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1. Circumcenter of mass

Center of mass satisfies the Archimedes Lemma: if an object

is divided into two smaller objects, then the center of mass of

the compound object is the weighted sum of the centers of mass

of the two smaller objects.
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Circumcenter of mass: triangulate a polygon P , take the cir-

cumcenter of each triangle with the weight equal to its area, and

take the center of mass, CCM(P ).

Theorem: CCM(P ) is well defined and it satisfies the Archimedes

Lemma.

Formulas: If the vertices are (xi, yi), then
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.

3



A subtlety:

Proposition: If P is an equilateral polygon then

CCM(P ) = CM(P ).
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A historical remark (thanks to B. Grünbaum):
C.-A. Laisant, Théorie et applications des équipollences. Gauthier-
Villars, Paris 1887. On pp. 150–151, the construction is de-
scribed and attributed to Giusto Bellavitis (1803 –1880).

“Nothing is ever discovered for the first time”.

Sir Michael Berry
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Rediscovered by V. Adler (1993) as an invariant of the polygon

recutting transformation:
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In spherical and hyperbolic geometries: the center of mass of a

system of mass-points Vi ∈ S2 is the point∑
miVi

|
∑
miVi|

∈ S2,

taken with mass |
∑
miVi|.

The circumcenter of a spherical triangle ABC is taken with the

mass equal to the area of the plane triangle ABC:

CCM(ABC) = A×B +B × C + C ×A

(the direction gives the point, the magnitude gives the weight).

Given a triangulation, consider the center of mass of the circum-

centers of the triangles involved to obtain CCM(P ).
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Likewise in H2, in the hyperboloid model. One can also gener-

alize to simplicial polytopes in all three geometries.

More in

S. T. & E. Tsukerman. Circumcenter of Mass and generalized

Euler line. Discr. Comp. Geom., 51 (2014), 815–836.

Remarks on the the circumcenter of mass. Arnold Math. J., 1

(2015), 101–112.

A. Akopyan. Some remarks on the circumcenter of mass. Dis-

crete Comput. Geom. 51 (2014), 837–841.

8



2. Centroids of Poncelet polygons

Two centers of mass, CM0 and CM2.

Theorem: The trajectories of CM0 and CM2 are homothetic to
the outer ellipse.
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We don’t know the relation between the three circles and the

ellipse.

More in R. Schwartz, S.T. Centers of mass of Poncelet polygons,

200 years after Math. Intelligencer, v. 38, No 2 (2016), 29–34.
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Ana Chavez. More about areas and centers of Poncelet polygons,

arXiv:2004.05404, to appear in Arnold Math. J.

Theorem: 1) If a non-degenerate Poncelet polygon has zero

area, then area is zero in the whole 1-parameter family.

2) The locus of CCM of the Poncelet polygons is also a conic.
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3. Poncelet grid

Concentric and radial sets: Pk = ∪i−j=k`i ∩ `j, Qk = ∪i+j=k`i ∩ `j
(shown are P0, P2, P3 and P4).

12



Theorem: The concentric sets lie on nested ellipses, the radial

sets on disjoint hyperbolas. These conics share four (complex)

tangent lines. All the concentric sets are projectively equivalent

to each other, and so are all the radial sets.

R. Schwartz. The Poncelet grid. Adv. Geom. 7 (2007), 157–

175.

Theorem: If the conics are confocal, the concentric sets are

periodic billiard trajectories, and they are linearly equivalent.

M. Levi, S. T. The Poncelet grid and billiards in ellipses. Amer.

Math. Monthly 114 (2007), 895–908.
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Reye-Chasles theorem.
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More in A. Akopyan, A. Bobenko. Incircular nets and confocal

conics. Trans. Amer. Math. Soc. 370 (2018), 2825–2854.
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4. Kasner’s theorem and its extension

Theorem [Kasner]: The two operations on pentagons commute:
ID(P ) = DI(P ).

Theorem: For a Poncelet polygon, IDk(P ) = DkI(P ).
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Sketch of proof. Let (Γ, γ) be a pair of confocal ellipses, and P

a Poncelet n-gon, the tangency points form the set Q0, and the

vertices form the set Q1.

Consider the set Qk. These n points lie on a confocal ellipse, say

δ. Let A be the linear map that takes Q0 to Q1. This map takes

the tangent lines `i to γ at points Q0 to the tangent lines Li to Γ

at points Q1. Therefore A takes `i∩`i+k to Li∩Li+k, i = 1, . . . , n.

The latter set S lies on the ellipse ∆ = A(δ).

Let B be the linear map that takes Q1 to Qk. Then the map

BA takes Q0 to Qk. These linear maps commute: BA = AB.

The map AB takes Γ to ∆, and it takes the Poncelet n-gon P

to a Poncelet n-gon on the ellipses (∆, δ) with the vertex set S.

QED.
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γ and Γ are the two inner ellipses, δ and ∆ are the outer ones:

A(γ) = Γ, A(δ) = ∆, B(Γ) = δ ⇒ BA(γ) = δ, AB(Γ) = ∆.
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A historical remark: Edward Kasner (1878–1955) was a promi-

nent geometer at Columbia University, the advisor of Jesse Dou-

glas.
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Kasner (or rather his nephew) introduced the terms “googol”

and “googolplex” in his book “Mathematics and the Imagina-

tion” (with J. Newman).

More in S. T. Kasner meets Poncelet. Math. Intelligencer 41

(2019), no. 4, 56–59.
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5. Projective configuration theorems

Pentagram map (on projective equivalence classes of polygons):

It is the identity for pentagons and an involution for hexagons

(can you prove it?)
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Two projective planes: RP2 and (RP2)∗, two spaces of n-gons:

Cn and C∗n. The k-diagonal maps Tk : Cn → C∗n: for P = {p1, ..., pn},

Tk(P ) = {(p1pk+1), (p2pk+2), . . . , (pnpk+n)}.

Each map Tk is an involution.

Extend the notation:

Tab = Ta ◦ Tb, Tabc = Ta ◦ Tb ◦ Tc,

etc. For example, the pentagram map is T12.

If P is a polygon in RP2 and Q a polygon in (RP2)∗, and there

exists a projective transformation RP2 → (RP2)∗ that takes P

to Q, write: P ∼ Q.

24



Theorem: (i) If P is an inscribed 6-gon, then P ∼ T2(P ).

(ii) If P is an inscribed 7-gon, then P ∼ T212(P ).

(iii) If P is an inscribed 8-gon, then P ∼ T21212(P ).
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Theorem: (i) If P is a circumscribed 9-gon, then P ∼ T313(P ).

(ii) If P is an inscribed 12-gon, then P ∼ T3434343(P ).
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Theorem: (i) If P is an inscribed 8-gon, then T3(P ) is circum-
scribed.
(ii) If P is an inscribed 10-gon, then T313(P ) is circumscribed.
(iii) If P is an inscribed 12-gon, then T31313(P ) is circumscribed.
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More in R. Schwartz, S.T. Elementary surprises in projective

geometry. Math. Intelligencer, v. 32, No 3 (2010), 31–34.

28



6. Variations on Steiner’s porism

Descartes Circle Theorem.

Tangency of cooriented circles:

A and B are tangent, but A and C are not.
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Signed curvature: ±1/r, with plus when the coorientation is
inward and minus otherwise.

Theorem [Descartes]: (a+ b1 + b2 + b3)2 = 2(a2 + b21 + b22 + b23).
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Hence

a1+a2 = 2(b1+b2+b3), a1a2 = b21+b22+b23−2(b1b2+b2b3+b3b1),

leading to Apollonian gasket:
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Also

b1 + b2 + b3 =
a1 + a2

2
, b21 + b22 + b23 =

6a1a2 − a2
1 − a

2
2

4
for a Steiner chain of length 3 with fixed parent circles.
Here is a chain of length 7:
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Theorem: For every m = 1,2, . . . , k − 1, in the 1-parameter

family of Steiner chains of length k, the moments

Im =
k∑

j=1

bmj

remains constant. These moments are symmetric polynomials

of a1 and a2.
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Complex Descartes Circle Theorem.

Theorem [Lagarias-Mallows-Wilks, 2002]:

(aw + b1z1 + b2z2 + b3z3)2 = 2(a2w2 + b21z
2
1 + b22z

2
2 + b23z

2
3).

Hence

J1,1 = b1z1 + b2z2 + b3z3 and J2,2 = b21z
2
1 + b22z

2
2 + b23z

2
3

remain constant in the 1-parameter family of Steiner chains of
length 3 with fixed parent circles.

The invariance under parallel translation yields another conserved
quantity:

J2,1 = b21z1 + b22z2 + b23z3.
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Theorem: For all 0 ≤ n ≤ m ≤ k − 1, in the 1-parameter family

of Steiner chains of length k, the sum

Jm,n =
k∑

j=1

bmj z
n
j

remains constant.

These integrals are not independent (there are too many of

them). What are the syzygies?
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In the Spherical and Hyperbolic Geometries

A circle in S2 has two centers and, respectively, two radii, say
α and π − α. A coorientation is a choice of one center, and the
signed curvature is cotα. In H2, the curvature is cothα.

Theorem [Mauldon, 1962]: The versions of the Descartes circle
theorem are

4∑
i=1

(cotαi)
2 =

1

2
(

4∑
i=1

cotαi)
2 − 2

and
4∑
i=1

(cothαi)
2 =

1

2
(

4∑
i=1

cothαi)
2 + 2,

The Steiner porism still holds.
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Theorem: Let αj denote the radii of the circles in a Steiner
chain of length k on the sphere S2. Then, for m = 1,2, . . . , k−1,
in the 1-parameter family of spherical Steiner chains of length k,

k∑
j=1

cotmαj

remain constant. Likewise, for Steiner chains in the hyperbolic
plane,

k∑
j=1

cothmαj

remain constant.

More in R. Schwartz, S.T. Descartes Circle Theorem, Steiner
Porism, and Spherical Designs. Amer. Math. Monthly 127
(2020), 238–248.
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Thank you!
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