed line at a fixed point. A smooth plane
curve defines an associated curve in F , and it is still true
that this associated curve is null. However, for a general
family F , these cones may fail to be quadratic.

The families F for which the nullity condition is quad-
ratic, and hence defines a conformal Lorentzian metric on
F , are characterized by a complicated nonlinear partial
differential equation on the function Fðx; y; y0; y00Þ that
defines this family. This condition was studied by Karl
Wünschmann [18, pp. 6–13] and later by Élie Cartan [5] and
Shiing-Shen Chern [6, 7], using the method of equivalence.
For recent presentations of this deep result, see [12, 14].

We end with the observation that the Tait–Knesser and
four-vertex theorems for Kepler conics (Theorems 11 and
13) can be derived from their Euclidean analogues via
projective duality. Here is a sketch (more details will
appear in [4]). The equation ax þ by ¼ 1 associates to a
point in the ab-plane a line in the xy-plane and vice versa.
To a curve C in one plane corresponds its dual curve C� in
the other plane, whose points parameterize the lines tan-
gent to C. One then shows that the dual of a Kepler conic is
a circle and that duality preserves nesting and order of
contacts of curves. It follows that the dual of the osculating

z

Figure 7. Proof of Lemma 12. The plane ax þ by þ cz ¼ 0

intersects the cone x2 þ y2 ¼ z2 only at its vertex whenever

the normal vector (a, b, c) lies inside the cone.
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Kepler conic to C is the osculating circle to C�, and the
same holds for hyperosculating conics. Thus duality inter-
changes Euclidean and Keplerian vertices, reducing the
Kepler version of the Tait–Knesser and four-vertex theo-
rems to their Euclidean analogues.

ACKNOWLEDGMENTS

After the first version of this article was posted, Rui Pacheco

and Marcos Salvai brought their relevant papers [13, 16] to

our attention, for which we are grateful. We thank Anton

Izosimov for interesting discussions and the referee for

useful suggestions. GB was supported by CONACYT Grant

A1-S-4588. ST was supported by NSF grant DMS-2005444.

Gil Bor

CIMAT, A.P. 402

36000 Guanajuato, Gto.

Mexico

e-mail: gil@cimat.mx

Connor Jackman

CIMAT, A.P. 402

36000 Guanajuato, Gto.

Mexico

e-mail: connor.jackman@cimat.mx

Serge Tabachnikov

Department of Mathematics

Penn State University

University Park, PA 16802

USA

e-mail: tabachni@math.psu.edu

REFERENCES

[1] V. I. Arnold. Huygens and Barrow, Newton and Hooke: Pioneers

in Mathematical Analysis and Catastrophe Theory from Evolvents

to Quasicrystals. Birkhäuser, 1990.
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