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INTEGRAL POINTS ON GENUS 2 HYPERELLIPTIC CURVES

ESTIMATING HYPERELLIPTIC LOGARITHMS
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Abstract. We completely determine the set of integral points on the rank 5,
genus 2 curve y2 = x5 + 105x4 + 4405x3 + 92295x2 + 965794x + 4038280 by

estimating hyperelliptic logarithms.

This article explains the MAGMA commands and computations related to the
example in my paper Computing integral points on genus 2 hyperelliptic curves
estimating hyperelliptic logarithms.

Let C be the hyperelliptic curve defined by

f(x) = x5 + 105x4 + 4405x3 + 92295x2 + 965794x+ 4038280.

This polynomial equals (x + 19)(x + 20)(x + 21)(x + 22)(x + 23) + (5 · 4)2, which
according to [6] should have rank at least 4.

In this document we perform all computations to find the integral points on C
with expanded commentaries.

We define the curve in MAGMA [1]:

> Q<x>:=PolynomialRing(Rationals());

> f:=x^5 + 105*x^4 + 4405*x^3 + 92295*x^2 + 965794*x + 4038280;

> a5:=LeadingCoefficient(f);

> C:=HyperellipticCurve(f);

We now define the Jacobian for the curve and compute bounds for its rank
(unconditionally):

> J:=Jacobian(C);

> r:=RankBounds(J);

> r;

5

The output is a lower bound for the rank, followed by an upper bound. In our
case they coincide, so we know the rank is 5. Since the rank is 5 and the genus
is 2, Chabauty’s method does not apply and the variant of the Mordell–Weil sieve
described in [2] would be computationally expensive.

We can compute the torsion subgroup of the Jacobian.

> T:=TorsionSubgroup(J);

> T;

Abelian Group of order 1

> t:=Order(T);

We conclude that the Jacobian is torsion free.
We now look for points on the Jacobian generating a rank 5 subgroup of the

Mordell–Weil group.
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> bas := ReducedBasis(Points(J : Bound :=1000));

> bas;

[ (x + 19, 20, 1), (x + 23, 20, 1), (x + 21, 20, 1),

(x + 22, -20, 1), (x^2 - 9*x - 580, -360*x - 7220, 2) ]

The command ReducedBasis returns an LLL-reduced basis for the subgroup of
J(C)(Q) generated by a sequence of points. Here the output consists of 5 divisors,
so we now know a full rank subgroup of J(C)(Q). We will prove in the last section
that this is a set of generators for the full group J(C)(Q).

The notation for divisors follows Mumford’s representation. It is a sequence
of two polynomials and an integer. The roots of the first polynomial are the x
coordinates of the points on the divisor. The y coordinates for the points are
obtained from the second polynomial in terms of x. The integer gives the degree of
the divisor.

1. Upper bound for the size of the integral points

We now want to compute an upper bound for the size of the integral points. We
compute it from Theorem 8.1 in [5]. We may need to scale the model of our curve
to obtain a model of the form

ay2 = x5 + b4x
4 + · · ·+ b0.

In our case we only need to set a = 1.

> a:=1;

We need a full set of representatives for J(C)(Q)/2J(C)(Q). In order to compute
them, we represent all numbers from 0 to 2r − 1 in base 2 as sequences of r digits,
filling with zeroes if necessary. We then will add the divisors corresponding to
significative digits.

The command Intseq(n,2) takes as input a decimal number and outputs its
binary digits as a sequence. In order to fill with zeroes we compute the digits of
n+ 2r and then delete the last digit.

> binarycoefficients:=[];

> for i in [0..31] do binarycoefficients:=Append(binarycoefficients,

> Prune(Intseq(i+32,2))); end for;

For an element l of the list we want to compute the sum of the elements on the basis
indicated by the digits of l. We store the representatives in the list fullSetReps.

> fullSetReps:=[];

> for i in [1..32] do

for> fullSetReps:=Append(fullSetReps,binarycoefficients[i][1]*bas[1]

for> + binarycoefficients[i][2]*bas[2] + binarycoefficients[i][3]*bas[3]

for> + binarycoefficients[i][4]*bas[4] + binarycoefficients[i][5]*bas[5]);

for> end for;

From this list we will compute the set K as in [5, Lemma 2.1].
Note that in order to complete the computation of the bound for the height of

the integral points we do not need a set of generators for the full Mordell–Weil
group, but only for the quotient J(C)(Q)/2J(C)(Q). But for the reduction of the
bound we do need a set of generators for J(C)(Q).

Now we proceed to compute the set K. We have to express every element in the
sequence fullSetReps in the form indicated in Section 2.1 of [5].
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We think on the divisors of J(C)(Q) as degree two effective divisors. Suppose
one of our divisors is given in the form

(x2 + ax+ b, cx+ d, 2), a, b, c, d ∈ Q.

The divisor P1+P2 is stable by the action of Galois. The roots of the first polynomial
are the x coordinates of the points on the support of the divisor. If J(C)(Q) has no
elements of order 2 defined over Q, the y coordinates for our points have y(P ) 6= 0.
Then all the required conditions for the divisor in Section 2.1 of [5] are satisfied.
Suppose we are able to express the x coordinates in the form γi/d

2, with γi an
algebraic integer. Then

x2 + ax+ b = (x− γ1/d2)(x− γ2/d2) =
(d2x− γ1)(d2x− γ2)

d4
.

Hence, the quantity we should associate to the divisor is equal to d4(α2 + aα +
b), which modulo squares equals (α2 + aα + b). In other words, we evaluate the
first polynomial on Mumford’s representation on α and multiply by an appropriate
integer. Note that when MAGMA computes elements in the number field Q(α), it
represents the results on the form

1/m · (integer linear combination of powers of α),

with m an integer. Since α is an algebraic integer, the expression inside the
parenthesis is an algebraic integer. We want an algebraic integer which modulo
squares equals this quantity. MAGMA can compute a squarefree factorization for
m = m1m

2
2. Since (m1m2)2/m = m2

1m
2
2/m1m

2
2 = m1, then the following is equiv-

alent modulo squares to the number we want:

m1 · (integer linear combination of powers of α),

which is an algebraic integer. So we multiply (α2 + aα+ b) by m2
1m

2
2 to obtain the

algebraic integer in our set K. We have to repeat the process with every element
in our full set of representatives.

> K<alpha>:=NumberField(f);

> kappaset:=[];

> for i in fullSetReps do

for> kappa:=Evaluate(i[1], alpha);

for> d1,d2:=SquarefreeFactorization(Denominator(kappa));

for> d:=d1*d2;

for> kappa:=d^2*i[1];

for> if i[3] eq 1 then kappa:=a*kappa; end if;

for> kappaset:=Append(kappaset,kappa);

for> end for;

Once we have the set K, for every κ ∈ K we have to compute the upper bounds
for all nonzero integers satisfying x − α = κξ2 for some algebraic number ξ. This
is done as in Theorem 8.1 of [5].

> load "upperbounds.m";

> S:=[]; // We are dealing with integral points

> Bounds:=[];

> for k in kappaset do;

for> Bounds:= Append(Bounds,heightxBoundx(f,k,S));

for> end for;
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> upperbound:= Max(Bounds);

After this computation we conclude that if (x, y) is an integral point on C, then its
height is at most:

> upperbound;

1.16434883654793772107557036153E546

Hence, if (x, y) is an integral point on C,

|x| ≤ exp(1.17× 10546).

2. Reduction of the bound

Now that we have an upper bound for the size of the integral points, we want to
reduce it to manageable proportions according to Section 6 of [4]

We need to translate the bound to an upper bound for the coefficients of the
expression

(1) P −∞ = n1D1 + · · ·+ n5D5 +Q,

where the Dis are the elements in bas, the generators for the free part of the
Mordell–Weil group, and Q is a torsion point. According to Corollary 3.2 from the
paper, the maximum for the coefficients on those expressions is given by√

µ−1
2 (log|a5|+ 2B − µ1)

where µ1 is a lower bound for the height difference (which we compute from The-
orem 4 in [3]), µ2 is the least of the eigenvalues of the height pairing matrix, a5
is the leading coefficient of f and B is an upper bound for the size of the integral
points on C. Since in our case a5 = 1, the term log|a5| is 0.

> load "heightdifference.m"; // Code for the computation of the lower bound.

> mu1:=HeightDifferenceLowerBound(f);

> mu2:= Min([l[1] : l in Eigenvalues(HeightPairingMatrix(bas))]);

> N:= Sqrt(mu2^(-1)*(2*upperbound-mu1));

> N;

1.93467303142902221285342385764E273

We need to estimate how many digits of precision we need to compute the matrix
A. According to Proposition 6.2 K must be of the order of ( 1

5 (48tN
√
r+ 12

√
rN +

5N + 48))(r+4)/4, where r is the rank and t the order of the torsion subgroup.

> ((1/5)*(48*Sqrt(r)*N*t + 12*Sqrt(r)*N + 5*N + 48))^((r+4)/4);

1.39675625460522953100172935313E618

We need K to be larger than this. So we need to compute the period matrix and
the hyperelliptic logarithms with at least 620 digits of precision. We choose to
compute with 1300 digits of precision.

> K:=10^970;

> F:=RealField(1300);

> SetDefaultRealField(F);

We now compute the analytic Jacobian, and the big period matrix using van Wame-
len’s implementation [8]. We turn the 2×4 matrix defined over C into a 4×4 matrix
defined over R.
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> time AJ:=AnalyticJacobian(C);

> M:=BigPeriodMatrix(AJ);

> RealM:=Matrix(4, [Re(M[1,1]), Re(M[1,2]), Re(M[1,3]), Re(M[1,4]),

> Im(M[1,1]), Im(M[1,2]), Im(M[1,3]), Im(M[1,4]),

> Re(M[2,1]), Re(M[2,2]), Re(M[2,3]), Re(M[2,4]),

> Im(M[2,1]), Im(M[2,2]), Im(M[2,3]), Im(M[2,4])]);

In the computer we were using, the computation took 1032.68 seconds. We prepare
to find the matrix AK from Proposition 6.2 in the paper. We have to compute the
hyperelliptic logarithms of the divisors generating the Mordell–Weil group. The
MAGMA function ToAnalyticJacobian takes as input a pair of complex numbers
which are supposed to be the coordinates of a point on the curve, and outputs the
integrals defining the hyperelliptic logarithm. When we have a degree 2 divisor
P1 + P2 − 2∞, we add the hyperelliptic logarithms of P1 and P2, and then reduce
modulo Λ.

> R<x>:=PolynomialRing(ComplexField());

> analyticPts:=[];

> for pt in bas do;

for> coords := [r[1] : r in Roots(Evaluate(pt[1],x))];

for> coords := [<d1,Evaluate(pt[2],d1)> : d1 in coords];

for> analyticPts:=Append(analyticPts,coords);

for> end for;

Recall that MAGMA represents divisors by a pair of polynomials and an integer.
With the previous commands we are computing the roots of the first polynomial to
obtain the x coordinates of the points on the support of the divisor, and subsituting
them on the second polynomial gives us the y coordinates. Once we have the
corresponding points, we compute the logarithms and reduce modulo Λ. In order
to perform the reduction modulo Λ, we multiply the image of Di by M−1 to get
t1, t2, t3, t4 such that

ϕ(Di) = t1ω1 + t2ω2 + t3ω3 + t4ω4

and then compute the fractional part of the tis (ti − btic).
> hyperlogs:=[];

> time for pt in analyticPts do;

for> hyperlogpt:= &+[ToAnalyticJacobian(d[1],d[2],AJ): d in pt];

for> hyperlogpt:=[Re(hyperlogpt[1][1]), Im(hyperlogpt[1][1]),

for> Re(hyperlogpt[2][1]), Im(hyperlogpt[2][1])];

for> coordsInOmegas:=Eltseq(RealM^(-1)*Matrix(1,hyperlogpt));

for> coordsReduced:=[];

for> for i in coordsInOmegas do;

for|for> coordsReduced:=Append(coordsReduced, i-Floor(i));

for|for> end for;

for> hyperlogpt:=RealM*Matrix(1,coordsReduced);

for> hyperlogs:=Append(hyperlogs,hyperlogpt);

for> end for;

We write block matrices that will help us to produce the matrix A.

> B1:=ScalarMatrix(r,1);

> B2:=ZeroMatrix(Integers(),r,4);

> B3:=HorizontalJoin(B1,B2);
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> B4:=K*Transpose(Matrix(hyperlogs));

> B5:=K*RealM;

> B6:=HorizontalJoin(B4,B5);

The matrix B6 has real coordinates. We want to round its entries to the nearest
integer.

> D:=Eltseq(B6);

> B7:=[];

> for i in D do; B7:=Append(B7,Round(i)); end for;

> B7:=Matrix(r+4,B7);

> A:=VerticalJoin(B3,B7);

We turn the matrix into a lattice in MAGMA, and compute the minimum.

> L:=Lattice(Transpose(A));

> l:=Minimum(L);

> assert(l gt ((1/5)*(48*Sqrt(r)*N*t + 12*Sqrt(r)*N + 5*N + 48)));

The program carries on, so the assertion is true. We compute our new bound.

> K1:=2^(7/2)*Exp(-mu1/4)/Sqrt(a5);

> K2:=mu2/4;

> N:=Sqrt((Log(4*K*K1)- Log(l-((1/5)*(48*Sqrt(r)*N*t + 12*Sqrt(r)*N + 5*N + 48))))/K2);

> N;

> 101.510616695925694147772537655

The previous value for N was 1.94 · 10273. The improvement is significant, but
computing all expressions of the form

n1D1 + · · ·+ n5D5

with |ni| ≤ 102 would take a very long time.
After this process we are in a similar situation to that of the beginning of the

reduction: we now that if P is an integral point on C with y(P ) > 0 and x(P ) large
enough, then

|Li(P )| ≤ K1 exp(−K2M
2
P )

and MP ≤ 102. The values K1 and K2 remain the same. So we can try to repeat
the reduction process and see whether we get a better bound.

> K:=10^13;

> B4:=K*Transpose(Matrix(hyperlogs));

> B5:=K*RealM/t;

> B6:=HorizontalJoin(B4,B5);

> D:=Eltseq(B6);

> B7:=[];

> for i in D do; B7:=Append(B7,Round(i)); end for;

> B7:=Matrix(r+4,B7);

> A:=VerticalJoin(B3,B7);

> L:=Lattice(Transpose(A));

> l:=Sqrt(Minimum(L));

> assert(l gt ((1/5)*(48*Sqrt(r)*N*t + 12*Sqrt(r)*N + 5*N + 48)));

> N:=Sqrt((Log(4*K*K1)- Log(l-((1/5)*(48*Sqrt(r)*N*t + 12*Sqrt(r)*N + 5*N + 48))))/K2);

> N;

13.6733152992874150989475483539

Though 13 is a much better value, we can try to reduce it further.
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> K:=2*10^10;

> B4:=K*Transpose(Matrix(hyperlogs));

> B5:=K*RealM/t;

> B6:=HorizontalJoin(B4,B5);

> D:=Eltseq(B6);

> B7:=[];

> for i in D do; B7:=Append(B7,Round(i)); end for;

> B7:=Matrix(r+4,B7);

> A:=VerticalJoin(B3,B7);

> L:=Lattice(Transpose(A));

> l:=Sqrt(Minimum(L));

> assert(l gt ((1/5)*(48*Sqrt(r)*N*t + 12*Sqrt(r)*N + 5*N + 48)));

> N:=Sqrt((Log(4*K*K1)- Log(l-((1/5)*(48*Sqrt(r)*N*t + 12*Sqrt(r)*N + 5*N + 48))))/K2);

12.7253310643914283237744873673

After this, trying different values for K did not result on an improvement on the
bound.

Now we have to compute all points of the form

n1D1 + · · ·+ n5D5

with |ni| ≤ 12. We compute the combinations with MAGMA, and we will keep
only those that are represented by a degree 1 divisor, for those are equivalent to a
divisor of the form P −∞ with P a rational point on C. We will store the rational
points obtained in the list pts.

> N0:=Floor(N);

> pts:=[];

> print "Computing all points of the form n1 D1+ ... + n5 D5";

> print "with Euclidean norm at most N"; // Takes a long time

> // We only compute those with i1 ge 0, as the others come from negatives.

> time for i1:=0 to N0 do;

for> for i2:=-N0 to N0 do;

for|for> for i3:=-N0 to N0 do;

for|for|for> for i4:=-N0 to N0 do;

for|for|for|for> for i5:=-N0 to N0 do;

for|for|for|for|for> if (i1^2 + i2^2 + i3^2 + i4^2 + i5^2 le N^2) then;

for|for|for|for|for|if> pp:=i1*bas[1]+i2*bas[2]+i3*bas[3]+i4*bas[4]+i5*bas[5];

for|for|for|for|for|if> if pp[3] eq 1 then;

for|for|for|for|for|if|if> pts:=Append(pts,pp);

for|for|for|for|for|if|if> end if;

for|for|for|for|for|if> end if;

for|for|for|for|for> end for;

for|for|for|for> end for;

for|for|for> end for;

for|for> end for;

for> end for;

> pts;

[ (x + 23, -20, 1), (x + 221/9, -1580/243, 1), (x + 21,

-20, 1), (x + 22, 20, 1), (x + 22, -20, 1), (x + 21, 20, 1), (x + 221/9,

1580/243, 1), (x + 23, 20, 1), (x + 19, 20, 1), (x - 381, 3240100, 1), (x -



8 HOMERO R. GALLEGOS–RUIZ

29, 17660, 1), (x + 20, -20, 1), (x - 377, -3160100, 1), (x - 1411/9,

-102391900/243, 1) ]

That means that the only integral points on C in our search region are

(377,±3160100), (−20,±20), (29,±17660), (381,±3240100),

(−19,±20), (−23,±20), (−21,±20), (−22,±20)

Now we have to look for the integral points with |x(P )| ≤ max{1,maxi{2‖αi‖}}.
> boundx:=2*Max([Modulus(i[1]) : i in Roots(Evaluate(f,x))]);

> boundx:=Max([boundx,1]);

> ptsBelowBound:=Points(C: Bound:=Ceiling(boundx));

> ptsBelowBound;

{@ (1 : 0 : 0), (-19 : -20 : 1), (-19 : 20 : 1), (-20 : -20 : 1),

(-20 : 20 : 1), (-21 : -20 : 1), (-21 : 20 : 1), (-22 : -20 : 1),

(-22 : 20 : 1), (-23 : -20 : 1), (-23 : 20 : 1), (29 : -17660 : 1),

(29 : 17660 : 1) @}

We have completely determined the set of integral points on C.
The running time of the computations was

Total time: 7989.220 seconds, Total memory usage: 200.44MB
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