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Abstract

Let C : Y 2 = anX
n + · · · + a0 be a hyperelliptic curve with the ai rational integers,

n ≥ 5, and the polynomial on the right irreducible. Let J be its Jacobian. Let S be a

finite set of rational primes. In this thesis we give explicit methods for finding all of the

integral and S-integral points on C. The work consists of the following parts.

1. We give a completely explicit upper bound for the size of the S-integral points on

the model C, provided we know at least one rational point on C and a Mordell–Weil

basis for J(Q). There is a refinement of the Mordell–Weil sieve that can then be

used to determine all the S-integral points on the curve.

2. In the case the curve has genus 2 and the polynomial defining the curve has

real roots only, we reduce the upper bound for the size of the integral points to

manageable proportions using linear forms in hyperelliptic logarithms. We then

find all of the integral points on C by a direct search.

3. We give an algorithm for the computation of hyperelliptic logarithms of real points

on genus 2 curves defined by a polynomial having real roots only. This is needed

for 2.

We illustrate the practicality of the method by finding all the integral points on

the curve Y 2 = f(X) = X5 − 5X3 −X2 + 3X + 1, and all the S-integral points on the

curve Y 2 − Y = X5 −X for the set S of the first 22 primes.
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Chapter 1

Introduction

Consider the hyperelliptic curve with affine model

C : Y 2 = anX
n + an−1X

n−1 + · · ·+ a0, (1.0.1)

where a0, . . . , an are rational integers, an 6= 0, n ≥ 5. Let S be a finite set of rational

primes. Siegel’s theorem [40] states that (1.0.1) has only finitely many S-integral solu-

tions. Siegel’s theorem is superseded by Faltings’ theorem [20] that states that there

are only finitely many rational points on C. Both Siegel’s and Faltings’ results are in-

effective. That is, their proofs do not lead to an algorithm to determine all the rational

points.

Using his theory of linear forms in logarithms, Baker [1] was the first to provide

an effective result concerning the size of the integral points on C. He showed that any

integral point (X,Y ) on this affine model satisfies

max(|X|, |Y |) ≤ exp exp exp{(n10nH)n
2}, H = max

i=1,...,n
{|ai|}.

Baker’s result has been improved and extended to solutions in algebraic integers and

S-integers by many authors (see [43, 48, 36, 2, 3, 12]). Despite the improvements, the

bounds remain astronomical and often involve inexplicit constants.

Recently, Bugeaud et al. [15] gave the first general practical method for explicitly
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computing integral points on affine models (1.0.1) of hyperelliptic curves. Their method

falls into two steps.

I. They give an upper bound for the size of integral points.

II. They describe a variant of the Mordell–Weil sieve capable of searching up to the

bounds found in the first step.

In this thesis we give a method for explicitly computing S-integral points on hyperelliptic

curves (1.0.1). As in [15], our strategy falls in two steps.

I’. We compute a completely explicit upper bound for the size of S-integral points.

This step is based in part on the ideas for step (I) above in [15]. The method

has to be completely reworked for the S-integral setting. We not only extend step

(I) to the S-integral case, but we also improve on the bounds given in [15] for

the size of the integral points. Nevertheless, the bounds are very large, and it is

impractical to do a search for S-integral points up to the bound. This material also

forms a 22-page paper [25] accepted for publication in The International Journal

of Number Theory.

II’. We use one of the following methods.

(a) We try to reduce the bound found in Step (I’) to manageable proportions,

using lattice reduction. We show how the bound can be turned into an upper

bound for the size of the coefficients of the linear combinations of the points

on the Jacobian corresponding to integral points on the curve. We turn

the linear combination in the Mordell–Weil group J(Q) into linear forms in

hyperelliptic logarithms. We give an upper bound for the linear forms and we

use it to reduce the upper bound for the coefficients of the linear combination

to manageable proportions.

(b) We use step (II) above to sieve up to the bounds found in Step (I’).
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As mentioned earlier, Step (I’) has to be completely reworked from Step (I) for the S-

integral setting.

i. We replace some of the bounds of Bugeaud and Győry [13] for the size of systems

of fundamental units and the size of solutions to S-unit equations with more recent

and sharper bounds due to Győry and Yu [27].

ii. We combine Matveev’s bounds for linear forms in logarithms [31] with Yu’s bounds

for linear forms in p-adic logarithms [53] and an idea due to Voutier [49] to get an

upper bound for the size of solutions of a particular type of S-unit equations.

iii. In [15] the authors use an upper bound for the regulator of a number field based

on a theorem of Landau. The theorem of Landau actually bounds the product of

the regulator and the class number, which we need to bound in our case.

iv. Our bounds for the size of the S-integral solutions on (1.0.1) depend on the class

number of some number field. We use an upper bound for the class number due

to Lenstra [28].

The improvements on the first step are the following. First, our constants are

smaller than those in [15], and do not depend on parameters related to Lehmer’s prob-

lem. This is due to the improvement on systems of fundamental S-units we use. More-

over, though Voutier’s idea had been already used to give effective upper bounds for

the size of S-integral solutions in [12], the bounds were inexplicit. Our bounds are

completely explicit and they are based on more recent estimates for linear forms in

logarithms than those used in [12].

Step (II’)-(a) in its present form can only be used to find integral points on C

when the genus of the curve is 2, and when the polynomial defining the curve has real

roots only. The generalisation of the method to polynomials with complex roots defining

genus 2 curves is work in progress.

Step (II’)-(b) is practically unchanged with respect to step (II) above, and we

merely summarise what we need for it from [15].
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We need the following assumptions for all steps:

a. The knowledge of at least one rational point P0 on C.

b. The knowledge of a Mordell–Weil basis for J(Q) where J is the Jacobian of C.

For the second step we also need to assume that the canonical height ĥ :

J(Q) → R is explicitly computable and that we have explicit upper and lower bounds

for the difference

µ1 ≤ h(D)− ĥ(D) ≤ µ2. (1.0.2)

For step (II’)-(a) we further require that generators of J(Q) are divisors supported by

points on C(R) only.

The assumption that we know a point on the curve brings simplifications to our

method. As remarked in [15], if we do not know any rational point on the curve, it is

possible that there are no rational points at all. This can be proved using the techniques

of Bruin and Stoll [9, 10, 11].

We have made most of the necessary computations with the computational al-

gebra system MAGMA [5]. Some computations have been performed with the Mathemat-

ica system [52].

The thesis is arranged as follows. Chapter 2 outlines the existing methods for

the computation of the bounds for the height difference, and the computation of the

Mordell–Weil group. It consists on standard material, but it is needed to set up notation

which will be used throughout the thesis. Chapter 3 is concerned with the computation

of the upper bounds for the size of the S-integral points on the affine model 1.0.1.

It also explains how one can completely determine all the S-integral points using the

variant of the Mordell–Weil sieve found in [15]. Chapter 5 deals with the reduction of the

upper bounds obtained in Chapter 3 for the particular case of integral points on genus 2

hyperelliptic curves. The method requires the computation of the periods of the curve,

and hyperelliptic logarithms of degree 0 divisors on C to high precision. In Chapter 4 we
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present an algorithm of Bost and Mestre [6] for the computation of the periods, and we

work on an extension of it so that we can also compute the hyperelliptic logarithms.

We now briefly describe the available tools for the solution of Diophantine hy-

perelliptic equations. After Siegel’s proof of the finiteness of the number of S-integral

points on curves of higher genus, effective methods for finding all the S-integral points

on hyperelliptic curves have been developed. Some of them are not general, and those

that are general are often impractical or inexplicit.

1. Chabauty’s method. Chabauty [17] proved that a curve of genus g ≥ 2 has a

finite number of rational points whenever the rank of the Mordell–Weil group of

its Jacobian is strictly less than g. His proof often leads to a sharp bound on the

number of points on C. If the bound is attained, then one has not only the integral

points, but all the rational points. This requires knowledge of generators for the

Mordell–Weil group or a subgroup of finite index. For notes on the application

of this method see [16, Chapter 13] or [32]. The examples we present in this

thesis are genus 2 curves with Mordell–Weil rank ≥ 2, so Chabauty’s method

does not apply. There are also some variants of Chabauty’s method (as Elliptic

Curve Chabauty [7], [8], [23], [24]) that can determine all the rational points on a

hyperelliptic curve, but they are also limited to curves of small rank.

2. Bilu and Hanrot’s variant of Baker’s method Bilu and Hanrot [4] have pro-

duced a method to solve superelliptic Diophantine equations (i.e. of the form

Y m = f(X) with m ≥ 3) which computes an upper bound for the size of the

integral points. Their method does not involve Thue or unit equations since they

compute directly a linear form in logarithms from a careful analysis of some num-

ber fields. The upper bound they get is huge, but it is then reduced by an appli-

cation of the LLL-algorithm. The authors claim that one can adjust the method

to the hyperelliptic case, but they do not do it explicitly. The method needs some

computations of class groups of number fields of large degree (≥ 20) that in many

cases in practice are beyond the present abilities of computer algebra.
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3. Baker’s method and the Mordell–Weil sieve. A third method is the one we have

mentioned before: Baker’s method combined with the variant of the Mordell–Weil

sieve [15] to find the integral points. This is the more general method, as it does

not depend on the genus, and it does not involve computations of unit groups,

but only bounds on the regulator of large degree number fields which are easy

to compute. Nevertheless, the computations for the Mordell–Weil sieve can be

expensive. Thus, one would like to reduce the upper bound obtained from Baker’s

method as much as possible, to sieve up to a not so large bound, or not to have

to sieve at all.
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Chapter 2

The Mordell–Weil group

The methods we use for the complete solution to hyperelliptic Diophantine equations

depend heavily on computing explicit generators for the Mordell–Weil group J(Q),

which is finitely generated by the Mordell–Weil theorem. The purpose of this chap-

ter is to set up the notation on Jacobians that we will use throughout the thesis and

gather the standard results on Jacobians we will need. We will also describe what are

the existing tools to explicitly compute generators for J(Q). The strategy is mainly in-

spired by the elliptic case. One needs to explicitly compute the canonical height of a

point on the Jacobian. One also needs to compute the rank of the curve. Then one

looks for generators of J(Q)/2J(Q). Finally, one extends that set of generators to a

complete set of generators for J(Q).

The chapter is arranged as follows. Section 2.1 presents the basic definitions

about hyperelliptic curves and Jacobians. Section 2.2 gathers results by Flynn, Smart

and Stoll related to the explicit computation of lower and upper bounds for the height dif-

ference which lead to the explicit computation of the canonical height. Section 2.3 deals

with the computation of the rank of the curve and the 2-descent. Finally, Section 2.4

explains how one can perform the infinite descent to compute a complete set of gener-

ators for J(Q).
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2.1 Basic definitions and theorems

The following definitions and results are standard and are taken from Chapters 1-3 in

[16]. Let C be a hyperelliptic curve of genus 2 defined over Q given by an affine model

of the form

C : Y 2 = f(X),

where

f(X) = f6X
6 + f5X

5 + f4X
4 + f3X

3 + f2X
2 + f1X + f0,

where the fis are all integers and f6 is not zero and f(x) has no multiple factors. Every

genus 2 hyperelliptic curve over Q is birationally equivalent over Q to a curve of this

type, which is unique up to a fractional linear transformation in X, and an associated

transformation in Y .

When dealing with the degree 6 affine model of a hyperelliptic curve one should

bear in mind that the corresponding projective model in P2 has a singularity at infinity.

But we think instead on a complete non-singular model, either in a weighted projective

space PX,Y,Z(1, 3, 1) or the model in P4 resulting from blowing up the singularity at

infinity (see [16, Chapter 1, Section 1]). This means that as a double cover of P1, the

curve C has two points over ∞. They are traditionally named ∞+ and ∞−, according

to the sign of Y/X3 along the corresponding branch (see for instance [16, p. 77]). We

will also consider affine models given by a degree 5 polynomial f . In this case there

is only one point over the point at infinity in P1 which is traditionally named∞ as well.

Hopefully, in the rest of the work it will be clear from the context whether we are talking

about the point∞ ∈ P1 or the point∞ ∈ C.

Definition. The Jacobian of C is defined as J(C) = Pic0(C), i.e. degree 0 divisors

modulo linear equivalence.

Let P be a point of C, P = (x, y). We say that the point P̄ = (x,−y) is

the conjugate of P . A divisor of degree 2 of the type P + P̄ is the intersection of C

with X = x. We see then that any two divisors of this type are linearly equivalent.

8



Denote the corresponding element of Pic2(C) by D. We will choose ∞+ + ∞− as

a representative for D. Since D is the canonical class, the Riemann Roch Theorem

implies that any other element of Pic2(C) contains precisely one effective divisor P +Q

fixed as a pair by Gal(Q̄/Q) (see [16, Chapter 1, Section 1]). We will identify any such

element of Pic2(C) with its unique effective divisor. We can identify Pic0(C) with Pic2(C)

via addition by D. Doing so identifies 0 ∈ Pic0(C) with D. We will in general express

points on the Jacobian other than 0 in the form P + Q − D, where P and Q are not

conjugate under the hyperelliptic involution.

Let P0 be a rational point on C. Sometimes we will want to express points in the

Jacobian in the form P ′ + Q′ − 2P0. We will do it in the following way. Let P + Q −D

be an element in J(C). Consider the divisor D′ = P +Q−D + P0 − P̄0 ∈ Pic0(C). In

general, D′ will not be linearly equivalent to 0. Let P ′+Q′ be the only degree 2 effective

divisor such that P ′+Q′−D is linearly equivalent to D′. Then the divisor P ′+Q′−2P0

is linearly equivalent to D′ +D− 2P0, which is linearly equivalent to P +Q− P0 − P̄0,

which is linearly equivalent to P +Q−D.

The Jacobian of the curve J(C) can also be thought of as an algebraic variety

whose points correspond to the elements of Pic0(C). In [16, Chapter 2] the authors

describe explicitly this variety as the intersection of 72 quadrics in P15 and they also

give explicit maps taking divisors of the form P +Q−D to the algebraic variety.

The model of the Jacobian variety in P15 is a large object, difficult to manipulate.

There is another variety associated to J(C) that retains much of the information of the

Jacobian which is much simpler, the Kummer surface K = K(C). This is a quartic

surface in P3. We take its definition from [16, Chapter 3]. We define K as the projective

locus in P3 of the map given by

P +Q−D ∈ J(C) 7→ (k1, k2, k3, k4) = (1, x+ u, xu, (F0(x, u)− 2yv)/(x− u)2),

where P = (x, y), Q = (u, v), P 6= Q, and

F0(x, u) = 2f0+f1(x+u)+2f2xu+f3xu(x+u)+2f4(xu)2+f5(xu)2(x+u)+2f6(xu)3.

9



The Kummer surface is then given by a quartic equation

R(k1, k2, k3)k
2
4 + S(k1, k2, k3)k4 + T (k1, k2, k3) = 0, (2.1.1)

where R,S and T are homogeneous of degree 2, 3 and 4 respectively. These poly-

nomials can be found in Chapter 3 of [16]. We can extend the map to pairs of points

P,Q that include the points at infinity, and to pairs of the form P, P . The values are

the following, according to Flynn and Smart [22]. For pairs P, P where P is not one of

the points at infinity, k1, k2, k3 are as above, and k4 is uniquely determined by Equa-

tion (2.1.1). If the pair is of the form (x, y),∞±, then k1 = 0, k2 = 1, k3 = x1, k4 =

f5x
2 + 2f6x

3
1 − (±2y

√
f6). The pair ∞+,∞− is mapped to (0, 0, 0, 1) and if the pair

consists of two equal points at infinity, the corresponding point on the Kummer surface

is (0, 0, 1, k4) where k4 can be determined from equation (2.1.1). We remark that the

Jacobian variety is a double cover of the Kummer surface (see [16, Chapter 3, Section

8]).

Finally, we state the Mordell–Weil Theorem. The proof for the general theorem

on Abelian varieties over number fields can be found in Serre’s book [39, Chapter 4].

Theorem 2.1.1. The group of points on J(C) defined over Q is a finitely generated

abelian group.

2.2 Bounds for the height difference

We define a naive height onK as the restriction of the naive height in P3: let (x0, x1, x2, x3)

be the homogeneous coordinates of a point in P3(Q). Multiplying by a nonzero constant,

we can assume that the xis are all integers having 1 as their greatest common divisor.

We define the (exponential) naive height of (x0, x1, x2, x3) as max(|x0|, |x1|, |x2|, |x3|).

We will normally consider the logarithmic naive height, that is, the logarithm of the naive

height.

Definition. The naive height or logarithmic height of a point Q on the Jacobian variety
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of C is the logarithmic naive height of the corresponding point on the Kummer surface.

We denote the naive height of Q by h(Q).

This is much easier than computing heights directly on P15 where J(C) is em-

bedded. Note as well that the set of points

{P ∈ J(Q) : h(P ) ≤ B}

is finite since the set in P3 consisting of points of height ≤ B is finite and the Jacobian

is a double cover of the Kummer surface. Taking advantage of the group law on the

Jacobian, one can also define another height, the canonical height, by

ĥ(P ) = lim
n→∞

1

n2
h(nP ).

For many hyperelliptic curves, the canonical height of a given point P on J(Q)

is explicitly computable. Flynn and Smart [22] were the first to give an algorithm for

the computation of the canonical height. The algorithm has since been improved, in

particular by Stoll [44, 46]. Stoll’s algorithm has been implemented in the Computer

Algebra system MAGMA and it is the one we use.

We explain now how we can find real constants µ1 and µ2 bounding the height

difference

µ1 ≤ h(Q)− ĥ(Q) ≤ µ2. (2.2.1)

The idea behind obtaining such bounds is approximating the distance from a given

point to twice the point. Let P be a point on J(C). Denote by kP = (k1, k2, k3, k4)

the corresponding point on the Kummer surface. The coordinates of k2P are given by

quartics in terms of the kis, and we denote them by (δ1, δ2, δ3, δ4). The equations for

those quartics are given in [21] and they are too large to be reproduced here. Following

[22] we define a local error function for every prime p, including the infinite prime:

εp(kP ) = log( max
i=1,...,4

{|δi(kP )|p})− 4 log( max
i=1,...,4

{|ki|p}).
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It can be shown (see [22]) that for all primes of good reduction the error function van-

ishes. For the remaining primes upper and lower bounds can be computed. We now

show how to bound the error function in the infinite case.

Lemma 2.2.1. An upper bound for ε∞ is given by

µ
(∞)
1 = log( max

i=1,...,4

{∑
absolute value of the coefficients of δi

}
).

Proof. Multiplying by a constant we can assume that the maximum of the absolute

value of the entries of kP is one. Then

max
i
{|δi(k1, k2, k3, k4)|} ≤ max

i=1,...,4

{∑
absolute value of the coefficients of δi

}
.

Because of our assumption for k,

ε∞ = log(max
i
{|δi(k1, k2, k3, k4)|}).

The result follows.

We could find a sharper bound for ε∞, but this one will be enough for our pur-

poses. A lower bound for ε∞ can be obtained using numerical techniques such as

steepest descent.

Obtaining sharp lower bounds for the finite primes is the subject of [44, 46]. In

[22] the authors show that 0 is always an upper bound for the local error function at the

finite primes.

The following theorem gives the desired lower and upper bounds for the height

difference. This is Theorem 4 in [22].

Theorem 2.2.2. For every prime p, including the infinite prime, let µ(p)1 , µ
(p)
2 be non-

negative real constants such that

µ
(p)
1 ≥ εp(kP ) ≥ −µ(p)2

for all P ∈ J(Q), where all but finitely many of the µ
(p)
1 , µ

(p)
2 are 0. Define µ1 =

−1
3

∑
p µ

(p)
1 and µ2 = 1

3

∑
p µ

(p)
2 . Then, for all P ∈ J(Q) we have

µ1 ≤ h(P )− ĥ(P ) ≤ µ2.
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For the computation of the canonical height and for finding generators of the

Mordell–Weil group J(Q) one only needs the upper bound µ2 for the height difference.

MAGMA’s package dealing with hyperelliptic curves does not implement the lower bound.

Nevertheless, we will use the lower bound µ1 obtained from Lemma 2.2.1 in Chapter 5

to relate upper bounds for the naive height of the integral points on C to upper bounds

for linear forms in hyperelliptic logarithms. We will also need it in Section 3.8.

Remark. The existence of the bounds µ1, µ2 for the height difference implies that the

set of points

{P ∈ J(Q) : ĥ(P ) ≤ B}

is finite for a given positive real number B. Then, the intersection of the image under ĥ

of J(Q) with the interval [0, B] ⊂ R is a finite set. It follows that ĥ(J(Q)) is a discrete

subset of R

2.3 Computing the rank of J(Q) – 2-descent.

There is no algorithm known so far that provably determines the rank of the Mordell–

Weil group J(Q). But many algorithms have been developed to give upper and lower

bounds for it ([37, 38, 45]). In many cases the bounds coincide and then one knows the

rank. In this section we outline the main ideas behind such bounds.

The proof of the Mordell–Weil theorem looks at the quotient J(Q)/mJ(Q). The

finiteness of the quotient implies that J(Q) is finitely generated. Normally, one looks

at the case m = 2, as the multiplication by 2 map is available as an isogeny defined

over Q and has low degree. Up to the computation of the torsion, one can deduce the

rank of J(Q) from the structure of J(Q)/2J(Q) once the torsion subgroup has been

computed. The computation of generators for J(Q)/2J(Q) is known as 2-descent.

Stoll gives an algorithm for the computation of the torsion subgroup J(Q)tors in

[44]. The idea of the algorithm is first computing the group J(Fp) for some small primes

p of good reduction. The order of the rational torsion subgroup must divide the greatest

13



common divisor g of the orders of the groups J(Fp). Since the rational torsion subgroup

is a finite abelian group, it suffices to compute the q-parts for all primes dividing the

order of the group. Only primes dividing g can occur. Then, for every prime q dividing

g one takes a prime of good reduction p 6= q. Then one tries to lift points on J(Fp)[qn]

to J(Q). One does so lifting them first to J(Qp) and finally a computation of heights

decides whether the point can indeed be lifted or not.

An upper bound for the rank is obtained from the 2-Selmer group, as explained

in [45]. Once we get an upper bound r′ for the rank, we try to search for points on the

Jacobian until we get r′ independent elements. If that is the case we then know that r′

equals the rank of the curve. We can search for points on the Jacobian up to certain

height c by looking for points on the Kummer surface with naive logarithmic height at

most c+ µ2, as long as c+ µ2 is not too large (< 10).

In order to test whether a finite setW ⊂ J(Q)/J(Q)tors is a linearly independent

set in J(Q) we need the following definition.

Definition. The height pairing on J(Q) is the bilinear form

〈·, ·〉 : J(Q)× J(Q)→ R

given by

〈P,Q〉 =
1

2
(ĥ(P +Q)− ĥ(P )− ĥ(Q)).

Let P1, . . . , Pn be a sequence of points on J(Q). The height pairing matrix of the given

points is the matrix with entries

〈Pi, Pj〉.

The bilinearity of the height pairing follows from the standard fact that the canon-

ical height is a positive definite quadratic form on J(Q). The determinant of the height

pairing matrix of a sequence of points on J(Q) is 0 if and only if the points are not an

independent set in J(Q)/J(Q)tors. Once we are able to compute explicitly the canonical

height, we have a very useful tool to test for linear independence in J(Q) without the

knowledge of an explicit basis.
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Once we find r linearly independent elements in J(Q) we test if they, together

with the torsion points, generate J(Q)/2J(Q). We do it by testing if they are not the

double of another point on J(Q). We can test whether a point of infinite order P is not

the double of a point Q ∈ J(Q) using heights. If P = 2Q, then ĥ(Q) = 1/4ĥ(P ), as we

can see from the definition of ĥ. We then can look for points Q on J(Q) of canonical

height at most 1/4ĥ(P ) and see whether 2Q = P or not.

2.4 The infinite descent

The procedure that computes a set of generators for the full Mordell–Weil group out of

a set of generators for J(Q)/2J(Q) is known as infinite descent. There are different

ways of performing the infinite descent (see [22, 46]). We will use a simple method due

to Zagier [41, Proposition 7.2].

Theorem 2.4.1 (Zagier). Let Sc = {P ∈ J(Q) : ĥ(P ) ≤ c}. If Sc contains a full set of

representatives for J(Q)/mJ(Q) (m > 1), then J(Q) is generated by Sc.

Proof. The proof in [41] also applies in the hyperelliptic case. We repeat it here for

completeness.

Let J1 be the subgroup of J(Q) generated by Sc. Suppose that J1 6= J(Q).

Then choose a Q ∈ J(Q), with Q /∈ J1 of minimal height. This is possible, since

ĥ(J(Q)) is a discrete subset of R (see last remark in Section 2.2). Since Q /∈ Sc we

have ĥ(Q) > c. Choose P ∈ Sc with P ≡ Q (mod mJ(Q)), so P = Q+mR for some

R ∈ J(Q). We note that R /∈ J1 because of our assumption on Q.

Now note that

ĥ(R) =
1

m2
ĥ(P −Q) ≤ 2

m2
(ĥ(P ) + ĥ(Q))

≤ 2

m2
(c+ ĥ(Q)) <

4

m2
ĥ(Q)

≤ ĥ(Q),

since m ≥ 2. Since R /∈ J1 this is a contradiction to the minimality of Q and hence

proves the proposition.
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Once we know a set of generators for J(Q)/2J(Q), we compute the heights of

representatives of every class modulo 2J(Q). Let c be the maximum of those heights.

Then, the set Sc satisfies the conditions of the theorem and we know it generates the

full Mordell–Weil group. If the height of one of the generators is very large, or if the rank

is very large, then Zagier’s theorem might be impractical, and one would need to use

the lattice enlargement procedures and the sieving techniques from [22, 46].

Example 2.4.2. Let C be the genus 2 curve defined by the equation

y2 = 4x5 − 4x+ 1.

This curve is equivalent to that in Theorem 1.1 of [15]. There the authors compute the

Mordell–Weil group of the curve, and we check here the computations to illustrate the

methods presented in this chapter.

Using MAGMA we find some rational points on the curve.

∞, (−1,±1), (0,±1), (1,±1, 1), (2,±11),

(3,±31), (1/4,±1/16), (−15/16,±679/512), (30,±9859).

MAGMA’s command TorsionSubgroup reveals that the Mordell–Weil group is torsion

free. Using the command ReducedBasis we find a set of generators for the subgroup

generated by the divisors P −Q, where P,Q are in the list we have just found. A list of

independent generators for the subgroup is

(0, 1)−∞, (1, 1)−∞, (−1, 1)−∞.

Hence J(Q) has rank at least 3. Now we use the command RankBounds to see that an

upper bound obtained from the information of the 2-Selmer group of J(Q) is 3. Then

J(Q) has rank 3. We now want to see that none of the generators is the double of

some divisor. We first compute an upper bound for the height difference using the

HeightConstant command. We find that µ2 is about 2.17. We compute the canonical

heights of the divisors above with the Height command and see that they are respec-

tively about 0.16, 0.60 and 0.79. If the double of a divisor D is one of the divisors above,
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then it should have strictly lower height. Using the upper bound for the height difference

we look for all points of naive logarithmic height less than ĥ((−1, 1))+µ2. We use again

the command ReducedBasis to obtain independent generators for the group generated

by the points found in our search, and we obtain the same generators. Hence, none of

the original divisors was of the form 2D, and they generate J(Q)/2J(Q). Finally, we

compute the heights of the representatives of each coset, and apply Zagier’s theorem

to find a complete set of generators of J(Q). We see that the Mordell–Weil group is

generated by the divisors above.
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Chapter 3

Upper bounds for the size of

S-integral points on hyperelliptic

curves

The material presented here is a slightly expanded version of that in my paper [25],

which is to appear in The International Journal of Number Theory.

Consider the hyperelliptic curve with affine model

C : Y 2 = anX
n + an−1X

n−1 + · · ·+ a0, (3.0.1)

where a0, . . . , an are rational integers, an 6= 0, n ≥ 5, where the polynomial on the

right-hand side is irreducible. Let S be a finite set of rational primes. A rational number

x = p/q, p, q ∈ Z, (p, q) = 1, is an S-integer if q is either 1 or it is divisible by primes in

S only. The size (or height) of x, x 6= 0 is defined by max{log|a|, log|b|}. In this chapter

we give a method for explicitly computing an upper bound for the size of the S-integral

points on hyperelliptic curves (3.0.1). Our strategy is based in part on the ideas in [15]

(see Chapter 1 for a detailed explanation of the similarities and the differences between

the two approaches).

We use a variant of Baker’s method to transform the problem of finding the S-

18



integral points on a hyperelliptic curve into a finite set of S-unit equations in certain

number fields. Since the degree of the fields we will deal with will be often large (> 20),

the explicit computation of the group of units and the resulting unit equations is beyond

the present power of computer algebra. We will then bound the size for the solutions

of the unit equations in terms of invariants of the number fields, namely the regulator

and the class number. Again, these invariants are hard to compute in the cases we

need, but they have been previously bounded in the literature. These bounds are not

necessarily sharp and we use them to save ourselves the expense, obtaining large

bounds for the size of the S-integral points on the curve.

We need the following assumptions:

a. The knowledge of at least one rational point P0 on C.

b. The knowledge of a Mordell–Weil basis for J(Q) where J is the Jacobian of C.

The chapter is arranged as follows. In Section 3.1 we show, after appropriate

scaling, that an S-integral point (x, y) satisfies x−α = κξ2 where α is some fixed alge-

braic integer, ξ ∈ Q(α), and κ is an algebraic integer belonging to a finite computable

set. In Section 3.7 we give bounds for the height of S-integral solutions x to an equation

of the form x − α = κξ2 where α and κ are fixed algebraic integers. Thus we obtain

bounds for the height of S-integral points on our affine model (3.0.1). Sections 3.2–3.6

are preparation for Section 3.7: in particular Section 3.2 is concerned with S-integers

and heights; Section 3.3 collects various results on appropriate choices of systems

of fundamental S-units; Section 3.4 explains how a theorem of Landau can be used

to bound the S-regulator of a number field; Section 3.5 is devoted to Matveev’s lower

bounds for linear forms in logarithms and to Yu’s lower bounds for linear forms in p-adic

logarithms; in Section 3.6 we use an idea due to Voutier to adapt recent estimates for

the size of solutions to S-unit equations due to Győry and Yu. These estimates are

more suited to our purposes and we use them in Section 3.7 to deduce the bounds for

the height of x alluded to above from the bounds for solutions of unit equations. Finally,
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Section 3.8 explains how the variant of the Mordell–Weil sieve in [15] can be used to ef-

fectively sieve up to the bounds obtained in Section 3.6 and thus completely determine

the set of S-integral points on the curve.

3.1 Descent

Consider a (non-empty) finite set of rational primes S and the S-integral points on the

affine model of the hyperelliptic curve (3.0.1), where the polynomial on the right-hand

side is irreducible. By appropriate scaling, one transforms the problem of finding the

S-integral points on (3.0.1) to that of finding the S-integral points on a model of the form

ay2 = xn + bn−1x
n−1 + · · ·+ b0, (3.1.1)

where a and b0, . . . , bn−1 are integers, with a 6= 0. We will denote the polynomial on

the right-hand side by f .

Let α be a root of f . In a similar way to that in [15] we will show that for every

S-integral point (x, y) on the model (3.1.1) we have

x− α = κξ2,

where κ, ξ ∈ K = Q(α) and κ is an algebraic integer that comes from a finite com-

putable set. We follow ideas from [15], but we adjust the proofs for the S-integral case.

In particular, the finite computable set is larger than that in [15] in one case.

We will suppose that the Mordell–Weil group J(Q) of the curve C is known. The

method depends on whether the degree of f is odd or even.

3.1.1 The Odd Degree Case

Schaefer [37, Lemma 2.2] proved that when the polynomial f has odd degree, every de-

gree 0 divisor defined over Q is linearly equivalent to a divisor of the form
∑m

i=1(Pi−∞),

where the set {P1, . . . , Pm} is stable under the action of the Galois group Gal(Q̄/Q),
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and such that all y(Pi) are non-zero. By [15] claim that we can write x(Pi) = γi/d
2
i

where γi is an algebraic integer and di ∈ Z≥1; and that if Pi, Pj are conjugate, we can

suppose that di = dj and in consequence γi, γj are conjugate. In this odd degree case

we will always choose representatives of the cosets of J(Q)/2J(Q) having this form.

Choose a set of representatives for J(Q)/2J(Q) satisfying the conditions of the

previous paragraph. To each representative we associate the algebraic number

κ = a(m mod 2)
m∏
i=1

(γi − αd2i ).

Lemma 3.1.1. Let K be a set of κ associated as above to a complete set of coset

representatives for J(Q)/2J(Q). Then K is a finite subset of OK , the ring of integers

of K and if (x, y) is a rational point on the model (3.1.1) then x − α = κξ2 for some

κ ∈ K and ξ ∈ K.

Remark. This is Lemma 3.1 in [15]. The proof there does not require x to be an integer,

but only a rational number. Hence the proof is valid for every rational point in the curve.

We present the proof here for completeness.

Proof. For hyperelliptic curves defined by a polynomial f of odd degree Schaefer [37,

Lemma 2.1] proved that the map

θ : J(Q)/2J(Q)→ K∗/K∗2

given by

θ

(
m∑
i=1

(Pi −∞)

)
= am

m∏
i=1

(x(Pi)− α) (mod K∗2)

is a well defined homomorphism for coset representatives of the form
∑

(Pi −∞) with

y(Pi) 6= 0. Since f is irreducible over Q, a rational point P on the model (3.1.1) will

necessarily have x(P ) 6= 0. Then the coset of the divisor P − ∞ will be mapped

under θ to x(P ) − α (mod K∗2). Since K consists of the image of a complete set of

representatives for J(Q)/2J(Q) the result follows.
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3.1.2 The Even Degree Case

We are assuming the existence of a rational point P0. If P0 is one of the two points at

infinity, let ε0 = 1. Otherwise, y(P0) 6= 0 since f is irreducible. Write x0 = γ0/d
2
0 with

γ0 ∈ Z and d0 ∈ Z≥1 and let ε0 = γ0 − αd20.

In this even degree case one needs to modify the homomorphism given in the

odd degree case. Since we are assuming the existence of a rational point on the

curve, we can choose a representative of every coset of J(Q)/2J(Q) having the form∑m
i=1(Pi − P0) where the set {P1, . . . , Pm} is stable under the action of the Galois

group Gal(Q̄/Q), and such that all y(Pi) are non-zero (see Section 5 of [45]). Again,

as in [15, Section 3], we can write x(Pi) = γi/d
2
i where γi is an algebraic integer and

di ∈ Z≥1; and if Pi, Pj are conjugate, we may suppose that di = dj and in conse-

quence γi, γj are conjugate. We associate to such a coset representative the algebraic

number

ε = ε
(m mod 2)
0

m∏
i=1

(γi − αd2i ).

Lemma 3.1.2. Let E be a set of ε associated as above to a complete set of coset

representatives for J(Q)/2J(Q). Let ∆ be the discriminant of the polynomial f . For

each ε ∈ E let Bε be the set of square-free rational integers supported only by primes

dividing a∆ NormK/Q(ε)
∏
p∈S p. Let K = {εb : ε ∈ E , b ∈ Bε}. Then K is a finite

subset of OK and if (x, y) is an S-integral point on the model (3.1.1), then x−α = κξ2

for some κ ∈ K, ξ ∈ K.

Proof. In this even degree case there is also a well defined homomorphism

θ : J(Q)/2J(Q)→ K∗/
(
Q∗K∗2

)
given by

θ

(
m∑
i=1

(Pi − P0)

)
= am

m∏
i=1

(x(Pi)− α) (mod Q∗K∗2)

for coset representatives
∑

(Pi − P0) with y(Pi) 6= 0 (see [35] and Section 5 of [45]).

Let P = (x, y) be an S-integral point on the curve. Under θ, the coset of P − P0 is
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mapped to x − α (mod Q∗K∗2). Then we have that (x − α) = εbξ2 for some ε ∈ E ,

ξ ∈ K∗ and b a square-free rational integer. Suppose ℘ does not divide a∆
∏
p∈S p.

Write f(x) = (x− α)φ(x) where φ(x) =
∏n−1
i=1 (x− αi) = xn−1 + c1x

n−2 + · · ·+ cn−1

for some ci ∈ K. Consider the equality

ord℘(ay2) = ord℘(x− α) + ord℘ φ(x).

Assume ord℘(x − α) is odd. Then, it is positive and x ≡ α (mod ℘). Hence φ(x) ≡

αn−1 + c1α
n−2 + · · · + cn−1 ≡ 0 (mod ℘), for ℘ divides ay2, but it does not divide

a, so ord℘(ay2) is even and ord℘ φ(x) is odd. Since αn−1 + c1α
n−2 + · · · + cn−1 =∏n−1

i=1 (α− αi), we have that ℘ divides ∆ = δ1δ2, where δ1 =
∏n−1
i=1 (α− αi)2 and δ2 =∏

i<j(αi−αj)2. But this is a contradiction and then ord℘(x−α) is even. Since ℘ does

not divide a we conclude 2 | ord℘(b). Let ℘ | p where p is a rational prime not dividing

a∆ NormK/Q(ε)
∏
p∈S p. Then p is unramified in K/Q and so ordp(b) = ord℘(b) ≡ 0

(mod 2). This shows that b ∈ Bε and proves the lemma.

3.2 S-integers and heights

In this section we state the basic properties of heights of algebraic numbers and we fix

some notation that we will use throughout the thesis. Most of these are standard results

which can be found in [51, Chapter 3]. Let K be a number field of degree d. We denote

by MK the set of all places of K and by OK the set of integers of K. Denote by R the

regulator of K. For a place υ ∈ MK let Qυ,Kυ be the completions at υ of Q and K

respectively.

For υ ∈MK , we let |·|υ be the usual normalised valuation corresponding to υ; in

particular if υ is non-Archimedean and p is the rational prime below υ then |p|υ = p−1.

Thus if L/K is a field extension, and ω a place of L above υ then |α|ω = |α|υ, for all

α ∈ K.

We denote by dυ the local degree [Kυ : Qυ]. Define

‖α‖υ = |α|dυυ .
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Hence for α ∈ K∗, the product formula states that

∏
υ∈MK

‖α‖υ = 1.

In particular, if υ is Archimedean, corresponding to a real or complex embedding σ of

K then

|α|υ = |σ(α)| and ‖α‖υ =


|σ(α)| if σ is real

|σ(α)|2 if σ is complex.

If υ is finite and p is a prime ideal corresponding to υ, then for α ∈ K\{0} we have

‖α‖υ = N(p)− ordp(α).

For α ∈ K, the (absolute) logarithmic height h(α) is given by

h(α) =
1

[K : Q]

∑
υ∈MK

dυ log max {1, |α|υ} =
1

[K : Q]

∑
υ∈MK

log max {1, ‖α‖υ} .

(3.2.1)

The absolute logarithmic height of α is independent of the field K containing α. Note

that in the case K = Q this definition of height agrees with the definition of size given

at the beginning of this chapter.

Let S be a finite set of places of K including all the infinite places. Set s = |S|

(we exclude the case s = 1). We define the ring of S-integers of K as

OS = {α ∈ K : |α|υ ≤ 1, υ /∈ S} ,

and the group of S-units as the group of units of OS ,

O∗S = {α ∈ K : |α|υ = 1, υ /∈ S} .

The unit theorem of Dirichlet and Chevalley [30, Chapter V] states that the group O∗S is

a free abelian group of rank s − 1. A set of generators for O∗S is known as a system of

fundamental S-units in K. For example, let K = Q and S = {∞, 2, 3}. (By abuse of

notation we write p instead of the place corresponding to the p-adic valuation.) Then
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the ring of integers of K is the usual ring of integers Z and the ring of S-integers of K

is

{±2i3jn : i, j, n ∈ Z}.

In this case the group of units of K is {±1} and the group of S-units of K is

{±2i3j : i, j ∈ Z},

which is free abelian of rank 2.

We now define the S-regulator and the S-norm of a fractional ideal, as in [13].

Let {ε1, . . . εs−1} be a system of fundamental S-units inK. Consider the matrix (log|εi|υj )

where j runs over s− 1 places of K. The absolute value of the determinant of the ma-

trix is called the S-regulator of K. When the set S is the set of infinite places of K

this coincides with the usual definition of regulator. The product formula implies that the

definition is independent of the choice of places υ1, . . . , υs−1, for the (s− 1)× s matrix

B = (log|εi|υj ) where j runs over all the places of S has the property that its columns

add up to 0. Hence the absolute value of the determinant of the matrix obtained by

deleting one of the columns is independent of the choice of column. The definition is

also independent of the system of fundamental units {ε1, . . . εs−1} as the S-regulator

is, up to a constant, the volume of a fundamental domain of the lattice spanned by the

vectors L(εi) = (log|εi|υj ) ∈ Rs contained in the s-dimensional subspace of vectors

whose entries add up to 0, and this lattice is the same for every choice of a system of

fundamental S-units.

If α ∈ K is a nonzero algebraic integer, the fractional ideal generated by α can

be uniquely written in the form a1 · a2, where a1 is composed of primes outside S and

a2 is composed of primes contained in S. We define the S-norm of α as N(a1) and we

denote it by NS(α). Note that NS(α) is a positive integer for every α ∈ OS\{0}.

Lemma 3.2.1. Let K be a number field. For any nonzero algebraic number α ∈ K, we

have h(α−1) = h(α). For algebraic numbers α1, . . . , αn ∈ K, we have

h(α1α2 · · ·αn) ≤ h(α1)+ · · ·+h(αn), h(α1+ · · ·+αn) ≤ log n+h(α1)+ · · ·+h(αn),
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and for any place υ ∈MK

log‖α‖υ ≤ [K : Q] h(α).

Proof. The first equality is an immediate consequence of the definition of absolute log-

arithmic height and the product formula. For the second estimate note that for non-

negative x1, . . . , xn

max{1, x1x2 · · ·xn} ≤ max{1, x1} · · ·max{1, xn}.

We also have

max{1, x1 + · · ·+ xn} ≤ nmax{1, x1} · · ·max{1, xn},

which implies the third estimate. Finally, the last inequality is also an immediate conse-

quence of the definition of absolute logarithmic height.

Lemma 3.2.2. Let K be a number field of degree d and S a finite set of places of K

including the infinite places. Denote by s the cardinality of S. Let ε ∈ K∗ be a S-unit.

Let η ∈MK be a place of K making ‖ε‖η minimal. Then

h(ε) ≤ −s
d

log‖ε‖η.

Proof. Note ‖ε‖υ = 1 for all υ /∈ S so we can choose η ∈ S. Then 0 < ‖ε‖η ≤ 1. Now,

h(ε) = h(ε−1) =
1

d

∑
υ∈MK

max{log‖ε−1‖υ, 0}

≤ 1

d

∑
υ∈S

log‖ε−1‖η = −s
d

log‖ε‖η,

and we have now proved the lemma.

Lemma 3.2.3. Let K be a number field of degree d and S a finite set of places of K

including the infinite places. Let ε be a S-unit. Then

∑
υ∈S
|log‖ε‖υ| = 2dh(ε).
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Proof. Recall that ‖ε‖υ = 1 for all places υ /∈ S. Now∑
υ∈MK

|log‖ε‖υ| =
∑
υ∈MK
‖ε‖υ≤1

|log‖ε‖υ|+
∑
υ∈MK
‖ε‖υ≥1

|log‖ε‖υ|

=
∑
υ∈MK

‖ε−1‖υ≥1

log‖ε−1‖υ +
∑
υ∈MK
‖ε‖υ≥1

log‖ε‖υ

=
∑
υ∈MK

max{0, log‖ε−1‖υ}+ max{0, log‖ε‖υ}

= d(h(ε−1) + h(ε)) = 2dh(ε).

The following Lemma is due to Voutier [50, Corollary 2].

Lemma 3.2.4. Let K be a number field of degree d and let α ∈ K be a nonzero

algebraic number which is not a root of unity. Then

dh(α) ≥


log 2 d = 1,

2/(log(3d))3 d ≥ 2.

3.3 Systems of fundamental units

For a number field of large degree (≥ 10) it is extremely time consuming to explicitly

describe the group of units and the group of S-units. But we can find bounds for the size

of the units in a fundamental system of units in terms of the S-regulator. The following

Lemma, which is due to Bugeaud and Győry [13, 14] and Győry and Yu [27, Lemma 2]

gives the bounds for the size of units we will use in the rest of this work.

We first fix some notation for the whole section. Let K be a number field of

degree d, S a finite set consisting of s places of K including the set S∞ of infinite

places. We denote by RS the S-regulator of K. For a positive real number a we set

log∗(a) = max{1, log a}.
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Lemma 3.3.1. Define the constants

c1(s, d) =
((s− 1)!)2

2s−2ds−1
,

c2(s, d) = 29e
√
s− 2 c1(s, d)ds−1 log∗(d)

c3(s, d) =
((s− 1)!)2

2s−1


2/ log 2 if d = 1,

(log(3d))3 if d ≥ 2.

There exists a fundamental system of S-units {ε1, . . . , εs−1} in K with the following

properties:

i.
s−1∏
i=1

h(εi) ≤ c1(s, d)RS ,

ii. max
i=1,...,s−1

h(εi) ≤ c2(s, d)RS if s ≥ 3,

iii. WriteM for the (s− 1)× (s− 1)-matrix (log‖εi‖υj ) where υj runs over s− 1 of

the places in S and 1 ≤ i ≤ s − 1. Then the absolute values of the entries of

M−1 are bounded above by c3(s, d).

Later on we will need to bound linear forms in logarithms, and we will use the

following lemma [27, Lemma 5].

Lemma 3.3.2. Let {ε1, . . . , εs−1} be a system of fundamental S-units inK as in Lemma 3.3.1.

For s ≥ 3 define the constant

c4(s, d) = dπs−2c2(s, d).

Then
s−1∏
i=1

max(dh(εi), π) ≤


max(RS , π) if s = 2,

c4(s, d)RS if s ≥ 3.

The following Lemma is an improvement on [15, Lemma 6.2].

Lemma 3.3.3. Let {ε1, . . . , εs−1} be a system of fundamental S-units inK as in Lemma 3.3.1.

Define the constant c5 = c5(s, d) = 2dc3(s, d). Suppose ε = ζεb11 . . . ε
bs−1

s−1 , where ζ is

a root of unity in K. Then

max{|b1|, . . . , |bs−1|} ≤ c5(s, d) h(ε).
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Proof. Note that for any place υ in S,

log‖ε‖υ =
∑

bi log‖εi‖υ.

From part (iii) of Lemma 3.3.1 we have that |bi| ≤ c3(s, d)
∑

υ|log‖ε‖υ|, where the sum

runs over all but one of the places in S. Now∑
s−1 places

of S

|log‖ε‖υ| ≤
∑
υ∈MK

|log‖ε‖υ| = 2dh(ε),

where the last equality follows from Lemma 3.2.3. The proof is now complete.

The following result is an special case of Lemma 3 of [27].

Lemma 3.3.4. Let α ∈ K be a nonzero S-integer. Let h be the class number of K

and r the unit rank of K. Denote by R the regulator of K and by t the number of finite

places in S. Let p1, . . . , pt be the prime ideals corresponding to the finite places in S.

Set Q = N(p1 · · · pt) if t > 0, Q = 1 if t = 0. Then there is a S-unit ε such that

h(εα) ≤ 1

d
(logNS(α) + h logQ) + c6R.

where

c6(r, d) =


0, r = 0,

1/d r = 1

29er!r
√
r − 1 log d r ≥ 2

3.4 Upper bounds for the regulator and the class number

Later on we need to give upper bounds for the S-regulators of complicated number

fields of high degree. We can bound the S-regulator of a number field in terms of its

regulator and the class number as in the following lemma due to Bugeaud and Győry,

which is Lemma 3 of [13].
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Lemma 3.4.1. Let K be a number field of degree d with regulator R and class number

h. Let S be a finite set of places of K including all infinite places and at least one finite

place. Let RS be the S-regulator of K. Denote by t the number of finite places in S and

by P the largest prime below the finite places in S. Then

RS ≤ Rh(d log∗ P )t.

Definition. Let K be a number field and let {b1, . . . , bn} be an integral basis for the

ring of integers OK . Denote the embeddings of K in C by σ1, . . . , σn. The absolute

discriminant of K is the square of the determinant of the matrix σi(bj).

It is a standard fact that the absolute discriminant of a number field does not

depend on the choice of basis {b1, . . . , bn}.

We can bound the product Rh numerically. Our bound is based on bounds of

Landau [29].

Lemma 3.4.2. Let K be a number field with degree d = u + 2v where u and v are

respectively the numbers of real and complex embeddings. Denote the absolute dis-

criminant of K by D and the regulator by R, and the number of roots of unity in K by

w. Suppose, moreover, that L is a real number such that D ≤ L. Let

a = 2−v π−d/2
√
L.

Define the function fK(L, s) by

fK(L, s) = 2−uw as
(
Γ(s/2)

)u (
Γ(s)

)v
sd+1 (s− 1)1−d,

and let BK(L) = min {fK(L, 2− t/1000) : t = 0, 1, . . . , 999}. Then Rh < BK(L).

Proof. This is Lemma 5.1 in [15]. We note that Landau [29, proof of Hilfssatz 1] estab-

lished the inequality Rh < fK(DK , s) for all s > 1. (In the proof of [15, Lemma 5.1]

only a bound on R was needed and then the result of Landau is only quoted there as

R < fK(DK , s).) Since the function fK is increasing with respect to the first parameter

the result follows.
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We will also need a bound for the class number of a given number field. We

shall use the following bound due to Lenstra [28, Theorem 6.5].

Lemma 3.4.3. Let K be a number field of degree d = u + 2v where u and v are

respectively the numbers of real and complex embeddings. Let h be the class number

of K. Denote the absolute discriminant of K by D. Suppose that L is a real number

such that D ≤ L. Let a = (2/π)v
√
L. Then

h ≤ a · (d− 1 + log a)d−1

(d− 1)!
.

3.5 Linear forms in logarithms

Let L be a number field of degree d and consider a “linear form”

Λ := αb11 · · ·α
bn
n − 1, (3.5.1)

where α1, . . . , αn ∈ L∗ are n ≥ 2 nonzero elements of L and b1, . . . , bn are rational in-

tegers. In section 3.6 a unit equation will be transformed into a linear form in logarithms.

This form will be written in terms of the S-units in a fundamental system of S-units. As

we have mentioned before, for number fields of large degree (≥ 20) the explicit compu-

tation of the group of units is beyond the present capabilities of computer algebra. We

will then use lower bounds for the linear forms in terms of the height of the units.

Set

B∗ = max{|b1|, . . . , |bn|}

and

Ai ≥ max(dh(αi), π), i = 1, . . . , n.

The following lemma is a version of Matveev’s bound for linear forms in logarithms [31],

due to Győry and Yu [27, Proposition 4].

Lemma 3.5.1. Suppose Λ 6= 0, bn = ±1 and let B be a real number satisfying

B ≥ max{B∗, 2emax(nπ/
√

2, A1, . . . , An−1)An}.
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Then

log|Λ| > −c7(n, d)A1 · · ·An log(B/(
√

2An)),

where

c7(n, d) = min{1.451(30
√

2)n+4(n+ 1)5.5, π26.5n+27}d2 log(ed).

We consider again the linear form (3.5.1). Let B,Bn be real numbers such that

B ≥ B∗, B ≥ Bn ≥ |bn|. (3.5.2)

Let p be a rational prime and let p be a prime ideal of OL lying over p. Denote by ep

the ramification index of p. We denote by N(p) the norm of the ideal p. Define the

constants

c8(n, d) = (16ed)2(n+1)n3/2 log(2nd) log(2d),

c9(n, d) = (2d)2n+1 log(2d) log3(3d),

The following bound for linear forms in p-adic logarithms is due to Yu [53].

Lemma 3.5.2. Assume that ordp bn ≤ ordp bj for j = 1, . . . , n, and for j = 1, . . . , n set

h′j = max{h(αj), 1/(16e2d2)}.

If Λ 6= 0, then for any real number δ with 0 < δ ≤ 1/2 we have

ordp Λ < c8(n, d)enp
N(p)

(logN(p))2
max

{
h′1 · · ·h′n logM,

δB

Bnc9(n, d)

}
,

where

M = (Bn/δ)2e
(n+1)(6n+5)d3n log(2d)N(p)n+1h′1 · · ·h′n−1.

3.6 Upper bounds for the size of the solutions to S-unit equa-

tions

We now prove an explicit version of Lemma 4 of [12]. We will follow ideas from the

proof of Theorem 1 of [27]. Instead of obtaining an estimate in terms of the regulator of
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a large field, we get one in terms of the product of the regulators of two of its subfields.

This often results in a significant improvement of the upper bound for the height. This

idea is due to Voutier [49]. Recall the notation log∗(a) = max{1, log a}.

Proposition 3.6.1. Let L be a number field of degree d, which contains K1,K2 as

subfields of degree d1, d2, respectively. Let S (resp. S1, S2) be a finite set of places of

L (resp. K1, K2) containing the set of infinite places. Denote by s (resp. s1, s2) the

number of places in S (resp. S1, S2) and assume both s1 and s2 are ≥ 3. Denote by

P the largest norm of the prime ideals corresponding to the finite places in S, with the

convention that P = 1 if S does not contain finite places. Assume that O∗S1
and O∗S2

are both contained in O∗S . Denote by Ri the Si-regulator of Ki for i = 1, 2. Suppose

that ν1, ν2, ν3 are non-zero elements of L with height ≤ H , where H is a constant

≥ max(1, π/d) and consider the unit equation

ν1ε1 + ν2ε2 + ν3ε3 = 0 (3.6.1)

where ε1 is a S1-unit ofK1, ε2 a S2-unit ofK2 and ε3 a S-unit of L. Define the constants

c10 = 2H(s+ 1) + 4sHc4(s1, d1)c4(s2, d2)c7(s1 + s2 − 1, d)R1R2×

log(
√

2emax{(s1 + s2 − 2)π/
√

2, c2(s1, d1)R1, c2(s2, d2)R2)}),

c11 = 4sHc4(s1, d1)c4(s2, d2)c7(s1 + s2 − 1, d)R1R2,

c12 = 2H(s+ 1) + c11 log

(
max{c5(s1, d1), c5(s2, d2), 1)}

2
√

2dH

)
,

c13 = log 2 + 2H + 4(s1 + s2 − 2)Hc1(s1, d1)c1(s2, d2)c9(s1 + s2 − 1, d)×

R1R2 max{c2(s1, d1)R1, c2(s2, d2)R2},

c14 =
2Hds1+s2−2P

log(2) log∗ P
c1(s1, d1)c1(s2, d2)c8(s1 + s2 − 1, d)R1R2,

c15 = 2H(s+ 1)+

c14 log

(
max{c5(s1, d1), c5(s2, d2), 1)}e(s1+s2)(6(s1+s2)−1)d3(s1+s2−1) log(2d)P s1+s2

Hc9(s1 + s2 − 1, d)

)
.
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Then

h

(
ν1ε1
ν3ε3

)
≤ max{c10, c12 + c11 log(max{h(ε1),h(ε2), 1}), c13,

c15 + c14 log(max{h(ε1), h(ε2), 1})}

Proof. Let {µ1, . . . , µs1−1} and {ρ1, . . . , ρs2−1} be respectively systems of fundamental

Si-units for K1 and K2 as in Lemma 3.3.1; in particular we know

s1−1∏
j=1

h(µj) ≤ c1(s1, d1)R1,

s2−1∏
j=1

h(ρj) ≤ c1(s2, d2)R2. (3.6.2)

We can write

ε1 = ζ1µ
b1
1 · · ·µ

bs1−1

s1−1 , ε2 = ζ2ρ
f1
1 · · · ρ

fs2−1

s2−1 ,

where ζ1 and ζ2 are roots of unity and b1, . . . , bs1−1, and f1, . . . , fs2−1 are rational

integers. Set

B1 = max{|b1|, . . . , |bs1−1|}, B2 = max{|f1|, . . . , |fs2−1|}

We deduce from Lemma 3.3.3 that

B1 ≤ c5(s1, d1) h(ε1), B2 ≤ c5(s2, d2) h(ε2),

and hence

B := max{c5(s1, d1), c5(s2, d2), 1)}max{h(ε1),h(ε2), 1} ≥ max{B1, B2}. (3.6.3)

Set α0 = −ζ2ν2/(ζ1ν1) and b0 = 1. By (3.6.1) we have

ν3ε3
ν1ε1

= αb00 µ
−b1
1 · · ·µ−bs1−1

s1−1 ρf11 · · · ρ
fs2−1

s2−1 − 1. (3.6.4)

Now choose the place υ of L such that ‖ε3/ε1‖υ is minimal. From Lemma 3.2.2 we

deduce that

h(ε3/ε1) ≤ −
s

d
log (‖ε3/ε1‖υ) . (3.6.5)
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We will compute a lower bound for the linear form (3.6.4) using the techniques from

Section 3.5. Observe that

‖ε3/ε1‖υ =
‖ν3ε3/(ν1ε1)‖υ
‖ν3/ν1‖υ

.

Combining this with Lemma 3.2.1 and (3.6.5) we get

h

(
ν3ε3
ν1ε1

)
≤ 2H(s+ 1)− s

d
log

∥∥∥∥ν3ε3ν1ε1

∥∥∥∥
υ

, (3.6.6)

and hence a lower bound for log‖ν3ε3/(ν1ε1)‖υ will give an upper bound for h(ν3ε3/(ν1ε1)).

Assume first that υ is infinite. Set

A0 = 2dH ≥ max(dh(α0), π),

Ai =


max(dh(µi), π), i = 1, . . . , s1 − 1,

max(dh(ρi−(s1−1)), π), i = s1, . . . , s1 + s2 − 2.

(3.6.7)

Let n = s1 + s2 − 1. Since we assumed s1 and s2 to be ≥ 3, we observe that from

Lemma 3.3.2
n−1∏
i=1

Ai ≤ c4(s1, d1)c4(s2, d2)R1R2, (3.6.8)

and

max
1≤i≤n−1

Ai ≤ max{c2(s1, d1)R1, c2(s2, d2)R2, π}. (3.6.9)

We distinguish two cases. First assume that

B ≤ 2emax((s1 + s2 − 2)π/
√

2, A1, . . . , As1+s2−2)A0.

From Lemma 3.5.1 and equations (3.6.8) and (3.6.9) we have

log

∥∥∥∥ν3ε3ν1ε1

∥∥∥∥
υ

>− 2dυdHc4(s1, d1)c4(s2, d2)c7(n, d)R1R2×

log(
√

2emax{(s1 + s2 − 2)π/
√

2, c2(s1, d1)R1, c2(s2, d2)R2)}.

(3.6.10)

35



Next assume that B > 2emax((s1 + s2 − 2)π/
√

2, A1, . . . , As1+s2−2)A0. Then, using

again Lemma 3.5.1 and (3.6.8) we get the following bound.

log

∥∥∥∥ν3ε3ν1ε1

∥∥∥∥
υ

> −2dυdHc4(s1, d1)c4(s2, d2)c7(n, d)R1R2×

log(B/(2
√

2dH)).

(3.6.11)

Now assume υ is finite. Let p be a corresponding prime ideal to υ. Then

log

∥∥∥∥ν3ε3ν1ε1

∥∥∥∥
υ

= − ordp(α
b0
0 µ
−b1
1 · · ·µ−bs1−1

s1−1 ρf11 · · · ρ
fs2−1

s2−1 − 1) logN(p). (3.6.12)

Again, we distinguish two cases. First assume that

B < 4c9(n, d)H h(µ1) · · · h(µs1−1) h(ρ1) · · · h(ρs2−1).

In this case we will directly compute an upper bound for h(ν3ε3/(ν1ε1)). From (3.6.4)

and Lemma 3.3.1 we deduce that

h

(
ν3ε3
ν1ε1

)
≤ log 2 + 2H +B(n− 1) max{c2(s1, d1)R1, c2(s2, d2)R2}.

Then, from our assumption for B and (3.6.2) we get

h

(
ν3ε3
ν1ε1

)
≤ log 2 + 2H + 4(n− 1)Hc1(s1, d1)c1(s2, d2)c9(n, d)×

R1R2 max{c2(s1, d1)R1, c2(s2, d2)R2}.
(3.6.13)

We next assume

B ≥ 4c9(n, d)H h(µ1) · · · h(µs1−1) h(ρ1) · · · h(ρs2−1).

Since 2H ≥ 1 we have h′0 = max{h(α0), 1/(16e2d2)} ≤ 2H . Moreover, using Lemma

3.2.4, for i = 1, . . . , s1 − 1 and j = 1, . . . , s2 − 1 we have

h′i = max{h(µi), (16e2d2)−1} = h(µi),

and

h′j+s1−1 = max{h(ρj), (16e2d2)−1} = h(ρj).
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Choose now

δ = 2c9(n, d)H h(µ1) · · · h(µs1−1) h(ρ1) · · · h(ρs2−1)/B.

It is clear from our assumption for B that δ ≤ 1/2. We apply Lemma 3.5.2 to (3.6.4) to

obtain the following bound:

log

∥∥∥∥ν3ε3ν1ε1

∥∥∥∥
υ

> −c8(n, d)dn
N(p)

logN(p)
2H

s1−1∏
i=1

h(µi)

s2−1∏
j=1

h(ρj) max{logM0, 1},

where

M0 = Be(n+1)(6n+5)d3n log(2d)N(p)n+1/(Hc9(n, d)).

We observe that N(p)/ logN(p) ≤ (1/ log 2)P/ log∗ P . Hence, using (3.6.2) and the

last inequality we have

log

∥∥∥∥ν3ε3ν1ε1

∥∥∥∥
υ

> − 2HdnP

log 2 log∗ P
c1(s1, d1)c1(s2, d2)c8(n, d)R1R2 logM, (3.6.14)

where

M = Be(n+1)(6n+5)d3n log(2d)Pn+1/(Hc9(n, d)).

The lower bounds for log‖ν3ε3/(ν1ε1)‖υ given in Equations (3.6.10), (3.6.11) and (3.6.14)

together with equation (3.6.6), and (3.6.13) complete the proof of the Proposition.

3.7 Upper bounds for the size of S-integral points on hyper-

elliptic curves

We can now give an explicit bound for the size of S-integral points on the hyperelliptic

curve given by the affine model (3.1.1). This is an extension of Theorem 9.2 of [15]

and we follow the proof there, adding the needed details for the S-integral case. We

include the bounds for unit equations given in the previous section that are different from

those on [15]. First we will fix some notation. Let S be a finite set of rational primes of

cardinality s. For a number field K, we will denote by SK the set of places of K over

the primes in S, together with the infinite places.
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Theorem 3.7.1. Let S be a finite set of rational primes of cardinality s. Let P be the

largest prime in S, with the convention that P = 1 if S is empty. Let α be an algebraic in-

teger of degree at least 3, and let κ be an integer belonging toK = Q(α). Let α1, α2, α3

be different conjugates of α and let κ1, κ2, κ3 be the corresponding conjugates of κ. Let

K1 = Q(α1, α2,
√
κ1κ2), K2 = Q(α1, α3,

√
κ1κ3), K3 = Q(α2, α3,

√
κ2κ3),

and

L = Q(α1, α2, α3,
√
κ1κ2,

√
κ1κ3).

Let d1, d2, d3 and r1, r2, r3 be the degrees and the unit ranks ofK1,K2,K3 respectively.

Let d be the degree of L. Let R be an upper bound for the regulators of K1,K2,K3

and RS an upper bound for the respective SKi-regulators of K1,K2,K3. Let si be the

number of places in SKi . Let h be an upper bound for the class numbers of the Ki. Let

c∗j = max
i=1,2

cj(si, di), j = 1, . . . , 5,

c∗6 = max
i=1,2,3

c6(ri, di),

N = max
1≤i,j≤3

∣∣∣NormQ(αi,αj)/Q(κi(αi − αj))
∣∣∣2 ,

H∗ = max

 logN

mini=1,2,3 di
+ h

∑
p∈S

log p

+ c∗6R+ h(κ), 1, π/d

 .

c∗10 = 2H∗ + 2H∗d(s+ 1)(1 + 2(c∗4)
2c7(s1 + s2 − 1, d)R2

S×

log(
√

2emax{(s1 + s2 − 2)π/
√

2, c∗2RS}),

c∗11 = 4d(s+ 1)H∗(c∗4)
2c7(s1 + s2 − 1, d)R2

S

c∗12 = 2H∗ + 2H∗(d(s+ 1)) + c∗11 log

(
max{c∗5, 1}
2
√

2dH∗

)
,

c∗13 = log 2 + 2H∗ + 4(s1 + s2 − 2)H∗ (c∗1)
2 c∗2c9(s1 + s2 − 1, d)R3

S
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c∗14 =
2H∗ds1+s2−2P d

log(2) log∗(P d)
(c∗1)

2 c8(s1 + s2, d)R2
S

c∗15 = 2H∗ + 2H∗d(s+ 1)+

c∗14 log

(
max{c∗5, 1}e(s1+s2)(6(s1+s2)−1)d3(s1+s2−1) log(2d)P d(s1+s2)

H∗c9(s1 + s2 − 1, d)

)
.

If x ∈ Q\{0} is a S-integer satisfying x− α = κξ2 for some ξ ∈ K then

h(x) ≤ 20 log 2 + 13 h(κ) + 19 h(α) +H∗+

8 max{c∗10/2, c∗13/2, c∗12 + c∗11 log c∗11, c
∗
15 + c∗14 log c∗14}.

(3.7.1)

In the particular case when S is empty, we have

h(x) ≤ 20 log 2 + 13 h(κ) + 19 h(α) +H∗ + 8 max{c∗10/2, c∗12 + c∗11 log c∗11}.

Proof. For a ∈ K and i = 1, 2, 3, we will write ai for the corresponding conjugates of a.

Conjugating the relation x− α = κξ2 appropriately and taking differences we obtain

α1 − α2 = κ2ξ
2
2 − κ1ξ21 , α3 − α1 = κ1ξ

2
1 − κ3ξ23 , α2 − α3 = κ3ξ

2
3 − κ2ξ22 .

Let

τ1 = κ1ξ1, τ2 =
√
κ1κ2ξ2, τ3 =

√
κ1κ3ξ3.

Observe that

κ1(α1 − α2) = τ22 − τ21 , κ1(α3 − α1) = τ21 − τ23 , κ1(α2 − α3) = τ23 − τ22 ,

and

τ2 ± τ1 ∈ K1, τ1 ± τ3 ∈ K2, τ3 ± τ2 ∈
√
κ1/κ2K3.

The equation τ22 = κ1(x − α2) shows that τ2 is a SK1-integer, and so are τ2 + τ1 and

τ2 − τ1. Write ν ′ = τ2 − τ1. Since (τ2 − τ1)(τ2 + τ1) = κ1(α1 − α2) we have

NSK1
(ν ′) ≤ NSK1

(κ1(α1 − α2)).

By Lemma 3.3.4 there is a SK1 unit ε of K1 such that

h(ν ′ε) ≤ c6(r1, d1)R+
logNSK1

(κ1(α1 − α2))

[K1 : Q]
+ h

∑
p∈S

log p

 .
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Write ν1 = ν ′ε and ε1 = ε−1. Hence we have expressed τ2− τ1 in the form ν1ε1 where

ε1 is a SK1-unit and h(ν1) ≤ H∗. We can repeat the same process on τ2 +τ1. Similarly,

the equation τ23 = κ1(x− α3) shows that τ3, τ1 + τ3 and τ1 − τ3 are SK2-integers, and

we can repeat the process to write now τ1 ± τ3 in the form ν2ε2 where ε2 is a SK2-unit

and h(ν2) ≤ H∗.

We now want to express τ2± τ3 in a similar way. Define ν ′′ =
√
κ2/κ1(τ2− τ3).

Note ν ′′ = κ2ξ2 −
√
κ2κ3ξ3 is a SK3-integer of K3. Similarly,

√
κ2/κ1(τ2 + τ3) is a

SK3-integer of K3 and

ν ′′
√
κ2/κ1(τ2 + τ3) = κ2(α2 − α3).

Hence, NormSK3
(ν ′′) ≤ N . Using again Lemma 3.3.4 there is a SK3-unit ε3 such that

ν ′′ = ν ′ε and

h(ν ′) ≤ c6(r3, d3)R+
logNSK3

(κ2(α2 − α3))

[K1 : Q]
+ h

∑
p∈S

log p

 .

Let ν =
√
κ1/κ2ν

′. Thus τ2 − τ3 = νε where h(ν) ≤ h(ν ′) + h(κ) ≤ H∗. We will apply

Proposition 3.6.1 to the unit equation

(τ1 − τ2) + (τ3 − τ1) + (τ2 − τ3) = 0,

which is indeed of the form ν1ε1 + ν2ε2 + ν3ε3 = 0 where ε1 is a SK1-unit of K1, ε2 is a

SK2-unit of K2 and we consider ε3 as a SL-unit of L. Observe that, since
∑

υ|p dυ = d,

then there are at most d places in SL over a prime in S and hence S has at most d(s+1)

elements. We obtain

h

(
τ1 − τ2
τ2 − τ3

)
≤ max



c∗10,

c∗13,

c∗12 + c∗11 log(max{h(ε1), h(ε2), 1}),

c∗15 + c∗14 log(max{h(ε1), h(ε2), 1}).
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To ease notation we write A1 + A2 log(max{h(ε1),h(ε2), 1}) for the expression that

attains the maximum in the last inequality, where we take A2 to be 0 if the maximum is

attained in one of the first two cases. Note that

h(εi) ≤ h(νiεi) + h(ν1) ≤ h(νiεi) +H∗,

since εi = νiεi/νi. We derive as in [15] that

h(τi ± τj) ≤ 2 log 2 + 3 h(κ) + h(α) + h(x).

Hence,

h

(
τ1 − τ2
τ2 − τ3

)
≤ A1 +A2 log(A3 + h(x)), (3.7.2)

where A3 = H∗ + 2 log 2 + 3 h(κ) + h(α). We also apply Proposition 3.6.1 to the unit

equation

−(τ1 + τ2) + (τ3 + τ1) + (τ2 − τ3) = 0,

to obtain precisely the same bound for h
(
τ1+τ2
τ2−τ3

)
. Using the identity(

τ1 − τ2
τ2 − τ3

)
·
(
τ1 + τ2
τ2 − τ3

)
=
κ1(α2 − α1)

(τ2 − τ3)2
,

we obtain that

h(τ2 − τ3) ≤
log 2 + h(κ)

2
+ h(α) +A1 +A2 log(A3 + h(x)).

We derive as in [15] that

h(x) ≤ 7 log 2 + 5 h(α) + 3 h(κ) + 4 h(τ2 − τ3).

Thus

h(x) ≤ 9 log 2 + 9 h(α) + 5 h(κ) + 4A1 + 4A2 log(A3 + h(x)).

If A2 = 0 we obtain (3.7.1) directly. Otherwise, using Lemma 9.1 of [15] we complete

the proof of the theorem.
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We use Theorem 3.7.1 in conjunction with Lemmas 3.1.1 and 3.1.2 to ob-

tain an upper bound for the size of all S-integral points on a hyperelliptic curve with

model (3.1.1).

Remark. We use here the notation of Section 3.1. In the even degree case, the set

K is the union of the sets εBε, where ε ∈ E . The set Bε consists of square free ratio-

nal integers supported by primes dividing a∆ NormK/Q(ε)
∏
p∈S p. Hence, the fields

K1,K2,K3 and L defined in the statement of the previous theorem are the same for

all κ ∈ εBε. In order to get the desired upper bound for the size of all S-integral

points we only need to compute the bound for the κ ∈ εBε that maximises h(κ) and

NormQ(αi,αj)/Q(κi(αi −αj)), namely κ = bε where b is the largest square-free rational

integer dividing a∆ NormK/Q(ε)
∏
p∈S p. Thus, though in the even degree case the set

K is much bigger than in the odd degree case, the computation of the upper bound for

the size of the S-integral points is essentially not more complicated than that in the odd

degree case.

Example 3.7.2. This is a continuation of Example 2.4.2. Let C be the curve defined by

Y 2 = 4X5 − 4X + 1,

and let S be the set of the first 22 primes. We transform the equation into

C : 2y2 = x5 − 16x+ 8, (3.7.3)

via the change of variables y = 2Y and x = 2X which preserves S-integrality. The

curve C given by the model (3.7.3) is the same curve as the one in the proof of Theorem

1.1 of [15]. The authors compute an upper bound for the size of the integral points on

the curve. We will here compute a bound for the S-integral points. Denote by J the

Jacobian of C. We had seen in Example 2.4.2 that J(Q) is free of rank 3. A set of

generators for J(Q) is given by

D1 = (0, 2)−∞, D2 = (2, 2)−∞, D3 = (−2, 2)−∞.
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Let f(x) = x5 − 16x + 8. Let α be a root of f . We choose for coset representatives

of J(Q)/2J(Q) the linear combinations
∑3

i=1 niDi with ni ∈ {0, 1}. For a given set of

primes S we have that any S-integral point of (3.7.3) (in fact, any rational point) satisfies

x− α = κξ2,

where κ ∈ K and K is constructed as in Lemma 3.1.1. Next, we compute the bounds

for h(x) given by Theorem 3.7.1 for every κ ∈ K. We implemented our bounds in

MAGMA [5]. As remarked in [15], the Galois group of f is S5, which implies that the fields

K1,K2,K3 corresponding to a particular κ are isomorphic. We tabulate the bounds for

each κ ∈ K for the set S of primes up to 79 in Table 3.1. Thus, if (x, y) is an S-integral

Table 3.1: Bounds for the height of S-integral points on (3.7.3)
coset of κ SKi-unit bound R for bound for

J(Q)/2J(Q) rank of Ki SKi-regulator of Ki h(x)

0 1 154 8.5× 10301 7.8× 104025

D1 −2α 266 1.6× 10603 1.6× 108421

D2 4− 2α 258 4.2× 10576 1.9× 108160

D3 −4− 2α 262 1.0× 10596 4.7× 108301

D1 +D2 −2α+ α2 257 1.7× 10581 1.3× 108135

D1 +D3 2α+ α2 264 7.1× 10591 5.6× 108352

D2 +D3 −4 + α2 264 3.1× 10600 1.2× 108364

D1 +D2 +D3 8α− 2α3 266 2.2× 10596 1.5× 108415

point of (3.7.3) we have

h(x) ≤ 1.6× 108421.

We have also computed the bounds in the case when S is the empty set, in other words,

a bound for the size of the integral points on (3.7.3). We get h(x) ≤ 4.4 × 10428. The

bound in [15] is 5.1 × 10565. Recalling the definition of size given at the beginning of

this chapter, this means that an S-integral point P = (x, y) on the curve, with x = p/q,

p, q ∈ Z and (p, q) = 1 will have

max{|p|, |q|} ≤ exp(1.6× 108421).
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If the point P is an integral point on the curve, then

|x| ≤ exp(4.4× 10428)

which gives a significant improvement on the bound given in [15].

Example 3.7.3. Let C be the genus 2 curve defined by the equation

y2 = f(x) = x6 + x+ 2. (3.7.4)

Let S = {2, 3, 5}. Using MAGMA we find some rational points on the curve:

∞+, ∞−, (1,−2), (1, 2), (−2,−8), (−2, 8).

The Mordell–Weil group of the curve is free of rank 2, so Chabauty’s method to find the

S-integral points on the curve does not apply in this case.

A basis for the Mordell–Weil group is given by

D1 =∞+ −∞−, D2 = (1, 2)−∞−.

We will now compute the set K as in Lemma 3.1.2. We choose as representatives

for J(Q)/2J(Q) the divisors 0, D1, D2, and D1 − D2, which is linearly equivalent to

(1,−2) −∞−. Take P0 = ∞−. We then choose ε0 = 1, and we can easily see that

the ε we associate to 0 and D1 is 1, whereas we associate 1− α to D2, and D1 −D2,

where α is a root of f . The discriminant ∆ of the polynomial f is −1489867, which is

prime. Let K = Q(α). We have that NormK/Q(1 − α) = 4. Following the notation of

Lemma 3.1.2, the set B1 consists of the square-free rational integers supported by the

prime 1489867 and the primes in S. The set B1−α consists of the square-free rational

integers supported by the primes 2, 1489867, and the primes in S. Finally, the set K

consists of the set B1 together with the set (1− α)B1−α.

According to the remark following Theorem 3.7.1, we only need to compute the

upper bounds given by κ1 = 2 · 3 · 5 · 1489867 and κ2 = 2 · 3 · 5 · 1489867(1−α). Using

MAGMA we find that an upper bound for the size of the S-integral points on the curve C

is 5.57× 102218.
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3.8 The Mordell–Weil sieve

We have given explicit upper bounds for the size of the S-integral points of a hyperelliptic

curve. As we saw in the examples, the bounds are astronomical, and we cannot expect

to search for all points below that bound. One usually looks for points of small size

and tries to prove the points found are all the S-integral points on the curve. In this

section we use a powerful variant of the Mordell–Weil sieve [15, Sections 10–12] to

show that any rational point on a curve is either a known rational point or a point with

very large height. If the unknown rational points have a height larger than the upper

bound obtained for the size of the S-integral points, then we have found all the S-integral

points.

We now summarize the method described in [15]. Let C/Q be a smooth projec-

tive curve (not necessarily hyperelliptic) of genus g ≥ 2 and let J be its Jacobian. As

indicated in the introduction, we assume the knowledge of some rational point on C. Let

P0 be a fixed rational point on C and let  be the corresponding Abel–Jacobi map:

 : C → J, P 7→ [P − P0].

Let W be the image in J of the known rational points on C. Let r be the rank of J(Q)

and D1, . . . , Dr generators for the free part of J(Q). Let

φ : Zr → J(Q), φ(a1, ..., ar) =
∑

aiDi,

so that the image of φ is simply the free part of J(Q). The variant of the Mordell-Weil

sieve as explained in [15] is a strategy for obtaining a very long decreasing sequence

of lattices in Zr:

L0 ) L1 ) L2 · · · ) Lk = L (3.8.1)

such that

(C(Q)) ⊂W + φ(Lj)

for j = 1, . . . , k. It consists of two steps. The first is finding a large integer B such that

(C(Q)) ⊂W + φ(BZr).
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Set L0 = BZr. The second step requires running through many primes q of good

reduction for C. Reducing modulo q, the authors get under certain conditions an ex-

plicit sequence of sublattices with the required properties. We remark that many of

the primes will not give any new information, or will make the computations very slow.

Eventually we expect to get a lattice L such that (C(Q)) ⊂ W + φ(L). Since explicit

generators for the lattice can be computed, we can compute as well a positive integer

B1 such that L ⊆ B1Zr. If the generators of the lattice are large enough, this integer

will be considerably larger thanB. We can restart the application of the second strategy

using this new integer and consider now the primes that did not give new information

in the previous round. Many of these primes will now give new information and we will

get a smaller lattice L′ satisfying the required conditions. In our computations this has

resulted in a quicker way of finding a lattice with very large generators compared to only

carrying on with larger and larger primes q of good reduction.

The following lemma [15, Lemma 12.1] gives a lower bound for the size of ratio-

nal points whose image does not belong to the set W .

Lemma 3.8.1. Let W be a finite subset of J(Q), and let L be a sublattice of Zr. Sup-

pose that (C(Q)) ⊂ W + φ(L). Let µ1 be a lower bound for h − ĥ as in (2.2.1).

Let

µ2 = max

{√
ĥ(w) : w ∈W

}
.

LetM be the height-pairing matrix for the Mordell–Weil basisD1, . . . , Dr and let λ1, . . . , λr

be its eigenvalues. Let

µ3 = min
{√

λj : j = 1, . . . , r
}
.

Let m(L) be the Euclidean norm of the shortest non-zero vector of L, and suppose that

µ3m(L) ≥ µ2. Then, for any P ∈ C(Q), either (P ) ∈W or

h((P )) ≥ (µ3m(L)− µ2)2 − µ1.

Example 3.8.2. This is a continuation of Example 3.7.2. Consider the genus 2 curve

Y 2 − Y = X5 −X. This curve is the same as in Theorem 1.1 in [15]. Let S be the set
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of the first 22 primes. We transform the equation Y 2 − Y = X5 −X into

C : 2y2 = x5 − 16x+ 8, (3.8.2)

via the change of variables y = 4Y − 2 and x = 2X which preserves S-integrality. The

curve C is the same considered in Example 3.7.2. In that example we proved that if

(x, y) is an S-integral point of (3.7.3) we have

h(x) ≤ 1.6× 108421.

We also computed a set of generators for J(Q). It is given by

D1 = (0, 2)−∞, D2 = (2, 2)−∞, D3 = (−2, 2)−∞.

The set of known rational points on C consists of the following 17 points:

∞, (−2,±2), (0,±2), (2,±2), (4,±22), (6,±62),

(1/2,±1/8), (−15/8,±697/256), (60,±19718).

We now apply the implementation of the Mordell–Weil sieve explained in this

chapter. Let W denote the image of this set in J(Q). From [15] we know that (C(Q)) ⊆

W +BJ(Q) where

B = 4449329780614748206472972686179940652515754483274306796568214048000.

We are now ready to start the implementation of the variant of the Mordell–Weil sieve

explained in the present section. We apply Lemma 11.1 in [15] successively to primes

of good reduction that satisfy the conditions of the lemma and Criteria (I)–(IV) in [15,

p. 878]. Once we have tried with all the first 50000 primes in N, we obtain a lattice L1

of approximate index 7.6× 102534. This lattice satisfies

L1 ⊂ B1Z3,
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where

B1 = 51867418969255130718300830098255561249429171921

93989646274007029699373573973400334073122166989

73493222003246146491483642378172450038715545525

74084473616959824908889267393681957065242806869

58842758289131220782597477643207682612837102714

721726154880000.

We start again with this B1 instead of B and we now sieve using the primes which did

not satisfied the criteria in the first application. We go on using the first 50000 primes,

and after three more repetitions replacing the values of B, we find a lattice L in Z3 of

approximate index 5.7× 1013161 with (C(Q)) ⊂ W + φ(L). Let µ1, µ2, µ3 be as in the

notation of Lemma 3.8.1. Using MAGMA we find µ1 = 2.167, µ2 = 2.612, µ3 = 0.378 (to 3

decimal places). The shortest nonzero vector of L has Euclidean length approximately

1.06× 104387. Lemma 3.8.1 implies that if P is not one of the known rational points on

C, then

h((P )) ≥ 1.6× 108773.

Write P = (x, y). Then h((P )) = h(2x2) ≤ log 2 + 2 h(x) and

h(x) ≥ 8.02× 108772.

This contradicts the bounds given in Table 3.1 for h(x) for the set of S-integral points

where S is the set of the first 22 primes and shows that the only S-integral points on the

curve Y 2 − Y = X5 −X are

(−1, 0), (−1, 1), (0, 0), (0, 1), (1, 0), (1, 1), (2,−5), (2, 6),

(3,−15), (3, 16), (1/64, 15/32), (1/64, 17/32), (−15/4096,−185/1024),

(−15/4096, 1209/1024), (30,−4929), (30, 4930).
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The reader can find the MAGMA programs for verifying the above computations

at:

http://www.warwick.ac.uk/staff/H.R.Gallegos-Ruiz/programs/sintegral/

Remark. The variant of the Mordell–Weil sieve used in this section works in a gen-

eral setting. But it is computationally expensive, in particular it is memory and time-

consuming. The computations for the example presented above took about 17 days

in a workstation equipped with 120 GB in RAM and four 2.4 GHz Quad-Core AMD

Opteron processors.
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Chapter 4

Periods of genus 2 curves defined

over the reals

Let f be a degree 5 or 6 polynomial defined over R with real roots only, all different. In

the next chapter, we will need to compute numerically integrals of the form∫ x2

x1

S(t)dt√
|f(t)|

,

for x1, x2 ∈ R, where S(t) = s1t+ s2 is a degree 1 polynomial with real coefficients. In

this chapter we explain how one can compute such integrals. We first remark that when

either x1 or x2 is one of the roots of f the usual numerical methods of integration take

too long when one tries to compute the integral to hundreds or thousands of decimal

places. Therefore we need to use another method, as we will need such high precision

in the next chapter.

In an expository article Bost and Mestre [6] present a version of an algorithm

due to Richelot for the numerical computation of the integrals∫ a′

a

S(t)dt√
|f(t)|

,

∫ b′

b

S(t)dt√
|f(t)|

, and
∫ c′

c

S(t)dt√
|f(t)|

, (4.0.1)

with a < a′ < b < b′ < c < c′, f(t) = (t−a)(t−a′)(t− b)(t− b′)(t− c)(t− c′) and S is

a polynomial with real coefficients of degree ≤ 1. The algorithm is based on a modified

version of the Arithmetic-Geometric Mean (AGM).
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The AGM of two positive real numbers a, b is defined as the limit of the recur-

rently defined sequences

an+1 =
an + bn

2
, bn+1 =

√
anbn,

where a0 = a and b0 = b. The sequences an, bn have a common limit, so the AGM

is well defined. A good exposition on the AGM can be found in [18]. A very important

property of the AGM is that the convergence of the sequences an, bn is quadratic, which

roughly means that the precision of the n-th iteration with respect to the limit is doubled

at the following iteration. The AGM had been used before to compute elliptic integrals

(that is, when the degree of f is either 3 or 4). Bost and Mestre explain how one can

define an ‘arithmetic-geometric mean’ of six real numbers, and how it is related to the

integrals (4.0.1). More precisely, given six different real numbers a < a′ < b < b′ <

c < c′ they define six sequences an, a′n, bn, b′n, cn, c′n which converge quadratically.

The sequences an and a′n (resp. bn, b′n, resp. cn, c′n) have a common limit α (resp. β,

resp. γ). The main result is that the integrals in (4.0.1) are respectively given by

πT
S(a)

(b− a)(c− a)
πT

S(b)

(b− a)(c− b)
, πT

S(c)

(c− a)(c− b)
.

where T is the limit of a recurrently defined sequence tn which depends on a < a′ <

b < b′ < c < c′. The precise statements can be found in the following sections.

In [6, Appendice A3] the authors give a list of exercises that lead to an ele-

mentary proof of the correctness of their algorithm. They do not give solutions to the

exercises, nor a proof of the correctness of the algorithm. It is for this reason that in the

present Chapter we will show its correctness. We will also present a modified version of

it that will allow us to compute the integrals (4.1.1) for general x1, x2. The idea behind

the modified version is keeping track of the correspondence (see section 4.2 for the

definition of correspondence) between the hyperelliptic curves

y2 = (x− a)(x− a′)(x− b)(x− b′)(x− c)(x− c′) = f(x)

and

y2 = (x− a1)(x− a′1)(x− b1)(x− b′1)(x− c1)(x− c′1) = f1(x).
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Under the correspondences, every point on the first curve corresponds to two points on

the second curve. Say (x1,
√
f(x1)) corresponds to (z1, w1), (z2, w2) and (x2,

√
f(x2))

corresponds to (z3, w3), (z4, w4). Then one can compute a direct relation between the

integrals (4.1.1) ∫ z3

z1

S(t) dt√
|f1(t)|

and
∫ z4

z2

S(t) dt√
|f1(t)|

.

The chapter is arranged as follows. In Section 4.1 we show how the integrals

(4.1.1) can be computed from integrals of that form, but with the following restrictions: f

is precisely of degree 6 and x1 is a root of f . In Section 4.2 we first show the correctness

of Bost and Mestre’s algorithm and we present the modified version of it alluded to

above. Finally, in Section 4.3 we present the algorithms in concise form.

4.1 Reduction of the problem

We will show that in order to compute the desired integrals for general f, S, x1, x2, it is

enough to compute integrals of the form∫ x2

x1

S(t)dt√
|f(t)|

, (4.1.1)

where S is of degree 1, f is monic of degree 6 with real roots only, x1 is one of the roots

of f , and f is negative along (x1, x2).

Assume first that f has degree 5. Let x0 ∈ R with x0 not a root of f . Denote

the roots of f by a1 < a2 < a3 < a4 < a5, and let f5 be the leading coefficient of f .

Consider the change of variables

t′ =
1

t− x0
.

For a nonzero real number x write sgn(x) for the sign of x. Then, if x0 < x1 or x0 > x2∫ x2

x1

S(t)dt√
|f(t)|

=
−1√
|f5f(x0)|

∫ x′2

x′1

s1 + t′S(x0)√
|t′
∏

(t′ − a′i)|
sgn(t′)dt′.
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Note that sgn(t) does not change along [x1, x2] in this case. Now, if x1 ≤ x0 ≤ x2∫ x2

x1

S(t)dt√
|f(t)|

=
−1√
|f5f(x0)|

∫ x′1

−∞

s1 + t′S(x0)√
|t′
∏

(t′ − a′i)|
dt′+

1√
|f5f(x0)|

∫ ∞
x′2

s1 + t′S(x0)√
|t′
∏

(t′ − a′i)|
dt′. (4.1.2)

In the next chapter we will simultaneously compute many integrals of the present kind,

and we will choose only one change of variables to do them all. For our convenience,

in this degree five case, the point x0 will be chosen in between a1 and a2. Then all of

the inequalities considered before involving x1, x2 and x0 will be present in practice.

The degree 5 case has then been reduced to the degree 6 case. From now on

we will assume that f has exactly degree 6.

Now denote the roots of f by a < a′ < b < b′ < c < c′, and let f6 be the leading

coefficient of f . Note that∫ x2

x1

S(t)dt√
|f(t)|

=

∫ x2

a

S(t)dt√
|f(t)|

−
∫ x1

a

S(t)dt√
|f(t)|

and ∫ x2

x1

S(t)dt√
|f(t)|

=
1

|f6|

∫ x2

x1

S(t)dt√
|(t− a)(t− a′)(t− b)(t− b′)(t− c)(t− c′)|

.

Then it suffices to compute integrals of the form∫ x

a

S(t)dt√
|f(t)|

,

with f monic. If x ≥ a, denote by x0 the largest root of f with x0 ≤ x. Then∫ x

a

S(t)dt√
|f(t)|

=

∫ x0

a

S(t)dt√
|f(t)|

+

∫ x

x0

S(t)dt√
|f(t)|

.

Therefore, we only need to compute the integrals∫ x2

x1

S(t)dt√
|f(t)|

,

where x1 and x2 are two consecutive roots of f , and also integrals of the form∫ a

x

S(t)dt√
|f(t)|

and
∫ x

x0

S(t)dt√
|f(t)|

,
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where, in the first case x < a, and in the second case x ≥ a and there are no roots of

f in the interval (x0, x).

We will now assume that f is monic. As we mentioned before, there is no loss

of generality in doing this. In this case, f(t) is positive along the intervals (−∞, a),

(a′, b), (b′, c) and (c′,∞), and negative along the intervals (a, a′), (b, b′) and (c, c′). We

will make a further simplification of the problem. Let x1 < x2 be real numbers such that

f is non-negative along [x1, x2]. Let x0 ∈ R with f(x0) < 0. We introduce the change

of variables

s = g(t) =
1

t− x0
.

Let f̃ be the polynomial

f̃(s) = (s− g(a))(s− g(a′))(s− g(b))(s− g(b′))(s− g(c))(s− g(c′)).

Then ∫ x2

x1

S(t)dt√
|f(t)|

=
−1√
−f(x0)

∫ 1/(x2−x0)

1/(x1−x0)

s1 + sS(x0)√
−f̃(s)

sgn(s)ds.

The sign of s does not change in the interval [1/(x2 − x0), 1/(x1 − x0)], and f̃ is

negative along [1/(x2 − x0), 1/(x1 − x0)]. Moreover, there are no roots of f̃ in the

interval (1/(x2 − x0), 1/(x1 − x0)). We have thus reduced the problem of computing

the integrals ∫ x

a

S(t)dt√
|f(t)|

,

∫ x

x0

S(t)dt√
|f(t)|

with x < a in the first case, and x0 = a′, b′ or c′ and f(t) positive along (x0, x) to the

computation of integrals of the form∫ x

a

S(t)dt√
|f(t)|

,

∫ x

b

S(t)dt√
|f(t)|

, and
∫ x

c

S(t)dt√
|f(t)|

,

where x lies in [a, a′], [b, b′] or [c, c′] respectively.
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4.2 Bost and Mestre’s algorithm

In this section we solve some of the exercises in [6, Appendice A3] which lead to an

elementary proof of the correctness of Bost and Mestre’s algorithm. We describe the

algorithm, we show why it works, and we extend it to the computation of the integrals∫ x

a

S(t)dt√
|f(t)|

,

∫ x

b

S(t)dt√
|f(t)|

, and
∫ x

c

S(t)dt√
|f(t)|

,

where x lies in [a, a′], [b, b′] or [c, c′] respectively.

Let P,Q ∈ R[X] be polynomials with real coefficients. We denote by [P,Q] the

polynomial P ′Q− PQ′. The following properties follow easily from the definition:

• [P, P ] = 0;

• [P,Q] = −[Q,P ];

• [λP,Q] = λ[P,Q] = [P, λQ] for λ ∈ R;

• [P1 + P2, Q] = [P1, Q] + [P2, Q], for P1, P2 ∈ R[X].

The following lemmas are solutions to some of the exercises alluded to above. We will

indicate in brackets the number of the corresponding exercise in [6, Appendice A3].

Lemma 4.2.1 (I–1–a). Let P 6= 0 be a fixed polynomial of degree n in R[X]. Then

[P,Q] = 0 if and only if Q = λP for some λ ∈ R.

Proof. The ‘if’ statement is a consequence of the properties previously mentioned. We

use induction on the degree n of P . If n = 0, 1 the result is clear. LetQ 6= 0 be a degree

m polynomial such that [P,Q] = 0. Let pn be the leading coefficient of P and qm the

leading coefficient of Q. Then 0 = [P,Q] = (m− n)pnqmX
n+m +

∑n+m−1
i=0 aiX

i, with

ai ∈ R. Since pnqm 6= 0, thenm = n. Since [P,Q] = 0, then [P−pn/qmQ,Q] = 0. But

P −pn/qmQ has degree < n. Then P −pn/qmQ = 0. Choosing λ = pn/qm completes

the proof.
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Remark. If P has degree ≤ 1, then the degree of [P,Q] is at most the degree of

Q, as P ′ has degree < 1. If P,Q both have degree 2, then [P,Q] has degree 2 as

well, for if p2, q2 are the leading coefficients of P and Q, respectively, then [P,Q] =

(2− 2)p2q2X
3 + a2X

2 + a1X + a0 for some real numbers a0, a1, a2.

Lemma 4.2.2 (I–2–a). Let P,Q ∈ R[X] be degree 2 polynomials. If P and Q have a

common root, that root is a double root of [P,Q].

Proof. Write P = (X − a)f(X) and Q(X) = (X − a)g(X) for some a ∈ R and

some degree 1 polynomials f, g. Then P ′(X) = (X − a)f ′(X) + f(X) and Q′(X) =

(X − a)g′(X) + g(X). Then [P,Q] = (X − a)2f ′(X)g(X) + (X − a)f(x)g(x)− (X −

a)2f(X)g′(X)− (X−a)f(X)g(X) = (X−a)2h(X), for some polynomial h(X). Then

a is a double root of [P,Q].

Lemma 4.2.3 (I–2–b). Let P (X) = (X − x)(X − x′). Let Q be a degree 2 polynomial

with [P,Q] 6= 0. The discriminant of [P,Q] is 4Q(x)Q(x′)

Proof. Write Q(X) = a(X − y)(X − y′). Then P ′(X) = 2X − (x + x′) and Q′(X) =

a(2X − (y + y′)). So

[P,Q](X) =[2a(x+ x′ − y − y′)− a(x+ x′ − y − y′)]X2

+ [2a(yy′ − xx′) + (a− a)(x+ x′)(y + y′)]X

+ a[xx′(y + y′)− yy′(x+ x′)].

Then, the discriminant of [P,Q] is 4a2(yy′− xx′)2− 4a2(x+ x′− y− y′)(xx′(y+ y′)−

yy′(x+x′)). Now,Q(x) = a(x−y)(x−y′) andQ(x′) = a(x′−y)(x′−y′). Expanding the

product Q(x)Q(x′) and comparing it to the expansion of the discriminant of [P,Q] we

see that the discriminant equals 4Q(x)Q(x′) = 4a2(x− y)(x− y′)(x′− y)(x′− y′).

Remark. Note that since P and Q are defined over R, Q(x̄) = Q(x). Hence the

discriminant of [P,Q] is equal to 4‖Q(x)‖2 ≥ 0 if P has complex roots. In this case

[P,Q] has real roots.
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Lemma 4.2.4 (I–3). Let P,Q ∈ R[X] be two degree 2 polynomials. Suppose that P

(resp. Q) has two different real roots a < a′ (resp. b < b′), and that a′ < b. Then [P,Q]

has two different real roots w,w′ with a < w < a′ < b < w′ < b′.

Proof. Note that the roots of [P,Q], [λP,Q] and [P, λQ] are the same. We can then

suppose P and Q are monic and hence P (X) = (X − a)(X − a′) and Q(X) =

(X − b)(X − b′). From Lemma 4.2.3, the discriminant of [P,Q] equals

4Q(a)Q(a′) = 4(a− b)(a− b′)(a′ − b)(a′ − b′).

Since a < a′ < b < b′ all the factors in the product are nonzero, and they are all

negative. Then, the discriminant of [P,Q] is positive, and [P,Q] has two different real

roots w < w′.

Now, we compute the values of [P,Q] at a, a′, b, b′. From the definition of [P,Q]

we see [P,Q](a) = (a − a′)Q(a) = (a − a′)(a − b)(a − b′) and [P,Q](a′) = (a′ −

a)Q(a′) = (a′ − a)(a′ − b)(a′ − b′). Then [P,Q](a) < 0 < [P,Q](a′) and hence, one

of the roots of [P,Q] must lie in the interval (a, a′). Recalling that [P,Q] = −[Q,P ] and

using a similar argument, we see that [P,Q](b) > 0 > [P,Q](b′). Then the other root

lies on the interval (b, b′) and a < w < a′ < b < w′ < b′.

Let P,Q,R ∈ R[X] be degree 2 polynomials. We denote by ∆(P,Q,R) the

determinant of P,Q,R with respect to the basis 1, X,X2. We will associate to a triple

(P,Q,R) of degree 2 polynomials the triple (U, V,W ) defined by

U = [Q,R], V = [R,P ], W = [P,Q].

We will say that (U, V,W ) is the associated triple to (P,Q,R).

Lemma 4.2.5 (II–1 and 2). For every triple (P,Q,R) of degree 2 polynomials in R[X],

we have, for every pair of real numbers (x, z):

P (x)U(z) +Q(x)V (z) +R(x)W (z) + (x− z)2∆(P,Q,R) = 0,

where (U, V,W ) is the associated triple to (P,Q,R).
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Proof. Consider the matrix

A =


P (z) P ′(z) P (x)

Q(z) Q′(z) Q(x)

R(z) R′(z) R(x)

 .

Note that the determinant of A is −P (x)U(z)−Q(x)V (z)−R(x)W (z). We will show

that it also equals (x−z)2∆(P,Q,R). Expand P (x), Q(x) andR(x) in Taylor expansion

around z,

P (x) = P (z) + (z − x)P ′(z) + (x− z)2P ′′(z)/2,

Q(x) = Q(z) + (z − x)Q′(z) + (x− z)2Q′′(z)/2,

R(x) = R(z) + (z − x)R′(z) + (x− z)2R′′(z)/2.

Using elementary column operations we can reduce the last column of A to

1

2


(x− z)2P ′′(z)

(x− z)2Q′′(z)

(x− z)2R′′(z)

 .

Write P = p0 + p1X + p2X
2, Q = q0 + q1X + q2X

2 and R = r0 + r1X + r2X
2.

Then P ′ = 2p2X + p1 and P ′′ = 2p2, and similar expressions hold for Q and R. Using

elementary column operations we see that the determinant of A is

(x− z)2

∣∣∣∣∣∣∣∣∣
p0 p1 p2

q0 q1 q2

r0 r1 r2

∣∣∣∣∣∣∣∣∣
which equals (x− z)2∆(P,Q,R). Since this matrix has the same discriminant as A we

have proved the result.

Lemma 4.2.6 (II–3). Let P,Q,R ∈ R[X] be three degree 2 polynomials, and let (U, V,W )

be the associated triple to (P,Q,R). Then

∆(U, V,W ) = −2∆(P,Q,R)2
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and

[U, V ] = −2R∆(P,Q,R),

[V,W ] = −2P∆(P,Q,R),

[W,U ] = −2Q∆(P,Q,R).

Proof. Let A be the matrix 
P (x) P ′(x) P ′′(x)

Q(x) Q′(x) Q′′(x)

R(x) R′(x) R′′(x)

 .

Note that as in the proof of the previous lemma, using elementary column operations

we can see that the determinant of A equals 2∆(P,Q,R). Now we compute the first

and second derivatives of U = [Q,R]. We obtain

U ′ = (Q′R−QR′)′ = Q′′R−QR′′,

and

U ′′ = Q′′R′ −Q′R′′,

since Q′′′ = R′′′ = 0 for they are degree 2 polynomials. We get similar expressions for

V ′, V ′′,W ′ andW ′′. We can now compute [U, V ] in terms of P,Q,R using the definition

of [U, V ] and the derivatives we have just computed. We obtain [U, V ] = −R det(A) =

−2R∆(P,Q,R). Repeating the same argument proves the corresponding result for

[V,W ] and [W,U ]. We now use the relation from Lemma 4.2.5 with U, V,W instead of

P,Q,R to obtain

−2∆(P,Q,R)(P (x)U(z) +Q(x)V (z) +R(x)W (x)) + (x− z)2∆(U, V,W ) = 0,

for all x, z ∈ R. Since (P (x)U(z) +Q(x)V (z) +R(x)W (x) = −(x− z)2∆(P,Q,R) for

all x, z, setting x = 1, z = 0 we have

∆(U, V,W ) = −2∆(P,Q,R)2
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Let P,Q,R ∈ R[X] be three degree 2 monic polynomials, and let (U, V,W )

be the associated triple to (P,Q,R). Assume that P (resp. Q, resp. R) has two real

roots a, a′ (resp. b, b′, resp. c, c′) such that a < a′ < b < b′ < c < c′. It follows from

Lemma 4.2.4 that U (resp. V , resp. W ) has two different real roots that we denote by

u, u′ (with b < u < b′ < c < u′ < c′) (resp. v, v′, with a < v < a′ < c < v′ < c′, resp.

w,w′, with a < w < a′ < b < w′ < b′).

Remark. In this setting ∆(P,Q,R) 6= 0. We have proved that

[U, V ] = −2R∆(P,Q,R).

Recall that, since U, V are nonzero, [U, V ] = 0 if and only if U = λV for some nonzero

real number λ. But then U and V would have the same roots. The location of the roots

u, u′, v, v′ given before shows that this is not the case. Note as well that the roots of U

are different to the roots of V , as if they had a common root, then this root would be a

double root of [U, V ] = −2R∆(P,Q,R). But R is assumed to have different roots. It

follows that the six roots of UVW are all different.

We now express explicitly the polynomials U, V,W and the value ∆(P,Q,R) in

terms of a, a′, b, b′, c, c′. Set

A1 = −a− a′, B1 = −b− b′, C1 = −c− c′,

A2 = aa′, B2 = bb′, C2 = cc′.

Then,

P (x) = (x− a)(x− a′) = x2 +A1x+A2,

Q(x) = (x− b)(x− b′) = x2 +B1x+B2,

R(x) = (x− c)(x− c′) = x2 + C1x+ C2.

The determinant ∆(P,Q,R) is then given by

∆(P,Q,R) = aa′(c+ c′ − b− b′) + bb′(a+ a′ − c− c′) + cc′(b+ b′ − a− a′),
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and

U(x) = [Q,R](x) = (b+ b′ − c− c′)x2 + 2(cc′ − bb′)x+ bb′(c+ c′)− cc′(b+ b′),

V (x) = [R,P ](x) = (c+ c′ − a− a′)x2 + 2(aa′ − cc′)x+ cc′(a+ a′)− aa′(c+ c′),

W (x) = [P,Q](x) = (a+ a′ − b− b′)x2 + 2(bb′ − aa′)x+ aa′(b+ b′)− bb′(a+ a′).

Lemma 4.2.3 states that the discriminant of W equals

4Q(a)Q(a′) = 4(a− b)(a− b′)(a′ − b)(a′ − b′).

Similarly, the discriminant of U and V are given respectively by

4(c− b)(c− b′)(c′ − b)(c′ − b′) and 4(c− a)(c− a′)(c′ − a)(c′ − a′).

We then have the following identities

u =
bb′ − cc′ −

√
(c− b)(c− b′)(c′ − b)(c′ − b′)
b+ b′ − c− c′

,

u′ =
bb′ − cc′ +

√
(c− b)(c− b′)(c′ − b)(c′ − b′)
b+ b′ − c− c′

,

v =
cc′ − aa′ −

√
(c− a)(c− a′)(c′ − a)(c′ − a′)
c+ c′ − a− a′

,

v′ =
cc′ − aa′ +

√
(c− a)(c− a′)(c′ − a)(c′ − a′)
c+ c′ − a− a′

,

w =
aa′ − bb′ −

√
(a− b)(a− b′)(a′ − b)(a′ − b′)
(a+ a′ − b− b′)

,

w′ =
aa′ − bb′ +

√
(a− b)(a− b′)(a′ − b)(a′ − b′)
(a+ a′ − b− b′)

.

Lemma 4.2.7 (III–3). The roots u, u′ of U , v, v′ of V , andw,w′ ofW satisfy the following

inequalities

a < v < w < a′ < b < w′ < u < b′ < c < u′ < v′ < c′.

Proof. The discriminant of [(X− v)(X− v′), (X−w)(X−w′)] is positive, as [V,W ] =

−2P∆(P,Q,R) and P has two different real roots. From Lemma 4.2.3 we see that

(v + v′ − w − w′)2(a− a′)2 = 4(v − w)(v − w′)(v′ − w)(v′ − w′),
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since the expression on the left equals the discriminant of [(X−v)(X−v′), (X−w)(X−

w′)], for v+v′−w−w′ is the leading coefficient of [(X−v)(X−v′), (X−w)(X−w′)],

and a, a′ are its roots. Note that v−w′ < 0 and that v′−w and v′−w′ are both positive,

as a < v,w < a′ < b < w′ < b′ < c < v′ < c. Then we must have v − w < 0,

or equivalently, v < w. Repeating the argument with [U, V ] and [W,U ] completes the

proof.

Put F1(x, z) = P (x)U(z) +Q(x)V (z), F2(x, z) = Q(x)V (z) +R(x)W (z) and

F3(x, z) = P (x)U(z) +R(x)W (z).

Lemma 4.2.8 (III–4). As polynomials in z, F1, F2, F3 are precisely of degree 2 for

x ∈ [a, a′], x ∈ [b, b′], and x ∈ [c, c′] respectively. Moreover, in the same intervals for x,

F1, F2 and F3 have positive discriminant as polynomials in z.

Proof. Write

F1(x, z) = φ0(x)z2 + φ1(x)z + φ2(x),

where φ0, φ1, φ2 are polynomials in x of degree ≤ 2. We will compute the sign of φ0(a′)

and φ0(b). Note that F (a′, z) = Q(a)V (z). Recall that the leading coefficient of V is

c+c′−a−a′. Now, Q(a′) > 0 since Q is monic and the roots of Q are both > a′. Then,

the leading coefficient of F (a′, z) as a polynomial in z, φ0(a′), is positive. Similarly,

looking at F (b, z) we get φ0(b) < 0. Then φ0 has a root x0 with a′ < x0 < b.

Using the identity from Lemma 4.2.5 we see that F (x, z) = −R(x)W (z)− (x−

z)2∆(P,Q,R). Note that 0 = F (a, v) = −R(a)W (v) − (a − v)2∆(P,Q,R). Since

R(a) > 0 and W (v) < 0 we have −R(a)W (v) > 0. Then ∆(P,Q,R) > 0. Looking

now at F (c′, z) = −(c′ − z)2∆(P,Q,R), we see that φ0(c′) < 0. Since the leading

coefficient of W is a + a′ − b − b′ < 0 and R(x) > 0 for all x > c′, we see that for

large enough x, −R(x)W (z) − (x − z)2∆(P,Q,R) has a positive leading coefficient

as a polynomial in z. Then for x > c′ large enough φ0(x) > 0 and thus φ0 has a root

x1 > c′. In summary, the degree 2 polynomial φ0 takes positive values for x ∈ [a, a′] and
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then F1 is precisely of degree 2 as claimed. The same argument adjusted accordingly

shows the corresponding statements for F2 and F3.

Now, the discriminant of F1 equals φ21 − 4φ0φ2. It is a polynomial of degree at

most 4. If φ0(x) 6= 0, then the discriminant vanishes if and only if F1 has a double root

δ as a polynomial in z. Lemma 4.2.5 implies that c, c′ are roots of φ21 − 4φ0φ2. Dividing

φ21− 4φ0φ2 by R(x) we get 4g1g2 where g1 = x(c(b+ b′− a− a′) + aa′− bb′) + c(aa′−

bb′) + bb′(a + a′) − aa′(b + b′) and g2 = x(c′(b + b′ − a − a′) + aa′ − bb′) + c′(aa′ −

bb′) + bb′(a + a′)− aa′(b + b′). We can see that none of the roots of φ21 − 4φ0φ2 lie in

the interval [a, a′], as if x0 is a root of the discriminant and δ ∈ R is such that

P (x0)U(z) +Q(x0)V (z) = φ0(x0)(z − δ)2,

for all z ∈ R, then P (x0) and Q(x0) must have the same sign, for U is negative and V

is positive along (−∞, v). However, P (z) and Q(z) have opposite signs along (a, a′).

Moreover, since F1(a) = Q(a)W (z) and Q(a) 6= 0, F1(a) has two different roots, and

then φ21 − 4φ0φ2 is positive at x = a. Hence it is positive along all of [a, a′]. The same

analysis adjusted accordingly proves the statements for F2 and F3.

It follows from the Implicit Function Theorem that there are two different func-

tions z1 and z2 defined on [a, a′]∪ [b, b′]∪ [c, c′] to R, continuous on [a, a′]∪ [b, b′]∪ [c, c′],

C∞ on (a, a′) ∪ (b, b′) ∪ (c, c′), with z1(x) < z2(x) and such that

F1(x, z1(x)) = F1(x, z2(x)) = 0,

for all x ∈ [a, a′],

F2(x, z1(x)) = F2(x, z2(x)) = 0,

for all x ∈ [b, b′], and

F3(x, z1(x)) = F3(x, z2(x)) = 0,
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for all x ∈ [c, c′]. Define functions y1, y2 on (a, a′) ∪ (b, b′) ∪ (c, c′) by

yi(x) =



P (x)U(zi(x))(x−zi(x))√
|P (x)Q(x)R(x)|

, x ∈ (a, a′)

Q(x)V (zi(x))(x−zi(x))√
|P (x)Q(x)R(x)|

, x ∈ (b, b′)

R(x)W (zi(x))(x−zi(x))√
|P (x)Q(x)R(x)|

, x ∈ (c, c′).

Lemma 4.2.9 (III–6–a). For x ∈ (a, a′) ∪ (b, b′) ∪ (c, c′) and for i = 1, 2

y2i =
|U(zi(x))V (zi(x))W (zi(x))|

|∆(P,Q,R)|
.

Proof. We prove the identity for x ∈ (a, a′). The proof for the other intervals is similar.

For i = 1, 2

y2i (x) =
P 2(x)U2(zi(x))(x− zi(x))2

|P (x)Q(x)R(x)|
,

From Lemma 4.2.5 and the definition of zi(x) we see that

0 = P (x)U(zi(x)) +Q(x)V (zi(x)) = R(x)W (zi(x)) + (x− zi(x))2∆(P,Q,R).

Then

P (x)U(zi(x)) = −Q(x)V (zi(x))

and

(x− zi(x))2 = −R(x)W (zi(x))/∆(P,Q,R).

We then have

y2i (x) =
P (x)Q(x)R(x)

|P (x)Q(x)R(x)|
· U(zi(x))V (zi(x))W (zi(x))

∆(P,Q,R)

=
|U(zi(x))V (zi(x))W (zi(x))|

|∆(P,Q,R)|
.

We now study the functions z1, z2, y1, y2 along (a, a′), (b, b′) and (c, c′).
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Lemma 4.2.10 (III–3–a). We have z1(a) = v = z1(a
′), z2(a) = v′ = z2(a

′), z1(b) =

w = z1(b
′), z2(b) = w′ = z2(b

′), z1(c) = u = z1(c
′) and z2(c) = u′ = z2(c

′). Moreover,

z1([a, a
′]) = [v, w], z2([a, a

′]) ⊂ (u′, v′], z1([b, b
′]) ⊂ (v, w],

z2([b, b
′]) = [w′, u], z1([c, c

′]) ⊂ (w′, u], z2([c, c
′]) = [u′, v′],

and z1(x) = w for x ∈ (a, a′) if and only if x = w, z2(x) = u for x ∈ (b, b′) if only if

x = u, z2(x) = v′ for x ∈ (c, c′) if and only if x = v′. We also have

y1(x)


≤ 0 a ≤ x ≤ w

≥ 0 w ≤ x ≤ a′,
y2(x) ≤ 0, x ∈ [a, a′]

y2(x)


≤ 0 b ≤ x ≤ u

≥ 0 u ≤ x ≤ b′,
y1(x) ≥ 0, x ∈ [b, b′]

y2(x)


≤ 0 c ≤ x ≤ v′

≥ 0 v′ ≤ x ≤ c′,
y1(x) ≥ 0, x ∈ [c, c′]

Proof. Note that 0 = F1(a, zi(a)) = Q(a)V (zi(a)). Since Q(a) 6= 0 it follows that

V (zi(a)) = 0, that is z1(a) = v, z2(a) = v′. Similarly, z1(a′) = v, z2(a′) = v′. Since

a < v < a′, there is a point x ∈ (a, a′) such that z1(x) = x. Then F (x, z1(x)) = 0 =

R(x)W (z1(x)), but R(x) 6= 0. Thus z1(x) must be equal to w and there is only a point

in (a, a′) satisfying z1(x) = x. Similarly, if z1(x) = w we have that x = z1(x) = w for

F (x, z1(x)) = (x − z1(x))2∆(P,Q,R). In particular, z1(x) attains its maximum at w.

At this point we have that y1(x) = 0. We will now show that z1(x) ≥ v for x ∈ (a, a′).

Since F (x, z1(x)) = P (x)U(z1(x)) + Q(x)V (z1(x)) = 0, and P is negative and Q is

positive along (a, a′), then U(z1(x)) and V (z1(x)) cannot have opposite signs. But for

z < v we have V (z) > 0 and U(z) < 0. The same argument shows that z2(x) ≤ v′.

Now, on (a, a′) we have P (x) < 0, and since z1(x) ∈ [v, w], we have that

U(z1(x)) < 0. Then y1(x) is negative along (a,w) and positive along (w, a′). Note now

that there is no point x ∈ (a, a′) with z2(x) = u′, for if z2(x) = u′ then F (x, z2(x)) =
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Q(x)V (z2(x)) = 0, but since V (u′) 6= 0 we would haveQ(x) = 0. But the roots of x are

> a′. Then z2(x) > u′ for all x ∈ [a, a′]. In particular, x− z2(x) < 0 and U(z2(x)) < 0

for all x ∈ (a, a′). Then y2(x) < 0 for all x ∈ (a, a′).

The corresponding statements for [b, b′] and [c, c′] are proved in a similar way.

We have not been able to prove the following result (Exercise III–6–b). Never-

theless, when we have needed it, we have proved the identity in specific cases using

symbolic computations with Mathematica [52].

Lemma 4.2.11 (III–6–b). Let S(X) ∈ R[X] be a polynomial of degree at most 1. Then,

for all x ∈ [a, a′] ∪ [b, b′] ∪ [c, c′]

S(z1(x))
z′1(x)

y1(x)
+ S(z2(x))

z′2(x)

y2(x)
= − S(x)√

|P (x)Q(x)R(x)|
.

Let x0 ∈ [a, a′]. The previous Lemma implies that∫ x0

a

S(x)dx√
|P (x)Q(x)R(x)|

= −
∫ x0

a

S(z1(x))z′1(x)dx

y1(x)
−
∫ x0

a

S(z2(x))z′2(x)dx

y2(x)
.

Write ∆ = ∆(P,Q,R). Since y2(x) < 0 for all x ∈ (a, a′) we can use the substitution

formula on the second integral to obtain∫ x0

a

S(z2(x))z′2(x)dx

y2(x)
=
√
|∆|
∫ v′

z2(x0)

S(x)dx√
|U(x)V (x)W (x)|

,

as ∆y2(x)2 = |U(z2(x))V (z2(x))W (z2(x))|. Now y1(w) = 0, so we need to take care

of that when using the substitution formula for the integral∫ x0

a

S(z1(x))z′1(x)dx

y1(x)
.

Note that∫ x0

a

S(z1(x))z′1(x)dx

y1(x)
=

∫ w

a

S(z1(x))z′1(x)dx

y1(x)
+

∫ x0

w

S(z1(x))z′1(x)dx

y1(x)
.

Recall that y1(x) is negative along (a,w) and positive along (w, a′). Recall as well that

y1(x)2 = |U(z1(x))V (z1(x))W (z1(x))|. Then,∫ w

a

S(z1(x))z′1(x)dx

y1(x)
= −

√
|∆|
∫ w

v

S(x)dx√
|U(x)V (x)W (x)|

,
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and ∫ x0

w

S(z1(x))z′1(x)dx

y1(x)
= (−1)ε

√
|∆|
∫ z1(x0)

w

S(x)dx√
|U(x)V (x)W (x)|

,

where we choose ε = 0, 1 according to the sign of y1 along the interval of integration.

In the same way we can compute identities for x ∈ [b, b′]∪ [c, c′]. It is now easy to check

that for x0 ∈ [a,w]∫ x0

a

S(x)dx√
|(PQR)(x)|

=
√

∆

(∫ za1 (x0)

v

S(x)dx√
|(UVW )(x)|

−
∫ v′

za2 (x0)

S(x)dx√
|(UVW )(x)|

)

=
√

∆

(∫ za1 (x0)

v

S(x)dx√
|(UVW )(x)|

−
∫ v′

u′

S(x)dx√
|(UVW )(x)|

+

∫ za2 (x0)

u′

S(x)dx√
|(UVW )(x)|

)
.

(4.2.1)

and for x0 ∈ [w, a′],∫ x0

a

S(x)dx√
|(PQR)(x)|

=
√

∆

(∫ w

v

S(x)dx√
|(UVW )(x)|

+

∫ w

za1 (x0)

S(x)dx√
|(UVW )(x)|

−
∫ v′

za2 (x0)

S(x)dx√
|(UVW )(x)|

)

=
√

∆

(
2

∫ w

v

S(x)dx√
|(UVW )(x)|

−
∫ za1 (x0)

v

S(x)dx√
|(UVW )(x)|

−
∫ v′

u′

S(x)dx√
|(UVW )(x)|

+

∫ za2 (x0)

u′

S(x)dx√
|(UVW )(x)|

)
.

(4.2.2)

For x0 ∈ [b, u]∫ x0

b

S(x)dx√
|(PQR)(x)|

=
√

∆

(∫ zb2(x0)

w′

S(x)dx√
|(UVW )(x)|

+

∫ w

zb1(x0)

S(x)dx√
|(UVW )(x)|

)

=
√

∆

(∫ zb2(x0)

w′

S(x)dx√
|(UVW )(x)|

+

∫ w

v

S(x)dx√
|(UVW )(x)|

−
∫ zb1(x0)

v

S(x)dx√
|(UVW )(x)|

)
,

(4.2.3)
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and for x0 ∈ [u, b′]∫ x0

b

S(x)dx√
|(PQR)(x)|

=
√

∆

(∫ u

w′

S(x)dx√
|(UVW )(x)|

+

∫ u

zb2(x0)

S(x)dx√
|(UVW )(x)|

+

∫ w

zb1(x0)

S(x)dx√
|(UVW )(x)|

)

=
√

∆

(
2

∫ u

w′

S(x)dx√
|(UVW )(x)|

−
∫ zb2(x0)

w′

S(x)dx√
|(UVW )(x)|

+

∫ w

v

S(x)dx√
|(UVW )(x)|

−
∫ zb1(x0)

v

S(x)dx√
|(UVW )(x)|

)
.

(4.2.4)

For x0 ∈ [c, v′]∫ x0

c

S(x)dx√
|(PQR)(x)|

=
√

∆

(∫ zc2(x0)

u′

S(x)dx√
|(UVW )(x)|

+

∫ u

zc1(x0)

S(x)dx√
|(UVW )(x)|

)

=
√

∆

(∫ zc2(x0)

u′

S(x)dx√
|(UVW )(x)|

+

∫ u

w′

S(x)dx√
|(UVW )(x)|

−
∫ zc1(x0)

w′

S(x)dx√
|(UVW )(x)|

)
,

(4.2.5)

and for x0 ∈ [v′, c]∫ x0

c

S(x)dx√
|(PQR)(x)|

=
√

∆

(∫ v′

u′

S(x)dx√
|(UVW )(x)|

+

∫ v′

zc2(x0)

S(x)dx√
|(UVW )(x)|

+

∫ v′

zc2(x0)

S(x)dx√
|(UVW )(x)|

)
.

=
√

∆

(
2

∫ v′

u′

S(x)dx√
|(UVW )(x)|

−
∫ zc2(x0)

u′

S(x)dx√
|(UVW )(x)|

+

∫ u

w′

S(x)dx√
|(UVW )(x)|

−
∫ zc1(x0)

w′

S(x)dx√
|(UVW )(x)|

)
.

(4.2.6)

The final expressions in the previous identities are formed by either integrals along
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intervals whose endpoints are two consecutive roots of UVW , or integrals∫ x

x1

S(x)dx√
|(UVW )(x)|

,

where x1 is a root of UVW . Those identities will help us to compute the integrals to

high precision recursively and more easily. We note that when x = a′, b′ and c′ we have

respectively ∫ a′

a

S(t)dt√
|f(t)|

= 2
√
|∆|
∫ w

v

S(t)dt√
|f̃(t)|

, (4.2.7)

∫ b′

b

S(t)dt√
|f(t)|

= 2
√
|∆|
∫ u

w′

S(t)dt√
|f̃(t)|

, (4.2.8)

∫ c′

c

S(t)dt√
|f(t)|

= 2
√
|∆|
∫ v

u′

S(t)dt√
|f̃(t)|

. (4.2.9)

(Exercise III–7.)

We are now ready to explain the idea behind the algorithm for the computation

of ∫ a′

a

S(t)dt√
|f(t)|

(4.2.10)

We follow Section 3 of [6]. The integrals of the form (4.2.10) can be thought as inte-

grals of the holomorphic differentials S(x)dx/y of the hyperelliptic curve given by the

equation y2 = f(x). Now, let f ∈ R[x] be a degree 6 monic polynomial with real roots

only. Denote the roots of f by a < a′ < b < b′ < c < c′. Let P = (x − a)(x − a′),

Q = (x − b)(x − b′) and R = (x − c)(x − c′). Let (U, V,W ) be the associated triple

to (P,Q,R). We have shown that the polynomial f̃ = U(x)V (x)W (x) has six different

roots v < w < w′ < u < u′ < v′, where u, u′ are the roots of U , v, v′ the roots of

V , and w,w′ the roots of W . Consider the genus 2 hyperelliptic curves C and C′ given

by the equations y2 = f(x) and ∆y′2 = f̃(x′), where ∆ = ∆(P,Q,R). We take the

following definition from Chapter 2, Section 5 of [26].

Definition. A correspondence of degree d between two curves C and C ′ defined over

C associates to every point p ∈ C a divisor T (p) of degree d on C ′, varying holomor-
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phically with p. It can be given by its curve of correspondence

D = {(p, q) : q ∈ T (p)} ⊂ C × C ′;

conversely, given any curve D ⊂ C×C ′, we can define an associated correspondence

by

T (p) = i∗p(D) ∈ Div(C ′),

where ip : C ′ → C × C ′ is defined by q 7→ (p, q).

There are three correspondences of degree 2 between C and C′ defined by the

following curves: let Z1, Z2, Z3 be the curves over C × C′ given by the equations

Z1 :


P (x)U(x′) +Q(x)V (x′) = 0,

yy′ = P (x)U(x′)(x− x′),

Z2 :


Q(x)V (x′) +R(x)W (x′) = 0,

yy′ = Q(x)V (x′)(x− x′),

Z3 :


P (x)U(x′) +R(x)W (x′) = 0,

yy′ = W (x)R(x′)(x− x′),

What we have done before when solving the exercises is computing explicitly for (x, y) ∈

C with x ∈ [a, a′] the corresponding degree 2 divisor (z1(x), iy1(x))+(z2(x), iy2(x)) on

C′ under the correspondence defined by Z1, and we have done accordingly for points

(x, y) ∈ C with x ∈ [b, b′] and [c, c′] and the curves Z2 and Z3. These correspondences

define linear maps δZi : Ω1(C′) → Ω1(C) as follows: let p1,i, p2,i be the restrictions

to Zi of the projections of C × C′ to C and C′; the map p2,i defines an “inverse image”

p∗2,i : Ω1(C′)→ Ω1(Zi) , and the map p1,i defines a “trace” map p1,i∗ : Ω1(Zi)→ Ω1(C).

We define δZi = p1,i∗ ◦ p∗2,i. Lemma 4.2.11 implies that

δZi

(
S(x′)

dx′

y′

)
= S(x)

dx

y
.

We did a careful study of the action of the correspondences Zi on the cycles of C

associated to the intervals (a, a′), (b, b′), (c, c′) when we compared the integrals along
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C to the integrals along C′ just after Lemma 4.2.11. In particular, when proving (4.2.7)

what we were doing was showing that the cycle associated to (a, a′) (resp. (b, b′), (c, c′))

corresponds to two cycles: a contractible cycle and twice the cycle associated to (v, w)

(resp. (w′, u), (u′, v′)).

We will now see that repeating the construction with U, V and W instead of

P,Q,R will lead to the value of the desired integrals to high precision. Let a1 < a′1 <

b1 < b′1 < c1 < c′1 be six real numbers. Set

P1(X) = (X − a1)(X − a′1), Q1(X) = (X − b1)(X − b′1), R1(X) = (X − c1)(X − c′1).

If (U1, V1,W1) is the associated triple to (P1, Q1, R1), we have previously seen that the

six roots of U1V1W1 are all real. Order them in increasing order a2 < a′2 < b2 < b′2 <

c2 < c′2 and set P2(X) = (X − a2)(X − a′2), Q2(X) = (X − b2)(X − b′2), R2(X) =

(X − c2)(X − c′2).

We define in this way six sequences of polynomials Pn, Qn, Rn, Un, Vn,Wn and

six sequences of real numbers (an), (a′n)(bn), (b′n), (cn), (c′n) recurrently defined for n ≥

2 by the relations

Pn(X) = (X−an)(X−a′n), Qn(X) = (X− bn)(X− b′n), Rn(X) = (X− cn)(X− c′n),

where an < a′n < bn < b′n < cn < c′n are the roots ofUn−1Vn−1Wn−1, and (Un−1, Vn−1,Wn−1)

is the associated triple to Pn−1Qn−1Rn−1.

Lemma 4.2.12 (IV–1). The sequences (an) and (a′n) (resp. (bn) and (b′n), resp. (cn)

and (c′n)) have a common limit. Moreover, there is a constant M such that for all n ≥ 1,

a′n+1 − an+1 < M(a′n − an)2,

b′n+1 − bn+1 < M(b′n − bn)2,

c′n+1 − cn+1 < M(c′n − cn)2.

Proof. It is clear from Lemma 4.2.7 that we have

a1 < an < an+1 < a′n+1 < a′n < a1,
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and that similar relations hold for (bn), (b′n), (cn) and (c′n). This shows that the se-

quences converge respectively to a, a′, b, b′, c, c′, say, and that the limits satisfy

a ≤ a′ < b ≤ b′ < c ≤ c′.

We will prove that a = a′. The proof that b = b′ and c = c′ follows the same lines. Recall

that the discriminant of Wn = [Pn, Qn] is given by 4Qn(an)Qn(an) = 4(bn − an)(b′n −

an)(bn − a′n)(b′n − a′n). Now, since the roots of Wn are a′n+1 and bn+1 (Lemma 4.2.7),

the discriminant also equals (an + a′n − bn − b′n)2(a′n+1 − bn+1)
2, for an + a′n − bn − b′n

is the leading coefficient of Wn. Taking limits we see that

(a+ a′ − b− b′)2(a′ − b)2 = 4(b− a)(b′ − a)(b− a′)(b′ − a′).

Note that

b′ − a ≥ b− a > 0 and b′ − a′ ≥ b− a′ > 0.

Then

(b′ − a)(b′ − a′)(b− a)(b− a′) ≥ (b− a)2(b− a′)2, (4.2.11)

and if a < a′ we get a strict inequality. Similarly,

(b′ − a)(b′ − a′)(b− a)(b− a′) ≥ (b′ − a′)2(b− a′)2, (4.2.12)

where again, a 6= a′ implies a strict inequality. Finally, we also have

(b′ − a)(b′ − a′)(b− a)(b− a′) ≥ (b′ − a′)(b− a)(b− a′)2. (4.2.13)

If a < a′, adding (4.2.11) plus (4.2.12) plus twice (4.2.13) we then get that

4(b′ − a)(b′ − a′)(b− a)(b− a′) > (b− a′)2(b′ − a′ + b− a)2,

which is a contradiction. Therefore a = a′. We now prove the existence of the constant

M . Using the identity [Vn,Wn] = −Pn∆(Pn, Qn, Rn), and the corresponding identities
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for [Un, Vn] and [Wn, Un], computing discriminants we see that

a′n+1 − an+1 =
(c′n+1 − bn+1 − a′n+1 + an+1)

2(a′n − an)2

4(bn+1 − an+1)(c′n+1 − a′n+1)(c
′
n+1 − bn+1)

,

b′n+1 − bn+1 =
(cn+1 − a′n+1 + b′n+1 − bn+1)

2(b′n − bn)2

4(b′n+1 − a′n+1)(cn+1 − a′n+1)(c
′
n+1 − bn+1)

,

c′n+1 − cn+1 =
(b′n+1 − an+1 − c′n+1 + cn+1)

2(c′n − cn)2

4(bn+1 − an+1)(c′n+1 − a′n+1)(c
′
n+1 − bn+1)

,

and then

a′n+1 − an+1 <
(c′1 − b1 + a′1 − a1)2(a′n − an)2

4(b1 − a′1)(c1 − a′1)(c1 − b′1)
,

b′n+1 − bn+1 <
(c′1 − a1 + b′1 − b1)2(b′n − bn)2

4(b1 − a′1)(c1 − a′1)(c1 − b′1)
,

c′n+1 − cn+1 <
(b′1 − a1 + c′1 − c1)2(c′n − cn)2

4(b1 − a′1)(c1 − a′1)(c1 − b′1)
.

If we set

M =
(c′1 − a1 + max{a′1 − a1, b′1 − b1, c′1 − c1})2

4(b1 − a′1)(c1 − a′1)(c1 − b′1)
,

we arrive to the required inequalities.

Remark. The previous lemma states that the convergence of the sequences an, bn, cn

is quadratic. Note that if a′n−an ≤ 10−k, for some positive integer k, then a′n+1−an+1 is

about 10−2k. That is, each step in the construction of the sequence ‘doubles’ precision.

This is very good for practical purposes, as we can find the limit a to thousands of

decimal digits of precision in a few iterations.

Write as in the proof of the previous lemma a = lim(an), b = lim(bn) and

c = lim(cn). Let ∆n = ∆(Pn, Qn, Rn) and

tn =
2
√

∆n√
(bn + b′n − cn − c′n)(cn + c′n − an − a′n)(an + a′n − bn − b′n)

.

(The factors in the denominator are, up to sign, the leading coefficients of Pn, Qn, Rn.)

Let S ∈ R[X] be a polynomial of degree at most 1. Put

In =

∫ a′n

an

S(t)dt√
|Pn(t)Qn(t)Rn(t)|

.
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Lemma 4.2.13 (IV–2 and 3). The sequences (In) and (
∏n
i=1 ti) converge. The limit of

(In) is

I =
πS(a)

(b− a)(c− a)
.

Moreover, I1 = TI, where T is the limit of (
∏n
i=1 ti).

Proof. Let n be a positive integer. We introduce the change of variables

t = an + (a′n − an) sin2(t′), t′ ∈ [0, π/2], (4.2.14)

to obtain

In = 2

∫ π/2

0

S(an cos2 t′ + a′n sin2 t′)dt′√∏4
i=1(An,i cos2 t′ +A′n,i sin2 t′)

,

where

An,1 = bn − an, A′n,1 = bn − a′n,

An,2 = b′n − an, A′n,2 = b′n − a′n,

An,3 = cn − an, A′n,3 = cn − a′n,

An,4 = c′n − an A′n,4 = c′n − a′n.

Using the relations A′n,i < An,i, An,i < An,i+1 and A′n,i < A′n,i+1 we see that

(bn − a′n)(cn − a′n) <

√√√√ 4∏
i=1

(An,i cos2 t′ +A′n,i sin2 t′) < (b′n − an)(c′n − an).

Note now that an < an cos2 t′ + a′n sin2 t′ < a′n. It is now clear that from our bounds we

can construct two sequences Hn and Jn with Hn < In < Jn and that the sequences

converge to the common limit

I =
πS(a)

(b− a)(c− a)
.

Now choose S to be the constant polynomial 1. Then the integrals In corresponding to

S are nonzero. From equation (4.2.7) we see that tn = In/In+1. Then

I1 = t1I2 = t1t2I3 = · · · = TnIn+1.

74



Since In converges, Tn converges as well. The last statement of the Lemma follows

and the proof is now complete.

Using the correspondences given by the curves Z2, Z3 we can show in the same

way that ∫ b′1

b1

S(t)dt√
|P1(t)Q1(t)R1(t)|

= πT
S(b)

(b− a)(c− b)

and ∫ c′1

c1

S(t)dt√
|P1(t)Q1(t)R1(t)|

= πT
S(c)

(c− a)(c− b)
.

Lemma 4.2.13 implies that the algorithm given in Appendix A2 of [6] is correct and that

it terminates. We will reproduce it in the next section for completeness. We will now

make the necessary modifications of the algorithm so that we can compute the integrals∫ x2

x1

S(t)dt√
|P1(t)Q1(t)R1(t)|

,

where x1 = a1, b1 or c1 and x2 ∈ (a1, a
′
1), (b1, b

′
1), or (c1, c

′
1). Assume for simplicity

that x1 = a1 and a1 < x2 < a′1. We will now write x instead of x2. In the proof of

Lemma 4.2.13 we introduced the change of variables (4.2.14). Under the change of

variables for n = 1 we obtain∫ x

a1

S(t)dt√
|P1(t)Q1(t)R1(t)|

,= 2

∫ x′

0

S(a1 cos2 t′ + a′1 sin2 t′)dt√∏4
i=1(A1,i cos2 t′ +A′1,i sin2 t′)

,

where x′ = arcsin
√

x−a1
a′1−a1

. As in the proof of the lemma, we can bound the integral as

follows:

2
x′min{S(a1), S(a′1)}

(b′1 − a1)(c′1 − a1)
≤
∫ x

a1

S(t)dt√
|P1(t)Q1(t)R1(t)|

≤ 2
x′max{S(a1), S(a′1)}

(b1 − a′1)(c1 − a′1)
.

In the same way we can find explicit upper and lower bounds for the integrals∫ x

an

S(t)dt√
|Pn(t)Qn(t)Rn(t)|

,

with x ∈ (an, a
′
n), and the other cases where the integral is from bn to x ∈ (bn, b

′
n) or

from cn to x ∈ (cn, c
′
n).
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We start then with one point x ∈ (a1, a
′
1). Under the correspondence given by

the curve Z1 we find two points x1,1, x1,2 with a2 < x1,1 < a′2 and c2 < x1,2 < c′2. We

will use equations (4.2.1)-(4.2.6) in order to represent the integral we want to compute

in terms of the integral of S(t)dt√
|P2(t)Q2(t)R2(t)|

along (a2, a
′
2), (b2, b

′
2), (c2, c

′
2), (a2, x1) and

(c2, x2). Since there are many cases to be considered, we will choose only one to

show how the algorithm will work. The other cases are handled similarly. Suppose that

a′2 < x < a′1. Then,∫ x

a1

S(t)dt√
|P1(t)Q1(t)R1(t)|

=
√

∆1

(
2

∫ a′2

a2

S(t)dt√
|(U1V1W1)(t)|

−
∫ x1,1

a2

S(t)dt√
|(U1V1W1)(t)|

−
∫ c′2

c2

S(t)dt√
|(U1V1W1)(t)|

+

∫ x1,2

c2

S(t)dt√
|(U1V1W1)(t)|

)
.

Now, from equation (4.2.7) we see that the first integral on the right equals∫ a′1

a1

S(t)dt√
|P1(t)Q1(t)R1(t)|

and the third equals
1

2

∫ c′1

c1

S(t)dt√
|P1(t)Q1(t)R1(t)|

.

Moreover, √
∆1√

|(U1V1W1)(t)|
=
t1
2
· 1√
|P2(t)Q2(t)R2(t)|

.

We can then find upper and lower bounds for every integral on the right as we mentioned

before, and then taking care of the signs, we can compute a lower and upper bound

for their sum, obtaining a bound for the original integral we want to estimate. If the

difference between the two bounds is not small enough, we repeat the process to the

integrals

t1
2

∫ x1,1

a2

S(t)dt√
|(P2Q2R2)(t)|

and
t1
2

∫ x1,2

c2

S(t)dt√
|(P2Q2R2)(t)|

.

We obtain then four real numbers x2,1, x2,2, x2,3, x2,4 from the correspondences. Using

equations (4.2.1)-(4.2.6) again we obtain an expression of the first integral as a sum of

a fraction of the integrals∫ a′1

a1

S(t)dt√
|P1Q1R1(t)|

,

∫ b′1

b1

S(t)dt√
|P1Q1R1(t)|

,

∫ c′1

c1

S(t)dt√
|P1Q1R1(t)|

,
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and a sum of integrals of the form

ε2,i
t1t2
22

∫ x2,i

a2,i

S(t)dt√
|P3Q3R3(t)|

,

where a2,i is the largest root of P3Q3R3 which is smaller than x2,i and ε2,i = ±1. We

carry on with the process using the appropriate correspondences. Then at the n-th step

we have a list of 2n real numbers xn,i, i = 1 . . . 2n, all in (an+1, a
′
n+1) ∪ (bn+1, b

′
n+1) ∪

(cn+1, c
′
n+1) and the original integral equals a sum of integrals of the form

2−n
n∏
j=1

tj

∫ xn,i

an,i

S(t)dt√
|Pn+1Qn+1Rn+1(t)|

,

where an,i is the largest root of Pn+1Qn+1Rn+1 which is smaller than xn,i, together with

a fraction of the integrals of S(t)dt√
|P1(t)Q1(t)W1(t)|

along (a1, a
′
1), (b1, b

′
1) and (c1, c

′
1). The

precise relation is obtained from equations (4.2.1)-(4.2.6) and equation 4.2.7. Since

we can sharply bound those integrals in terms of arcsines of expressions involving xn,i

and the roots of Pn+1Qn+1Rn+1 as we mentioned before, we obtain explicit upper and

lower bounds

Hn ≤
∫ x

a1

S(t)dt√
|P1(t)Q1(t)R1(t)|

≤ Jn, (4.2.15)

and at every step, the difference between those bounds Jn − Hn gets smaller as the

sequences (an), (bn) and (cn) converge quadratically. We stop the algorithm when the

difference is smaller than the required precision.

4.3 Algorithms

In this section we present the algorithms we have developed in the previous section in

concise form.

Let a < a′ < b < b′ < c < c′ be six real numbers. Put f(x) = P (x)Q(x)R(x),

where P (x) = (x − a)(x − a′), Q(x) = (x − b)(x − b′), and R(x) = (x − c)(x − c′).

Let S ∈ R[x] be a polynomial of degree at most 1.
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The following is Bost and Mestre’s algorithm found in [6, Appendice A2].

Bost and Mestre’s algorithm for the computation of the integrals

Ia =

∫ a′

a

S(t)dt√
|f(t)|

, Ib =

∫ b′

b

S(t)dt√
|f(t)|

, and Ic =

∫ c′

c

S(t)dt√
|f(t)|

.

INPUT: Six real numbers a < a′ < b < b′ < c < c′. An integer p > 0:

the required number of digits of precision.

OUTPUT: Three real numbers I∗a , I
∗
b , I
∗
c such that |Ia−I∗a |, |Ib−I∗b |, |Ic−

I∗c | ≤ 10−p.

1. Put a1 = a, a′1 = a′, b1 = b, b′1 = b′ c1 = c, c′1 = c′ and d = 1.

2. While the required precision has not been attained do:

• Compute the maximum M of the following quantities:

max{S(a1), S(a′1)}
(b1 − a′1)(c1 − a′1)

− min{S(a1), S(a′1)}
(b′1 − a1)(c′1 − a1)

,

max{S(b1), S(b′1)}
(b1 − a′1)(c1 − b′1)

− min{S(b1), S(b′1)}
(b′1 − a1)(c′1 − b1)

,

max{S(c1), S(c′1)}
(c1 − a′1)(c1 − b′1)

− min{S(c1), S(c′1)}
(c′1 − a1)(c′1 − b1)

.

These are the differences between the upper and lower bounds

for the desired integrals computed in the proof of

Lemma 4.2.13.

• Put M1 = π
√
dM.

• If M1 ≤ 10−p go directly to Step 3.

• Put

a2 =
c1c
′
1 − a1a′1 −

√
(c1 − a1)(c1 − a′1)(c′1 − a1)(c′1 − a′1)
c1 + c′1 − a1 − a′1

,

a′2 =
a1a
′
1 − b1b′1 −

√
(a1 − b1)(a1 − b′1)(a′1 − b1)(a′1 − b′1)
(a1 + a′1 − b1 − b′1)

,
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b2 =
a1a
′
1 − b1b′1 +

√
(a1 − b1)(a1 − b′1)(a′1 − b1)(a′1 − b′1)
(a1 + a′1 − b1 − b′1)

.

b′2 =
b1b
′
1 − c1c′1 −

√
(c1 − b1)(c1 − b′1)(c′1 − b1)(c′1 − b′1)
b1 + b′1 − c1 − c′1

,

c2 =
b1b
′
1 − c1c′1 +

√
(c1 − b1)(c1 − b′1)(c′1 − b1)(c′1 − b′1)
b1 + b′1 − c1 − c′1

,

c′2 =
c1c
′
1 − a1a′1 +

√
(c1 − a1)(c1 − a′1)(c′1 − a1)(c′1 − a′1)
c1 + c′1 − a1 − a′1

,

and

d1 = (a1a
′
1(c1 + c′1 − b1 − b′1)+

b1b
′
1(a1 + a′1 − c1 − c′1) + c1c

′
1(b1 + b′1 − a1 − a′1))×

4d

(b1 + b′1 − c1 − c′1)(c1 + c′1 − a1 − a′1)(a1 + a′1 − b1 − b′1)
.

Note that
√
d1/d = tn in the notation of Lemma 4.2.13.

• Put a1 = a2, a
′
1 = a′2, b1 = b2, b

′
1 = b′2, c1 = c2, c

′
1 = c′2, d = d1.

3. Put

I∗a =
π
√
dS(a1)

(a1 − b1)(a1 − c1)
, I∗b =

π
√
dS(b1)

(b1 − a1)(c1 − b1)
, I∗c =

π
√
dS(c1)

(c1 − b1)(c1 − a1)
.

Now we present the modified algorithm for the computation of the integral

I =

∫ x2

x1

S(t)dt√
|P (t)Q(t)R(t)|

,

where x2 ∈ (a, a′) ∪ (b, b′) ∪ (c, c′) and x1 is the largest of the roots of f with x1 < x2.

We will use two procedures, one computing an upper and a lower bound for I at the

n-th step of the algorithm, as in the discussion preceding equation (4.2.15), and one to

compute the exact relation between the integral I and the integrals Ia, Ib, Ic, and∫ xn,i

an,i

S(t)dt√
|Pn+1Qn+1Rn+1(t)|

obtained from equations (4.2.1)-(4.2.6).
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Procedure A

Let xn,i ∈ (an+1, a
′
n+1) ∪ (bn+1, b

′
n+1) ∪ (cn+1, c

′
n+1), εn,i = ±1, i = 1, . . . , 2n and

α, β, γ ∈ Q such that

I = αIa + βIb + γIc + 2−n
n∏
j=1

tj
∑

εn,i

∫ xn,i

an,i

S(t)dt√
|Pn+1Qn+1Rn+1(t)|

,

where an,i is the largest of an+1, bn+1, cn+1 with an,i < xn,i.

Compute a lower and an upper bound for I.

INPUT: Six real numbers a < a′ < b < b′ < c < c′, a non-negative

integer n, three rational numbers α, β, γ, a list of 2n

pairs (xn,i, εn,i) ∈ D × Q, D = (a, a′) ∪ (b, b′) ∪ (c, c′), a real

number d.
OUTPUT: Two real numbers H,J such that H < I < J.

1. Put I1 = 1
(b′−a)(c′−a), I ′1 = 1

(b−a′)(c−a′), I2 = 1
(b′−a)(c′−b), I ′2 = 1

(b−a′)(c−b′),

I3 = 1
(c′−a)(c′−b), I ′3 = 1

(c−a′)(c−b′).

2. For i = 1 . . . 2n do

• Compute an,i, the largest of an+1, bn+1, cn+1 with an,i < xn,i. Set

a′n,i to be a′, b′, c′ according to whether an,i = a, b or c.

• Put θi = arcsin
√

xn,i−an,i
a′n,i−an,i

.

• If εn,i = −1 then

– Put

Hi = −θi
√
d

2n−1
×


I ′1 an,i = a,

I ′2 an,i = b,

I ′3 an,i = c,

and

Ji = −θi
√
d

2n−1
×


I1 an,i = a,

I2 an,i = b,

I3 an,i = c,
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• Else do

– Put

Hi =
θi
√
d

2n−1
×


I1 an,i = a,

I2 an,i = b,

I3 an,i = c,

and

Ji =
θi
√
d

2n−1
×


I ′1 an,i = a,

I ′2 an,i = b,

I ′3 an,i = c.

3. Put

Ha = απ
√
d×


I1 α ≥ 0,

I ′1 α < 0,

, Ja = απ
√
d×


I ′1 α ≥ 0,

I1 α < 0,

,

Hb = βπ
√
d×


I2 β ≥ 0,

I ′2 β < 0,

, Jb = βπ
√
d×


I ′2 β ≥ 0,

I2 β < 0,

and

Hc = γπ
√
d×


I3 γ ≥ 0,

I ′3 γ < 0,

, Jc = γπ
√
d×


I ′3 γ ≥ 0,

I3 γ < 0.

4. Put H = Ha +Hb +Hc +
∑2n

i=1Hi and J = Ja + Jb + Jc +
∑2n

i=1 Ji.

We now present the second procedure.

Procedure B

Let xn,i ∈ (an+1, a
′
n+1) ∪ (bn+1, b

′
n+1) ∪ (cn+1, c

′
n+1), εn,i = ±1, i = 1, . . . , 2n and

α, β, γ ∈ Q such that

I = αIa + βIb + γIc + 2−n
n∏
j=1

tj
∑

εn,i

∫ xn,i

an,i

S(t)dt√
|Pn+1Qn+1Rn+1(t)|

,
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where an,i is the largest of an+1, bn+1, cn+1 with an,i < xn,i.

Compute α′, β′, γ′ ∈ Q and for every i = 1, . . . , 2n compute the values z1(xn,i), z2(xn,i),

and ηi, ξi ∈ {−1, 1} such that

I = α′Ia + β′Ib + γ′Ic +
2n∑
i=1

ηi

∫ z1(xn,i)

bn,i

S(t)dt√
|Pn+1Qn+1Rn+1(t)|

+

2n∑
i=1

ξi

∫ z2(xn,i)

cn,i

S(t)dt√
|Pn+1Qn+1Rn+1(t)|

,

where bn,i (resp. cn,i) is the largest of the roots of Pn+1Qn+1Rn+1 with bn,i < z1(xn,i)

(resp. cn,i < z2(xn,i)).

INPUT: Twelve different real numbers a, v, w, a′, b, w′, u, b′, c, u′, v′, c′

ordered increasingly, a non-negative integer n, three

rational numbers α, β, γ, a list of 2n pairs (xn,i, εn,i) ∈

D ×Q,

D = (a, a′) ∪ (b, b′) ∪ (c, c′), a real number d.

OUTPUT: Three rational numbers α′, β′, γ′, a list of 2n+1 pairs

(xn+1,i, εn+1,i) with εn+1,i = ±1 and

xn+1,i ∈ (v, w) ∪ (w′, u) ∪ (u′, v′).
1. For i = 1 . . . 2n do

• Compute an,i, the largest of an+1, bn+1, cn+1 with an,i < xn,i.

• Set a′n,i to be a′, b′, c′ according to whether an,i = a, b or c.

• Compute the roots z1(xn,i) < z2(xn,i) of the degree 2

polynomial F (z) given by

F (z) =


P (xn,i)U(z) +Q(xn,i)V (z), an,i = a,

Q(xn,i)V (z) +R(xn,i)W (z), an,i = b,

P (xn,i)U(z) +R(xn,i)W (z), an,i = c.

• Put

ηi = εn,i ×


1, an,i = a and xn,i ≤ w,

−1, all other cases,
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and

ξi = εn,i ×


−1, (an,i = b and xn,i > u) or (an,i = c and xn,i > v′),

1, all other cases.

• Put

αi = εn,i ×


2−n−1 xn,i ∈ (b, b′),

2−n xn,i ∈ (w, a′)

0 all other cases.

βi = εn,i ×


2−n−1 xn,i ∈ (c, c′),

2−n xn,i ∈ (u, b′)

0 all other cases.

and

γi = εn,i ×


−2−n−1 xn,i ∈ (a, a′),

2−n xn,i ∈ (v′, c′)

0 all other cases.

2. Put α′ = α+
∑2n

i=1 αi, β′ = β +
∑2n

i=1 βi, , γ′ = γ +
∑2n

i=1 γi.

3. Put xn+1,2i−1 = z1(xn,i), xn+1,2i = z2(xn,i), εn+1,2i−1 = ηi and εn+1,2i =

ξi, i = 1, . . . , 2n.

We are now ready to present the modification of Bost and Mestre’s algorithm.

Algorithm for the computation of the integral

I =

∫ x2

x1

S(t)dt√
|f(t)|

.
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INPUT: Six real numbers a < a′ < b < b′ < c < c′, a real number x ∈

(a, a′) ∪ (b, b′) ∪ (c, c′). An integer p > 0,

the required number of digits of precision.

OUTPUT: A real number I∗ such that |I − I∗| ≤ 10−p.

1. Put a1 = a, a′1 = a′, b1 = b, b′1 = b′ c1 = c, c′1 = c′, d = 1, n = 0, and

α = β = γ = 0.

2. Let L be the list consisting of the pair (x, 1).

3. While the precision has not been attained do

• Let H,J be the lower and upper bounds for I obtained from

Procedure A applied to a1, a
′
1, b1, b

′
1, c1, c

′
1, n, α, β, γ and d.

• Put M1 = J −H.

• If (M1 < 10−p) go directly to Step 4.

• Compute a2, a
′
2, b2, b

′
2, c2, c

′
2 and d1 as in Bost and Mestre’s algorithm,

• Apply Procedure B to a1, a
′
1, b1, b

′
1, c1, c

′
1, n, α, β, γ and d

to obtain a list L′ and rational numbers α′, β′, γ′.

• n = n + 1. Put a1 = a2, a
′
1 = a′2, b1 = b2, b

′
1 = b′2, c1 = c2, c

′
1 = c′2, d =

d1.

• Put L = L′, α = α′, β = β′, γ = γ′.

4. Put I∗ = H.

Note that since H < I < J and J −H ≤ 10−p, then |I −H| ≤ 10−p and the output of

the algorithm is correct.

4.3.1 A note on precision

The complexity of Bost and Mestre’s algorithm isO(M(N) logN), whereN is the num-

ber of decimal places of required precision and M(N) stands for the complexity of the
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algorithm used for the multiplication of twoN -digit numbers. (See Section 9.2.2 of [19].)

In practice we will want to compute the integrals to a specific number of digits.

We can estimate the number of iterations of the algorithms needed to attain such preci-

sion by means of the last statement of Lemma 4.2.12. We note that a coarse estimate

shows that we lose about 10 digits of precision with respect to the precision of the input

at every iteration of Bost and Mestre’s algorithm. When we compute the final output

we lose about 8 more digits. We can use these estimates to know how much precision

we need on the input in order to have a correct output. For instance, in the example

presented below, we require 1000 digits of precision. We first estimate that we will need

12 steps to attain 1000 digits of precision. Then, if the input is given with m digits of

precision, the final output will be correct to m− 130 digits. Then, if the input is given to

more than 1130 digits of precision our output will be correct to 1000 digits as required.

For the example below we used real numbers given with 3000 digits of precision, which

is far more than what we need.

The modification of Bost and Mestre’s algorithm will require more precision on

the input, as every iteration involves more operations, and the final output will also

require many operations. A coarse estimate shows that we lose about 23 digits of

precision at every iteration. If we stop the algorithm at the m-th iteration, we lose 2m+2

digits from the computation of the final output. In the example below in order to obtain

1000 digits of precision we need 12 iterations. Then the final output will have 4374 digits

of precision less than the input. We thus need more than 5374 digits of precision on the

input. For the example, we used 10000 digits of precision on the input.

The MAGMA algebra system prints reliable output. When one requires MAGMA

to work with 3000-digit arithmetic, it does not always print 3000 decimal places of a

required number. It presents less digits, but the digits printed are reliable. We conform

ourselves with obtaining a printed output with slightly more than the required digits of

precision, for we know that the output will be reliable to that precision.

Example 4.3.1. Consider the polynomial f(X) = X5− 5X3−X2 + 3X+ 1. It has five
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real roots given by

a1 = −1.96002661715932491777 . . . , a2 = −0.72281270157961201762 . . . ,

a3 = −0.36968038412101119752 . . . , a4 = 0.87809490178975922400 . . . ,

a5 = 2.17442480107018890892 . . . ,

to 20 decimal places. (We will not write here the more-than-2000 decimal places printed

by MAGMA.)

Note that f(0) = f(−1) = 1, and f(9/4) = (59/32)2. Let x1 = −1, x2 = 0,

and x3 = 9/4. We note that they lie respectively in the intervals (a1, a2), (a3, a4) and

(a5,∞). We will now use the algorithms presented in this chapter to compute the

integrals of
dt√
f(t)

,
t dt√
f(t)

,

along the intervals

(a1, a2), (a5,∞),

(x1, a2), (x2, a4), (x3,∞).

Since the degree of f is 5, we need to introduce a change of variables as explained in

Section 4.1. We choose the following change of variables:

t′ = g(t) =
1

t− (a2 + a3)/2
.

Note that according to Section 4.1 the integrals we need to compute are now of the

form ∫
dt′√
f̃(t′)

,

∫
t′ dt′√
f̃(t′)

,

where f̃ is of degree 6. The precise relation can be computed from Equation 4.1.2. We

have chosen (a2 + a3)/2 as the point mapping to ∞ under the change of variables,

so that f̃ is negative along the intervals corresponding to the original intervals we are
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interested in. The roots of f are mapped to five of the roots of f̃ , and∞ is mapped to

0, which is the sixth root of f̃ . The roots of f̃ are ordered as follows

a′2 < a′1 < 0 < a′5 < a′4 < a′3,

where a′i = g(ai). Moreover, the intervals (x1, a2), (x2, a4), (x3,∞) are mapped to

(a′2, x
′
1), (a

′
4, x
′
2), (0, x

′
3), so all integrals we need to compute are already in the form

required by the algorithms to work. After only 7 iterations we find the integrals along

all the intervals to 32 decimal places, and after 12 iterations, the precision is at least

of 1026 decimal places, as computed by the difference of the bounds for the integral

described in the previous section. The computation of each integral took less than two

minutes. We reproduce the values of the integrals in Table 4.1, to 20 decimal places.

(The full output, with 1026 decimal places can be found in the address below.) We

Table 4.1: Value of the integrals to 20 decimal places.
Interval

∫
dt/
√
f(t)

∫
t dt/

√
f(t)

(a1, a2) 1.345612414294682752214 −1.560324774496408198666
(a3,∞) 0.386988322453914193981 1.81246715789527708463
(x1, a2) 0.66475800776085826705 −0.53709088385333377913
(x2, a4) 0.90105534714502372440 0.46327467596785800929
(x3,∞) 0.30138196613949747325 1.62420319614817059241

have computed the integrals along (a1, a2) and (x1, a2) using the numerical integration

methods provided by Mathematica [52]. We obtain the following values∫ a2

a1

dt√
f(t)

= 1.34561241208,

∫ a2

a1

t dt√
f(t)

= −1.5603247725,∫ a2

x1

dt√
f(t)

= 0.66475800739,

∫ a2

x1

t dt√
f(t)

= −0.5370908835,

Mathematica displayed a warning stating that the algorithm failed to converge at the

ninth iteration. Note that the values computed by Mathematica agree with the values we

have computed for the integrals to 9 decimal places. But as remarked at the beginning

of this subsection, our output is correct in the places where it differs from that given by

Mathematica.
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Chapter 5

Reduction of the upper bound for

the size of the integral points

In Chapter 3 we described how one can completely determine all the S-integral points

on a hyperelliptic curve. We noted that the second step for the determination of the

S-integral points, namely the variant of the Mordell–Weil sieve can be time consuming

and memory demanding, specially if one needs to sieve up to a very large bound. We

would like to reduce the upper bound for the size of the S-integral points so that we can

search for all the points below the bound, instead of performing an expensive sieve.

In [47], Stroeker and Tzanakis describe how one can solve elliptic Diophan-

tine equations by estimating linear forms in elliptic logarithms. Their approach consists

of using the classical theory of elliptic logarithms to turn the information given by the

Mordell–Weil group of an elliptic curve E into numerical data that says how far an inte-

gral point is from the point at infinity on E . They obtain an upper bound for the coeffi-

cients of the linear combination for a given point P in terms of the generators of E(Q)

and then they reduce it to manageable proportions using the LLL-algorithm.

In this chapter we develop an analogous method for the genus 2 case. We must

restrict our attention to the integral case (S = ∅). From now on we will only look for the

integral points on a genus 2 hyperelliptic curve. A further restriction that we will need is
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assuming that the polynomial f defining the curve has real roots only, all different, and

that the generators of the free part of J(Q) are given by representatives supported by

real points only.

We now briefly sketch the strategy to find all the integral points on a genus 2

hyperelliptic curve. First, we obtain a bound for the size of the integral points using

the techniques from Chapter 3. We also take advantage of the Abel–Jacobi map φ to

identify J(C) with C2/Λ, where Λ is a rank 4 lattice generated by the periods of C.

Choose a fundamental domain in C2 for the lattice. Let D1, . . . , Dr be generators for

the free part of J(Q). Assume P is an (unknown) integral point on C. Then, if P0 is a

fixed rational point on C, the relation

P − P0 = m1D1 + · · ·+mrDr + T

in J(Q), where T is a torsion element, can be translated into a relationship between the

image φ(Di) in the fundamental domain of the generators of theDis and the (unknown)

image φ(P −P0) of the degree 0 divisor P −P0 modulo the lattice Λ. This relation is the

linear form in hyperelliptic logarithms we will use. By completely elementary methods,

one can also compute bounds for the norm of the entries in C of the vector φ(P − P0).

The upper bound for the size of the integral points is translated to an upper bound M

for the absolute value of the coefficientsmi, i = 1, . . . r. We can rephrase the existence

of this bound as follows: if P is an integral point on C, then the coefficients of the divisor

P − P0 in terms of the Dis are at most M . The aim of the method is to reduce the

bound M in such a way that one can practically look for all possible combinations in

J(Q) of the Dis and the torsion points with coefficients bounded by M and deduce

which combinations come from integral points. This would completely determine all the

integral points on C.

The chapter is arranged as follows. The first section is devoted to the back-

ground needed, namely, the standard material on the theory of Jacobians of a Riemann

surface. Section 5.2 is concerned with the numerical computation of the periods of a

genus 2 curves defined over the reals and hyperelliptic logarithms using the algorithms

89



presented in Chapter 4. Section 5.3 explains how one obtains and estimates linear

forms in hyperelliptic logarithms from the information given by J(Q). Lastly, Section 5.4

describes how using the LLL-algorithm, one can reduce the estimates for the coeffi-

cients of the linear forms to manageable proportions.

5.1 Analytic Jacobians

Here we summarise standard material on the analytic Jacobian found in [33, 34, 26]. Let

S be a compact Riemann surface of genus g. The genus g is the ‘number of handles’ of

the surface S. The genus is also the dimension of the space of holomorphic differentials

on S. The Riemann surface S can be represented as a polygon with 4g sides identified

as in Figure 5.1. The simple paths Ai, Bi are disjoint except at their starting point. We

Figure 5.1: An octagon defining a genus 2 surface.

note that the intersection product of the cycles Ai and Aj is 0, with i 6= j, and the same

for the cycles Bi and Bj , whereas the intersection product of the cycles Ai and Bj is

δij . The cycles Ai and Bi are then a basis for H1(S,Z).

Now, let φ1, . . . , φg ∈ H0(S,Ω1) be a basis for the space of holomorphic 1-forms

on S. We take the following definition from [26, Chapter 2, Section 2].

Definition. The period matrix of S with respect to the basis Ai, Bi and the basis φj is
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the g × 2g matrix

Ω =


∫
A1
φ1 · · ·

∫
Ag
φ1

∫
B1
φ1 · · ·

∫
Bg
φ1

... · · ·
...

... · · ·
...∫

A1
φg · · ·

∫
Ag
φg

∫
B1
φg · · ·

∫
Bg
φg

 .

The column vectors
(∫

Ai
φ1, . . . ,

∫
Ai
φg

)
∈ Cg and

(∫
Bi
φ1, . . . ,

∫
Bi
φg

)
∈ Cg are

called the periods of S.

The 2g periods of S are linearly independent vectors over R [26, p. 228]. Then

the periods generate a rank 2g lattice Λ in Cg called the period lattice of S.

Definition. The Analytic Jacobian variety J(S) of S is the complex torus Cg/Λ.

We now pick a base point P0 ∈ S. Consider the map

φ : S → J(S), P 7→
(∫ P

P0

φ1, . . . ,

∫ P

P0

φg

)
mod Λ.

This is well defined, as if γ1 and γ2 are paths connecting P0 to P , the difference between

the two vectors of integrals is a vector of integrals along a closed path and hence it is in

the period lattice Λ. The map can be extended linearly to the group of degree 0 divisors

on S, Div0(S) by

φ
(∑

Pi −
∑

Qi

)
=
∑

(φ(Pi))−
∑

(φ(Qi))

=
∑(∫ Pi

Qi

φ1, . . . ,

∫ Pi

Qi

φg

)
mod Λ.

The following Proposition is Proposition §II.2.4 of [33].

Proposition 5.1.1. Let f be a meromorphic function on S. Then φ((f)) = 0, where

(f) denotes the principal divisor of f .

We then have a well defined morphism

φ : Pic0(S)→ J(S).

Abel’s theorem states that φ is an injection. We present it here without proof and refer

the reader to Chapter 2 of [33].
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Theorem 5.1.2 (Abel’s Theorem). Let D be a degree 0 divisor on S. Then φ(D) =

0 mod Λ if and only if D is a principal divisor.

Further, we have the following theorem [26, p. 235], telling us that we in fact

have an isomorphism.

Theorem 5.1.3 (Jacobi Inversion). The map

φ : Pic0(S)→ J(S)

is surjective.

5.2 Computation of periods

We want to compute numerically the periods of the Riemann surface of a genus 2

hyperelliptic curve C(C) and we also want to compute the value φ(P ) for a given point

P ∈ C(C) and a choice of a base point P0 ∈ C(Q), where φ : C(C) → J(C(C))

is defined as in the previous section, and J(C(C)) is the analytic Jacobian variety of

C(C).

We first need to choose a homology basis Ai, Bi as in the previous section.

There is a traditional way to do this. We follow Mumford [34, §III.5] with some small

modifications. The curve

C : Y 2 = f(X),

is a double cover of the projective line P1(C), via the meromorphic function X, when

considered as a compact Riemann surface. Let a1, a2, a3, a4, a5, a6 be the branch

points. These are the roots of f(X), together with the point at infinity if f has de-

gree 5. A linear transformation X ′ = 1/(X − a) and an associated transformation

of Y ′ = Y/(X + a)3 takes a hyperelliptic curve C defined by a degree 5 polynomial

to a hyperelliptic curve given by a degree 6 polynomial, for a suitable choice of a (it

should be different from the roots of f ). So we can assume that the branch points are

all in the complex plane C and the curve has two points at infinity. (Mumford takes
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curves with the point at infinity as a branch point. But the present form is best for our

purposes.) Figure 5.2 gives an illustration of how the Riemann surface of C(C) looks

like. We choose disjoint segments on C joining a1 and a2, a3 and a4, a5 and a6. Note

Figure 5.2: The Riemann surface of a hyperelliptic curve.

that if we choose a point x ∈ (a1, a2), and a square root for f(x), and then we go

counter-clockwise around a1, choosing continuously a square root, when we return to

x we have a different root to the one we had chosen in the beginning. In other words,

when we think of the Riemann surface of C(C) as a two-layered cover of P1(C), the lift

of the path in P1(C) to the Riemann surface ‘interchanges’ layers. To get the topological

picture what we are doing is taking two copies of P1, we cut along the segments joining

the ais, and we glue the two layers along the corresponding segments as in the figure.

We will need to choose representatives for a homology basis. We now take

paths on P1(C)\{a1, . . . , a6} as in Figure 5.3. Since each path circles an even number

Figure 5.3: Paths below the cycles in the homology basis.

of branch points, these paths can be lifted to the double cover C(C). We will choose

one lift for each path and that will be our choice of homology basis. We will denote by
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A1 the lift of the path around a1, a2 and by A2 the the lift of the path around a3, a4. (We

take care of choosing the lifts A1, A2 on the same layer.) We will denote by B1 and

B2 the lifts of the paths around a2, a3, a4, a5 and a4, a5 respectively. We also need

to choose a basis for the space of holomorphic differentials on C(C). The following is

Proposition §III.5.2 in [34].

Proposition 5.2.1. The 2-dimensional vector space Γ(C(C),Ω1) consists of the 1-forms

ω =
P (X)dX

Y
, P a polynomial of degree < 2.

Proof. Since Y 2 = f(X) we have 2Y dY = f ′(X)dX. Hence

P (X)dX

Y
=

2P (X)dY

f ′(X)
.

On the affine piece of C(C), Y = 0 implies that f(X) = 0, and hence f ′(X) 6= 0

as f has no double roots. This implies that the form ω has no poles on the affine

piece. Now, for the points at infinity we look at the affine piece with coordinates given

by X ′ = 1/(X + a), Y ′ = Y/(X + a)3, where a ∈ C is not one of the branch points.

We then have

dY ′ =
dY

(X + a)3
− 3

Y dX

(X + a)4

=

(
f ′(X)

2(X + a)3
− 3

Y 2

(X + a)4

)
dX

Y

=

(
f ′(X)(X + a)− 6f(X)

2(X + a)4

)
dX

Y
,

and hence
dX

Y
=

2(X + a)4

f ′(X)(X + a)− 6f(X)
· dY ′.

Note that the denominator on the right hand side of the equation is a degree 5 polyno-

mial, so at the points at infinity 2(X+a)4

f ′(X)(X+a)−6f(X) has an order 1 zero. Then, the form ω

is holomorphic as the degree of P is at most 1.

We choose the differentials {φ1, φ2} = {dX/Y,XdX/Y } as a basis for the

space Γ(C(C),Ω1).
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We are now interested in the numerical computation of the period lattice Λ of

C(C) relative to our choice of homology basis and the basis for the holomorphic forms.

In the previous chapter we presented Bost and Mestre’s algorithm [6] to compute inte-

grals of the form ∫ b

a

S(t) dt√
|f(t)|

to high precision, where S is a degree one polynomial defined over the reals, f is a

degree 6 monic polynomial defined over the reals with 6 real roots, and a and b are

two consecutive roots of f . We will first see how these integrals are related to the

periods of C. Let a1 < a2 < a3 < a4 < a5 < a6 be the roots of f in ascending order.

Since f is monic, and all the roots are in R we have that f is non-negative along the

segments (−∞, a1], [a2, a3], [a4, a5] and [a6,∞); and it is negative along the segments

I1 = (a1, a2), I2 = (a3, a4), and I3 = (a5, a6). The intervals Ii are covered by the loops

in C(C) consisting of the points (x,±i
√
−f(x)), with x ∈ Ii. The loop covering I1 is

homologous to A1, whereas the loop covering I2 is homologous to A2. Similarly, the

segment [a2, a3] is covered by a loop in C(C) homologous to B1 −B2, and the interval

[a4, a5] is covered by a loop homologous to B2. See Figure 5.4. (cf. Figure 5.2 and

5.3.) The period lattice Λ of C(C) is then generated by the vectors of integrals

Figure 5.4: Cycles above [ai, ai+1] compared to the chosen homology basis.
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ω1 =

2
∫ a3
a2

dt√
f(t)

2
∫ a3
a2

t dt√
f(t)

 , ω2 =

2
∫ a5
a4

dt√
f(t)

2
∫ a5
a4

t dt√
f(t)

 ,

ω3 =

2i
∫ a2
a1

dt√
−f(t)

2i
∫ a2
a1

t dt√
−f(t)

 , ω4 =

2i
∫ a4
a3

dt√
−f(t)

2i
∫ a4
a3

t dt√
−f(t)

 .

We note that the first two vectors in our list have real coordinates, whereas the last

two vectors have purely imaginary coordinates. In particular the rank 2 lattice Λ′ =

Λ ∩ R2 ⊂ R2 is generated by ω1 and ω2. Then, Bost and Mestre’s algorithm serves

our purposes for the computation of a set of generators for the period lattice, as the

integrals computed by it are half-periods of C.

We recall that Bost and Mestre’s algorithm only computes the integrals∫
Ii

S(t)dt√
−f(x)

for the intervals Ii where f is negative. The authors of the algorithm observe that some

modifications would allow one to compute the integral along the intervals where f is

positive, and we have given full details and proofs of the modifications in Chapter 4.

We will also need to numerically compute the value

φ(P ) =

(∫ P

P0

φ1,

∫ P

P0

φ2

)
,

for a fixed base point P0 and a point P ∈ C(R).

Definition. Let D be a fundamental domain of the period lattice of C. For every degree

0 divisor D the hyperelliptic logarithm of D is the only point z ∈ D such that φ(D) =

z mod Λ. If P0 is a base point in C, the hyperelliptic logarithm of P is the hyperelliptic

logarithm of P − P0.

Note that these hyperelliptic logarithms are not the same as those logarithms

in Chapter 3, Sections 3.5 and 3.6. There we mapped the group of S-units into the

reals or a p-adic field. Since the group of S-units cannot be explicitly computed in

all cases we need, the logarithms there cannot be computed explicitly either and we
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conformed ourselves with estimates given by Matveev, Győry and Yu for them. In the

present chapter, we are concerned with the group J(Q). We will map its generators to

C2 modulo the period lattice. In this case, we can explicitly compute the period lattice

and the values of the logarithms of the generators of J(Q) to high precision with the

algorithms given in Chapter 5 as we will see below.

Assume for a moment that P0 = (a, 0) where a is one of the roots of f . If P0 is

not of that form, we choose one root a of f and define P1 = (a, 0) and we note that

φ(P ) =

(∫ P

P1

φ1,

∫ P

P1

φ2

)
−
(∫ P0

P1

φ1,

∫ P0

P1

φ2

)
.

Let (x, y) be the coordinates of P . We recall that the vector(∫ P

P0

φ1,

∫ P

P0

φ2

)
is well defined independently of the choice of a path connecting P0 to P up to an ele-

ment of Λ. We can assume for simplicity that y > 0, as the divisor (x, y)+(x,−y)−2P0

is linearly equivalent to 0, and then φ(ı(P )) = −φ(P ), where ı denotes the hyperelliptic

involution (x, y) 7→ (x,−y). If x ≥ a and y > 0 we will choose as a path the following:

for t ∈ [a, x] let γt = (t,
√
f(t)), where if f(t) ≥ 0 we take the usual positive square

root of f(t), and if f(t) < 0 we choose i
√
−f(t) as the square root of f(t). We choose

a similar path from P0 to P when x < a and y > 0. Note that if b is the nearest root of

f that is less or equal than x, then

φ(P ) =

(∫ b

a

dt√
f(t)

,

∫ b

a

t dt√
f(t)

)
+

(∫ x

b

dt√
f(t)

,

∫ x

b

t dt√
f(t)

)
mod Λ. (5.2.1)

The first vector in the right hand side is a sum of half-periods computable by Bost and

Mestre’s algorithm. In particular,

2φ(P ) = 2

(∫ x

b
φ1,

∫ x

b
φ2

)
mod Λ.

Thus we only need to be able to compute integrals of the form∫ x

a

S(t)dt√
|f(t)|

, (5.2.2)

97



where a is a root of f , x ≥ a, and x smaller than the roots of f which are > a. Bost and

Mestre say that a convenient modification of the algorithm given for the computation of

the half-periods allows one to compute the integrals∫ b

a

S(t)dt√
|f(t)|

,

for arbitrary real numbers a and b. We have done the required modifications to compute

the integrals of the form (5.2.2) and the details are also given in Chapter 4.

5.3 The linear form in hyperelliptic logarithms

Stroeker and Tzanakis [47] describe a method for finding all the integral points on an

elliptic curve by estimating a linear form in elliptic logarithms. They transformed the

information provided by the Mordell–Weil group of the elliptic curve into a linear form

and they gave estimates for it. What they did in the elliptic case, we want to do in the

hyperelliptic case. In this section we explain how we transform the information provided

by the Mordell–Weil group J(Q) into a linear form in hyperelliptic logarithms and how

we can give estimates for it.

We assume the existence of a rational point P0 ∈ C(Q). As mentioned in the

Introduction, if we do not know a rational point on the curve, it is possible that there are

no rational points at all, and that this can be proved using the techniques of Bruin and

Stoll [9, 10, 11].

We will make use of the Abel–Jacobi map

 : C → J(Q), (P ) = P − P0.

Then, for any P ∈ C(Q) there exist rational integers m1, . . . ,mr such that

(P ) =
∑

miDi + T, (5.3.1)

where {D1, . . . , Dr} is a set of generators of the free part of the Mordell–Weil group

J(Q) and T is a torsion element of the finite torsion subgroup J(Q)tors.
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Let P be an integral point in C(Q), and let M be the maximum of the mi from

Equation (5.3.1). We want to find a small upper bound for M so that we can compute

linear combinations of the generators of the Mordell–Weil group with small coefficients

and decide which of those come from integral points on the curve. With the tools de-

veloped in Chapter 3 we can find an upper bound for M as we explain in what follows

in this section, though in practice this bound will be very large. The next section will

explain how we can improve the bound.

We also want to use the information provided by Equation (5.3.1) numerically, in

a similar way as it is done in the elliptic case in [47]. As explained in the last section, we

can compute the images of points in C(R) under the isomorphism φ : Pic0(C)→ C2/Λ

with the tools from the previous section, as long as we are given a model over the reals

for our hyperelliptic curve defined by a degree 6 polynomial with 6 real roots. This is

possible in the degree 5 case if the polynomial f defining C has real roots only, as a

linear transformation in X of the form 1/(X + a) and the associated transformation in

Y will give a model of a curve defined by a degree 6 polynomial with real roots only

as long as a is not one of the roots of f . We will then assume that those conditions

are satisfied. We will transform the relation in Equation (5.3.1) into a linear form in

hyperelliptic logarithms.

The method for obtaining the linear forms and for bounding M depends on

whether the degree of f is 5 or 6.

5.3.1 The odd degree case

When the polynomial f has degree 5, then the point at infinity of C is defined over Q,

so it will be our choice for P0.

Let P be an integral point on C. Using Theorem 3.7.1 we can find an upper

bound B on the size of X(P ). We will transform that bound into a bound for M . We

first will transform the bound for the height of X(P ) into a bound for the height of (P ).

Recall that the height of (P ) is the height of the corresponding point in the Kummer
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surface. In order to explicitly compute that height, we need to transform our curve into a

curve defined by a degree 6 polynomial. We do it by means of the linear transformation

X ′ = 1/X and the associated transformation of Y , Y ′ = Y/X3, if the point (0, 0) does

not belong to C. Otherwise we need to choose X ′ = 1/(X + a), where a is not one of

the roots of f . Let f0, . . . , f5 ∈ Z be the coefficients of the polynomial f defining C. The

new curve is then given by

Y ′2 = f5X
′ + f4X

′2 + f3X
′3 + f2X

′4 + f1X
′5 + f0X

′6.

Then, the point P0 corresponds to X ′ = 0, Y ′ = 0. Assume that X(P ) 6= 0. Then

the divisor (P ) = P −∞ = P +∞− 2∞ corresponds to P ′ + (0, 0) −∞+ −∞−,

where P ′ = (X ′(P ), Y ′(P )). Then, (P ) is the following point in the Kummer surface,

according to the formulae given in Chapter 2:

(1, X ′(P ), 0, f5/X
′(P )) = (1, 1/X(P ), 0, f5X(P )) = (X(P ), 1, 0, f5X(P )2).

Then, if P is an integral point with X(P ) 6= 0, we have

h((P )) = log(|f5|X(P )2) = log|f5|+ 2 log|X(P )| = log(|f5|) + 2 h(X(P )). (5.3.2)

We will need the following lemma to bound the size of M in terms of B. The proof is

identical to the corresponding result in the elliptic case [47, Inequality 1].

Lemma 5.3.1. Denote byH the height pairing matrix for the Mordell–Weil basis {D1, . . . , Dr}

(see Section 2.3 for its definition) and let λ1, . . . , λr be its eigenvalues. Let µ3 =

mini{λi}. Let P ∈ C(Q) be expressed as in (5.3.1). Then

ĥ((P )) ≥ µ3 max
1≤i≤r

m2
i , (5.3.3)

Proof. We can write H = N tΛN , where N is orthogonal and Λ is the diagonal matrix

with diagonal entries λi. Write x = Nm. Then

ĥ((P )) = mtHm = xtΛx ≥ µ3‖x‖2 = µ3‖m‖2 ≥ µ3 max
1≤i≤r

m2
i .
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We will now find an upper bound for M . We require a lower bound for the height

difference as in (2.2.1).

Lemma 5.3.2. Let B be an upper bound for the height of the integral points on C. Let

P be an integral point on C. Express (P ) as in (5.3.1). Write M = maximi. Then

M ≤
√
µ−13 (log|f5|+ 2B − µ1),

where µ1 is a lower bound for the height difference h(Q)− ĥ(Q).

Proof. From Equation (5.3.2) we see that

h((P )) ≤ log|f5|+ 2B.

Now, using the lower bound for the height difference we have

ĥ((P )) ≤ log|f5|+ 2B − µ1.

Finally, form the previous Lemma we infer that

µ3M
2 ≤ log|f5|+ 2B − µ1,

which proves the Lemma.

In order to reduce the bound for M to manageable proportions, we will turn the

linear combination (5.3.1) into a linear form in the hyperelliptic logarithms of the Dis,

in a similar way as it is done in the elliptic case [47]. From now on, for a degree zero

divisorD we will write φ(D) for the hyperelliptic logarithm ofD, that is, we choose a rep-

resentative for φ(D) ∈ C2/Λ in the fundamental parallelogram generated by ω1, ω2, ω3

and ω4, where these vectors are defined as in the previous section. We note that, since

φ is an isomorphism, then

φ(nD) = nφ(D) (mod Λ).

Now, nφ(D) is in the parallelogram generated by the vectors nωi and then there exist

integers ni with |ni| ≤ |n| such that

φ(nD) = nφ(D) + n1ω1 + n2ω2 + n3ω3 + n4ω4. (5.3.4)
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Similarly, if D1, . . . , Dn are degree zero divisors, and m1, . . .mn are integers, then the

point
n∑
i=1

miφ(Di)

is inside the parallelogram generated by the vectors (|m1| + · · · + |mn|)ωi or one of

its translations which have the origin as one of its vertices. Then there are integers

n1, n2, n3, n4 such that

φ

(∑
i

Di

)
=
∑

miφ(Di) + n1ω1 + n2ω2 + n3ω3 + n4ω4, (5.3.5)

with |ni| ≤ |m1|+ · · ·+ |mn|.

We recall that if Q = (x, y) is a real point on C, then

φ(Q) =

(∫ a

x

dt√
f(t)

,

∫ a

x

t dt√
f(t)

)
+ ω,

where a is the smallest of the real roots of f that are ≥ x, or a = ∞ if x is greater or

equal than all the roots of f , and ω is a sum of half periods of C, as we noted in page

97. Then, if D = P1 + P2 − 2∞ and P1, P2 are real points on C, we have that φ(2D) is

in R2/Λ′, where Λ′ = R2 ∩ Λ. We also note that if P is an integral point and X(P ) is

larger than all the roots of f , then

φ(P ) =

(∫ ∞
X(P )

dt√
f(t)

,

∫ ∞
X(P )

t dt√
f(t)

)

is also in R2/Λ′. Over R, the curve C consists of two compact components and a non

compact component, which includes the point (α5, 0), where α5 is the largest of the

roots of f . We can compute easily integral points belonging to the compact components

of C(R) by a direct search. We will only consider then the problem of finding integral

points on the infinite component.

Example 5.3.3. This is a continuation of Example 4.3.1. Put f(X) = X5−5X3−X2+

3X+ 1. As noted in Example 4.3.1 f has real roots only. We computed in that example

the integrals we need in this section defining the periods ω1, ω2 and the values φ(D)
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for the divisors D1 = (−1, 1)−∞, D2 = (0, 1)−∞, and D3 = (9/4, 59/32)−∞. We

have

ω1 =

 2.691224828589365 . . .

−3.120649548992816 . . .

 ω2 =

0.773976644907828 . . .

3.624934315790554 . . .


φ(2D1)

2
=

 0.664758007760858 . . .

−0.537090883853333 . . .

 φ(2D2)

2
=

0.901055347145023 . . .

0.463274675967858 . . .


and

φ(D3) =

0.301381966139497 . . .

1.624203196148170 . . .

 .

Using MAGMA we see that the Mordell–Weil group J(Q) is free of rank 2 generated by

D1 and D2. The divisor D3 equals 2D1 − 2D2. According to what we have discussed

in the previous page, there should exist integers n1, n2 with |ni| ≤ 2 such that φ(D3) =

φ(2D1)−φ(2D2)+n1ω1+n2ω2. Note that we can check numerically the identity setting

n1 = 0 and n2 = 1.

Let t be the order of the torsion subgroup J(Q)tors and denote by t̃ the least

common multiple of t and 2. In view of Equation (5.3.1), for an integral point P ∈ C we

have that

t̃(P ) =
∑

mi
t̃

2
(2Di). (5.3.6)

We now apply the homomorphism φ to this equation and we obtain

t̃φ(P ) ≡ φ(t̃(P )) ≡
∑

mi
t̃

2
φ(2Di) (mod Λ).

If, as we have assumed, the divisors Di are supported by points with real coordinates,

and X(P ) is larger than all the roots of f , then all the φ values on the previous equation

are in R2 and the equivalence is up to an element in Λ′. Then there are integers n1, n2

such that

φ(P ) = n1
ω1

t̃
+ n2

ω2

t̃
+
∑

mi
φ(2Di)

2
,
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with |ni| ≤ t̃rM/2 + t̃ (recall (5.3.4) and (5.3.5)), where M = maximi. Now put

(L1(P ), L2(P )) = (L1(n1, n2,m1, . . . ,mr), L2(n1, n2,m1, . . . ,mr))

= n1
ω1

t̃
+ n2

ω2

t̃
+
∑

mi
φ(2Di)

2
.

The Lis are the linear forms in hyperelliptic logarithms we will estimate in order to

reduce our bound for M . Let f ∈ R[x] and define c16 as

c16(f) = max{1, 2 max
α∈C,f(α)=0

{|α|}}.

We will use the following Lemma.

Lemma 5.3.4. Let α1, . . . , α5 be the roots of f . For all x ≥ c16

max

{∫ ∞
x

dt√
f(t)

,

∫ ∞
x

t dt√
f(t)

}
≤ 27/2(f5x)−1/2.

Proof. Note that 0 < f(t) = f5
∏
|t − αi| for every t ≥ x. Because of our assumption

for x, we see that |t− αi| ≥ t− |αi| ≥ t/2. Then
√
f5√
f(t)

≤
(
t

2

)−5/2
and

t
√
f5√
f(t)

≤
(
t

2

)−3/2
.

We can see then that for large N

√
f5

∫ N

x

dt√
f(t)

≤
∫ N

x

(
t

2

)−5/2
dt =

27/2

3
(x−3/2 −N−3/2),

and √
f5

∫ N

x

tdt√
f(t)

≤
∫ N

x

(
t

2

)−3/2
dt = 27/2(x−1/2 −N−1/2).

Letting N tend to infinity completes the proof.

We can easily find all the integral points on C with X(P ) < c16 by a direct

search, as long as c16 is not too large (≤ exp(15)). For the remaining points we can

find an upper bound for the linear form in hyperelliptic logarithms.

Lemma 5.3.5. If P is an integral point on C and X(P ) ≥ c16, then

max{|L1(P )|, |L2(P )|} ≤ 27/2f
−1/4
5 e−µ1/4e−(µ3/4)M

2
.
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Proof. Since c16 > 0, then X(P ) is positive. Then either P or ı(P ) has positive Y -

coordinate, where ı denotes the hyperelliptic involution. In any case, we recall that

P + ı(P ) is linearly equivalent to 2∞, and then φ(P ) = −φ(ı(P )). Assume then that

P has positive Y -coordinate. Then the integrals defining φ(P ) = (L1(P ), L2(P )) are

both positive. The inequality from Lemma 5.3.4 implies

max{|L1(P )|, |L2(P )|} ≤ 27/2f
−1/2
5 X(P )−1/2.

Now,X(P )−1/2 = e−(logX(P ))/2, and sinceX(P ) is a positive integer we have h(X(P )) =

log(X(P )). Now, from (5.3.2) and the bounds for the height difference (2.2.1)

h(X(P )) = (h((P ))− log f5)/2 ≥ (µ1 + ĥ((P ))− log f5)/2,

which implies

max{|L1(P )|, |L2(P )|} ≤ 27/2f5
−1/4e−µ1/4 exp(−ĥ((P ))/4).

The result now follows from Lemma 5.3.1.

5.3.2 The even degree case

When the polynomial has degree 6 then the divisor ∞− +∞+ is defined over Q, but

the point∞+ is a rational point if and only if the leading coefficient f6 of f is a square.

If this is the case we choose P0 =∞+. If it is not, then we need to find a rational point

P0 on the affine model of C. We note that if f6 < 0, then the curve C(R) consists of

compact closed curves in R2 and then we can find all integral points on C by a direct

search, as long as the maximum of the absolute value of the roots of f is not very large

(≤ exp(15)). We will assume then that f6 > 0.

If the points at infinity are not rational points on C and P0 is a rational point on

C, we will further assume that X(P0) = 0. There is no loss of generality as we now

show. Write P0 = (m/n, y0) with y0 ∈ Q and m,n ∈ Z with n > 0 and (m,n) = 1.

We introduce the change of variables X ′ = nX −m, Y ′ = n3Y . Note that X ′, Y ′ are
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integers if X,Y ∈ Z. Then, the problem of finding the integral points on C : Y 2 = f(X)

is solved if we can find all the integral points on the curve

C′ : Y ′2 = f̃(X ′),

where f̃(X ′) = n6f((X ′ + m)/n). The point P0 on C corresponds to the point P ′0 =

(0, n3y0).

Let P be an integral point on C. We can find an upper bound B for the size

of X(P ) using the methods from Chapter 3. As in the odd degree case, we want to

transform this bound into a bound for M = maximi in (5.3.1). We need to relate first

the height of X(P ) to the height of (P ).

Lemma 5.3.6. There is an effectively computable constant k1 ∈ Z, with k1 > 0 such

that, for all integral points P in C we have

h((P )) ≤ log(k1X(P )3),

whenever X(P ) 6= 0.

Proof. Assume first that P0 = ∞+, in particular the integer f6 is a square. The divisor

(P ) = P −∞+ is equal to P +∞− − (∞+ +∞−). Then, according to the formulae

for the corresponding point on the Kummer surface given in page 10, the height of (P )

is

h((P )) = log max
{

1, |X(P )|,
∣∣∣f5X(P )2 + 2f6X(P )3 + 2y

√
f6

∣∣∣} .
Let c17 = maxi|fi|. Then, using the triangle inequality we have that y2 = f(x) ≤

7c17X(P )6, if X(P ) 6= 0, and then |y|≤
√

7c17|X(P )3|. The triangle inequality applied

to f5X(P )2 + 2f6X(P )3 + 2y
√
f6 implies that

h((P )) ≤ log(9c17|X(P )3|).

Putting k1 = 9c17 completes the proof in this case. Now, in the case that P0 is not one

of the points at infinity, P0 = (0, y0) with y0 ∈ Z. Let P be an integral point on C. We
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now want to estimate the height of the corresponding point on the Kummer surface to

(P ) = P −P0 which is linearly equivalent to P +(0,−y0)− (∞+ +∞−). The formulae

given in page 2.1 imply that

(P ) = (1, X(P ), 0, (2f0 + f1X(P ) + 2Y (P )y0)/X(P )2).

For integral P , we can then find a constant k1 in a similar way as we did before for the

case P0 =∞+. This completes the proof of the Lemma.

We now can describe explicitly an upper bound for M .

Lemma 5.3.7. Let B be an upper bound for the height of the integral points on C. Let

P be an integral point on C. Express (P ) as in (5.3.1). Write M = maximi. Then

M ≤
√
µ−13 (log k1 + 3B − µ1),

where µ1 is a lower bound for the height difference h(Q) − ĥ(Q) and k1 is as in

Lemma 5.3.6.

Proof. From Lemma 5.3.6 we have

h((P )) ≤ log k1 + 3 log(|X(P )|).

As X(P ) is an integer, log(|X(P )|) = h(X(P )). Now the result follows from the lower

bound for the height difference and Lemma 5.3.1, as in the proof of Lemma 5.3.2.

Now, let D be a degree 0 divisor of the form P1 + P2 −∞+ −∞−. We want to

compute numerically the hyperelliptic logarithm of D relative to the basis for the period

lattice ω1, ω2, ω3, ω4 defined in Section 5.2. We can do so if P1, P2 are real points on C.

As in the degree 5 case, we can see that if P1, P2 are real points, then the value φ(2D)

is in R2/Λ′, where Λ′ is the lattice generated by the real periods ω1 and ω2. We want to

use the linear combination given in (5.3.1) and the homomorphism φ to obtain a linear

form in logarithms that we can bound.

107



Let t be the order of the torsion subgroup J(Q)tors and let t̃ be the least common

multiple of 2 and t. As in the degree 5 case, we have that

t̃(P ) =
∑

mi
t̃

2
(2Di).

We now work over the Jacobian of the curve defined over C. We add to both sides of

the previous equation the degree zero divisor t̃(P0 −∞+) (note we are adding zero if

the base point for the Abel–Jacobi map is∞+). The equality becomes

t̃(P −∞+) = t̃(P0 −∞+) +
∑

mi
t̃

2
(2Di).

We now apply the isomorphism φ to the last equation and we get

t̃φ(P−∞+) ≡ φ(t̃(P−∞+)) ≡ t̃φ(P0−∞+)+
∑

mi
t̃

2
φ(2Di) (mod Λ). (5.3.7)

Note that if P is an integral point on C and |X(P )| is at least the maximum of the

absolute value of the roots of f , then φ(P ) is in R2/Λ′. The integral points with |X(P )|

less than the maximum of the absolute value of the roots of f can be found by a direct

search. Because of our assumptions for Di, all the φ values in Equation (5.3.7) have

representatives in R2 and then the equivalence is up to an element in Λ′. Then there

are integers n1, n2 such that

t̃φ(P −∞+) = t̃φ(P0 −∞+) + n1ω1 + n2ω2 +
∑

mi
t̃

2
φ(2Di),

with |ni| ≤ t̃rM/2 + 2t̃ (recall (5.3.4) and (5.3.5)), where M = maximi. Now put

(L1(P ), L2(P )) = (L1(n1, n2,m1, . . . ,mr), L2(n1, n2,m1, . . . ,mr))

=
φ(2P0 − 2∞+)

2
+ n1

ω1

t̃
+ n2

ω2

t̃
+
∑

mi
φ(2Di)

2
.

The Lis are the linear forms in hyperelliptic logarithms we were after in this degree 6

case. We will estimate the linear forms by means of the following Lemma.

Lemma 5.3.8. Let α1, . . . , α6 be the roots of f . For all x ≥ c16

max

{∫ ∞
x

dt√
f(t)

,

∫ ∞
x

t dt√
f(t)

}
≤ 8f

−1/2
6 x−1,

108



and for all x ≤ −c16

max

{∫ x

−∞

dt√
f(t)

,

∫ x

−∞

|t|dt√
f(t)

}
≤ 8f

−1/2
6 |x|−1.

Proof. The proof is very similar to that of Lemma 5.3.4. We have that 0 < f(t) =

f6
∏
|t− αi| for every t with |t| ≥ |x|. We also have |t− αi| ≥ |t| − |αi| ≥ |t|/2. Then,

√
f6 max

{
1√
f(t)

,
|t|√
f(t)

}
≤ 8

t2
.

Then, for large N and x ≥ c16,

√
f6

∫ N

x

dt√
f(t)

≤ 8

∫ N

x
t−2dt = 8(x−1 −N−1).

Similar relations hold for the other integrals. Letting N tend to infinity completes the

proof.

We can find all the integral points on C with |X(P )| < c16 by a direct search.

For the remaining points we can bound the linear form in hyperelliptic logarithms. We

will limit ourselves to find integral points with Y (P )/X(P )3 > 0. This roughly means

that they are closer to ∞+ than to ∞−. The remaining points are found by changing

the sign of Y .

Lemma 5.3.9. If P is an integral point on C, with Y (P )/X(P )3 > 0 and |X(P )| ≥ c16,

then

max{|L1(P )|, |L2(P )|} ≤ 8f
−1/2
6

3
√
k1e
−µ1/3e−(µ3/3)M

2
,

where k1 is the constant from Lemma 5.3.6 and µ1 is a lower bound for the height

difference.

Proof. Since |X(P )| ≥ c16 and the sign of Y (P ) is the same as the sign of X(P ), then

φ(P ) =


(∫∞

X(P )
dt√
f(t)

,
∫∞
X(P )

t dt√
f(t)

)
, X(P ) > 0,(∫ X(P )

−∞
dt√
f(t)

,
∫ X(P )
−∞

t dt√
f(t)

)
, X(P ) < 0.
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The inequality from Lemma 5.3.8 implies that

max{|L1(P )|, |L2(P )|} ≤ 8f
−1/2
6 |X(P )|−1.

SinceX(P ) is a nonzero integer, h(X(P )) = log(|X(P )|). Then |X(P )|−1 = exp(−h(X(P ))).

From Lemma 5.3.6 and the bound for the height difference we see that

h(X(P )) ≥ (h((P ))− log k1)/3 ≥ (µ1 + ĥ((P ))− log k1)/3,

which implies

max{|L1(P )|, |L2(P )|} ≤ 8f
−1/2
6

3
√
k1e
−µ1/3 exp(−ĥ((P ))/3).

The result now follows from Lemma 5.3.1.

5.4 Reduction of the upper bound, the LLL-algorithm

As noted in the previous section, the upper bounds we have so far for the size of the

coefficients mi in the equation

(P ) =
r∑
i=1

miDi + T

are huge. In this section we explain how to reduce the bound to manageable pro-

portions. The bounds given by Lemmas 5.3.2 and 5.3.5 in the degree 5 case, and

Lemmas 5.3.7 and 5.3.9 in the degree 6 case, can be rewritten as

|L1(P )|, |L2(P )| ≤ K1e
−K2M2

, M ≤ K3, (5.4.1)

where M = maxi=1,...,rmi. Let ω1, ω2 be the real periods of C generating Λ′. Write

ωi

t̃
= (ωi,1, ωi,2) ∈ R2, i = 1, 2,

and
φ(2P0 − 2∞+)

2
= (α1, α2) ∈ R2,
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and
φ(2Di)

2
= (di,1, di,2) ∈ R2, quadi = 1, . . . r.

For real r we denote by [r] the nearest integer value to r, with any fixed convention for

reals of the form (2n+ 1)/2, n ∈ Z. Let C be a ‘large’ positive integer and consider the

matrix

A =



1 0 · · · 0 0 0

0 1 · · · 0 0 0
...

...
. . .

...

0 0 · · · 1 0 0

[Cd1,1] [Cd2,1] · · · [Cdr,1] [Cω1,1] [Cω2,1]

[Cd1,2] [Cd2,2] · · · [Cdr,2] [Cω1,2] [Cω2,2]


.

The entries of the matrix A can be computed with the algorithms given in Chapter 4, as

explained in Section 5.2. Since the periods ω1 and ω2 are linearly independent over R,

the matrix A is non-singular. We will explain later what large C means. The columns of

the matrix A define then a full rank lattice in Rr+2.

Let y be the vector

y =



0
...

0

−[Cα1]

−[Cα2]


.

Let L be the lattice in Rr+2 generated by the columns of A. We define the quantity

`(L,y) as follows:

`(L,y) =


minx∈L‖x− y‖, y /∈ L,

minx∈L\0‖x‖, y ∈ L.

Remark. The vector y is nonzero only in the case when the polynomial f defining C

has degree 6 and the point∞+ is not a rational point on C.
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Let m1, . . . ,mr, n1, n2 ∈ Z. Put x = Az, where z = (m1, . . . ,mr, n1, n2). The

last two entries of the vector x−y are an approximation of the linear forms in logarithms

given above multiplied by the constant C. The length of x−y is then bounded by above

by a constant depending on C, K1, K2 and M . We can combine this information with

the quantity `(L,y). This will result on an improvement on the bound for M . Unless

we are very unlucky, see below, the following lemma will give an improvement on the

bound for M (cf. [42, Lemma VI.1]).

Lemma 5.4.1. Set T to be the constant T = (rK3(t̃+1)+3t̃+1)/2. Let c18 be a lower

bound for `(L,y). If c218 > 2T 2 + rK2
3 then,

M ≤

√
1

K2

(
log(CK1)− log

(√
(c218 − rK2

3 )/2− T
))

.

Proof. We follow the proof on [42]. Put

Φi := [Cαi] + n1[Cω1,i] + n2[Cω2,i] +

r∑
j=1

mj [Cdj,i], i = 1, 2.

Notice that

|Φi − C(αi + n1ω1,i + n2ω2,i +
r∑
j=1

mjdj,i)| ≤ (rK3 + (rK3 + 3)t̃+ 1)/2 = T,

(recall n1, n2 ≤ (rK3 + 3)t̃/2) which implies

|Φi| ≤ T + CK1e
−K2M2

.

Now consider the lattice point x = Az, where z = (m1, . . . ,mr, n1, n2), so

x− y = (m1, . . . ,mr,Φ1,Φ2).

Then either x = y or

c218 ≤ `(L,y) ≤ rK2
3 + Φ2

1 + Φ2
2 ≤ rK2

3 + 2(T + CK1e
−K2M2

)2.

By assumption, c218 − rK2
3 ≥ 0, so

e−K2M2 ≥ 1

CK1

(√
(c218 − rK2

3 )/2− T
)
.
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Again, by our assumption, the right hand side is positive, and then we can take loga-

rithms of both sides. The result follows.

A lower bound for `(L,y) can be computed from an LLL-reduced basis for the

lattice generated by the column vectors of the matrix A. The following Lemmas ([42,

Theorems V.9 and V.10]) give those bounds explicitly.

Lemma 5.4.2. Let {b1, . . . ,br+2} be an LLL-reduced basis for the lattice L. Let

{b1
∗, . . .br+2

∗} be the Gram–Schmidt basis associated to the bis. A lower bound

for the minimum of L is given by

c = min{‖bi
∗‖ : i = 1, . . . , r + 2}.

Lemma 5.4.3. Let B be the basis matrix of an LLL-reduced basis for the lattice L. Let

y′ = B−1y and denote by i0 the largest index such that y′ 6= 0. A lower bound for

`(L,y) is given by

c = {y′i0}
−1/2 min{‖bi

∗‖ : i = 1, . . . , r + 2},

where {r} denotes the distance from r ∈ R to the nearest integer.

In practice, the constant min{‖bi
∗‖ : i = 1, . . . , r + 2} has norm close to the

norm of the first vector of an LLL-reduced basis. It can be argued that the norm of

such vector is about of the order of C2/(r+2), since A has discriminant of the order of

C2. Then, if we choose C to be larger than
(
K3t̃
√
r2 + r

)r+2
we should expect that

the lower bound for `(L,y) satisfies the required inequality in the statements of the

previous two lemmas. If it does not, then we choose a larger C, so that we can apply

the corresponding Lemma.

The ideas involved in the strategy to reduce the bound M are not new. But they

had not been implemented in the past because there was not a published algorithm

to compute the hyperelliptic logarithms to high precision. There lies the importance of

Chapter 4.
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In the example we give at the end of the section, the upper bound forM is about

10239, and r = 2. We choose C to be 101000, so we need to compute the periods and

the values φ(2Di) to more than 1000 digits of precision. With the algorithms given in

Chapter 4 we can make the computation to high precision in a short time.

Example 5.4.4. Let C be the curve defined by Y 2 = f(X) = X5−5X3−X2 +3X+1.

Note that f(X) is irreducible over Q and then an upper bound for the size of the integral

points on C can be computed using the techniques from Chapter 3. We obtain that if P

is an integral point on C, then

h(X(P )) ≤ 7.02× 10477.

An upper bound for M is then given by 1.2 × 10239 from Lemma 5.3.2. We search for

some integral points on C and we find

(X,Y ) = (−1,−1), (−1, 1), (0,−1), (0, 1). (5.4.2)

We proceed then to the reduction process. Using MAGMA [5] we see that J(Q) is free of

rank 2 generated by

D1 = (−1, 1)−∞, and D2 = (0, 1)−∞.

We choose our large constant C to be 101000, which is larger than (2M + 1)2. We

compute the hyperelliptic logarithms of 2D1 and 2D2, and the real periods of C to more

than 1000 digits of precision with the algorithms in Chapter 4 (this was done in Exam-

ple 4.3.1). We then apply MAGMA’s implementation of the LLL-algorithm with the matrix

A given in Lemma 5.4.1 and we get the desired inequality for c18. The new bound for

M is now 63. We repeat the process with this new bound and we now get that an upper

bound for M is 6. Searching for integral points using that bound is not difficult and we

do not find any more points. We only need to look for integral points with X(P ) ≤ 5,

but that region had already been covered by our previous search of points. Therefore,

the only integral points on C are those given in (5.4.2).
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The reader can find the MAGMA programs for verifying the above computations

at:

http://www.warwick.ac.uk/staff/H.R.Gallegos-Ruiz/programs/hyperlogs/
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