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CHAPTER 0

Prologue

1. What’s This?

These are my lecture notes for MA3H1 Topics in Number The-
ory, with the usual Siksek trademarks. Thanks go to Jenny Cooley,
Samantha Pilgram and Vandita (Ditz) Patel for corrections. Please
send comments, misprints and corrections to samir.siksek@gmail.com.

2. The Queen of Mathematics

Gauss wrote that “mathematics is the queen of sciences and number
theory is the queen of mathematics”. In this module we hope to cover
some fascinating but fairly elementary aspects of the subject, to ensure
maximal enjoyment with minimal prerequisites. Topics covered
should include:

(1) A review of the number theory you met in the first year Foun-
dations module (primes, unique factorisation, greatest com-
mon divisors, modular arithmetic, Chinese Remainder Theo-
rem).

(2) Structure of Z/mZ and U,,.

(3) p-adic numbers.

(4) Geometry of Numbers.

(5) Diophantine equations.

(6) The Hasse Principle for ternary quadratic forms.

(7) Counterexamples to the Hasse Principle.

(8) Irrationality and transcendence.






CHAPTER 1

Review

You've spent the last two or three years thinking about rings, topo-
logical spaces, manifolds, and so on. This chapter reminds you of the
heros of your mathematical childhood: the integers. We review some
of their properties which you have seen before, but perhaps not for a
long time.

1. Divisibility
Definition. Let a, b be integers. We say that a divides b and write
a | b if there exists an integer ¢ such that b = ac.

The following lemma gives easy properties of divisibility; all have
one-line proofs from the definition.

Lemma 1.1. (Easy Properties of Divisibility ) For all integers a,
b, c and k:
(1) a0,
2) ifa | b then a | kb;
3) ifa|banda|c thenal (b+c)
4) ifa |b and b | c then a | ¢;
5) ifa|b and b |a then a = £b.
6) ifa|b and b # 0 then |a| < |b|;
7) (£1) | a for all integers a;
(8) ifa| (£1) then a = £1.

Example 1.1. Show that 42 | (7" — 7) for all positive integers n.
Answer. This is easy to do using congruences (have a go). But let us
try to do it from the definition of divisibility using induction on n. It is
obvious for n = 1. Suppose it is true for n = k. That is, suppose that
42| (7% — 7). In other words, 7* — 7 = 42¢ for some integer c. Then

TR 72 = 7 x 42¢

P e

SO
TRTY 7 =7 x 42¢ + 42 = 42(Tc + 1).
As c is an integer, 7c + 1 is an integer, so 42 | (7" — 7).

9
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Theorem 1.2. (Division with remainder) Let a, b be integers with b
positive. Then there are unique integers q, r satisfying a = qgb+r and
0<r<b-1.

Here ¢ is called the quotient and r the remainder on dividing a by
b. The uniqueness is certainly needed to say ‘the quotient” and ‘the
remainder’.

PROOF. Let us prove uniqueness first. Suppose that
a=qb+r, a=qb+r

where ¢, ¢/, r, v’ are integers and 0 < r, ' < b — 1. Without loss of
generality, we can suppose that r < r’. Subtracting we see that

(g—¢)b+r—1"=0
SO
(g—q)b=1"—r.

Hence 0 < 7' —r < b —1 and ' — r is a multiple of b. Therefore
r"—r=20,s0r =7r"and ¢ = ¢. This proves uniqueness.

Let us now prove the existence of ¢ and r. Suppose first that a > 0.
In Foundations you have done this case using the well-ordering princi-
ple. Keep b fixed and let a be the least non-negative counterexample
to the statement of the theorem. If 0 < a < b — 1 then we can take
g=0andr =a. Soa >b. Nowlet a; =a—0b. Then 0 < a; < a.
Hence a; = ¢1b + r, where ¢; and r; are integers and 0 < r; < b — 1.
Now just let ¢ =¢q; +1 and r =y, and so a = gb+ r.

The proof is complete for a > 0. What about for a < 0?7 0

2. Ideals
Definition. An ideal in 7Z is a subset [ satisfying the following three
properties:
(i) 0 € 1,
(ii) ifa, b€ [ thena+b € I,
(ili) if @ € [ and r € Z then ra € I.

The principal ideal of Z generated by a is the subset
(a) =aZ ={ka | keZ}.
In other words, (a) is the set of multiples of a.
It is very easy to check that every principal ideal is an ideal ®.

1f you have done Algebra IT then you will know that the converse is not true
in every ring, but is true for Z.
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Proposition 1.3. Let I be an ideal in Z. Then I is principal. More-
over, there is a unique non-negative integer a such that I = (a).

PROOF. Let I be an ideal of Z; we want to show that [ is principal.
If I = {0} then I = (0) and we’re finished, so suppose I # {0}. Then I
must contain a non-zero element. From (iii) in the definition, we know
that if @ € I then —a € I. Thus I must have a positive element. Let a
be the least positive element of I. Again by (iii) we have that (a) C I.
We want to show that I = (a). Suppose otherwise. Then there is some
b € I\(a). By Theorem 1.2 we can write b = ga+r where 0 < r < a. If
r =0 then b € (a) giving a contradiction. Hence 0 < r < a. Moreover
r =b—qa € I using (iii) and (ii). This contradicts the fact that a is
the smallest positive element of I. Hence I = (a).

Finally we want to show that a is the unique non-negative element
satisfying I = (a). Suppose I = (b) with b non-negative. Then a | b
and b | a so a = +b, and so a = b. O

3. Greatest Common Divisors

Theorem 1.4. Let ay,...,a, be a finite set of elements of Z.

1. There exists a unique integer d satisfying
(i) d divides a; fori=1,...,n;
(i) if ¢ dwvides a; fori=1,...,n then ¢ divides d;

(iii) d > 0.
2. The integer d can be expressed in the form d = uja; + usas +
-+ upa, where uy,...,u, € 7.
Definition. Foraq,...,a, € Z we define their greatest common divisor

(or GCD) to be the integer d satisfying properties (i-iii) of Theorem 1.4.
Some books and lecturers call this the highest common factor. We shall
denote the GCD of ay,...,a, by ged(ay,...,a,). Again some books
and lecturers used the notation (ay,...,a,).

PROOF OF THEOREM 1.4. Let

]:{inai : xl,...,ITLEZ}.
i=1

In other words I is the set of all linear combinations of the a; with
integer coefficients. It is very easy to see that [ is an ideal (use the
definition of ideal). By Proposition 1.3 we know that I = (d) for some
unique non-negative integer d; in other words, every element of [ is a
multiple of d and d is non-negative. We will prove that d satisfies the
statement of Theorem 1.4. It certainly satisfies (iii) and moreover since
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it is an element of I and [ is the set of integral linear combinations of
the a;, it satisfies 2.

Clearly ay,...,a, € I so the a; are multiples of d. This proves
(i). Let us prove (ii). Suppose ¢ divides all the a;. Thus a; = k;c for
integers k; for : = 1,...,n. Moreover as d € I,

d=wuia1 + - + Upan,

with u; € Z. So
d = (urky + -+ + upky)c.

Hence ¢ | d. This proves (ii) and completes the proof of Theorem 1.4.
U

4. Euler’s Lemma

The fact that the ged can expressed as a linear combination is used
again and again. For example, in the proof of the following crucial
lemma.

Lemma 1.5. (Euler’s Lemma) If u | vw and ged(u,v) = 1 then u | w.

PROOF. Since ged(u,v) = 1 we can, using Theorem 1.4, write 1 =
au + bv for some a, b € Z. Multiply by w to obtain w = auw + bvw.
Now since u | vw we can write vw = cu for some ¢ € Z, hence w =
auw + bvw = (aw + be)u, so u | w as required. O

5. The Euclidean Algorithm
Lemma 1.6. If a = qb+ r then ged(a, b) = ged(b, 7).

PrROOF. Note that for any integer ¢

claand c|b < c|band c]|r.

Hence ged(a, b) | ged(b, r) and ged(b, r) | ged(a, b), and so ged(a,b) =
+ ged(b, 7). As both are non-negative, they must be equal. O

Lemma 1.6 is the basis for the Euclidean Algorithm for computing
the GCD, which you did in Foundations. Here is an example.
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Example 5.1. To find the greatest common divisor of 1890 and 909
using the Euclidean Algorithm you would write

1890 = 2 x 909 + 72,
909 = 12 x 72 + 45,
72 =1 x 45 + 27,
45 =1 x 27 + 18,
27 =1x 18409,
18=2x9+0,

therefore

ged(1890,909) = ged(909, 72) = ged(72,45) = ged (45, 27)
= ged(27,18) = ged(18,9) = ged(9,0) = 9.
You also know, or should know, how to use the above to express the
GCD, in this case 9, as a linear combination of 1890 and 909:
9=27-18
=27— (45 —27) = —45+2 x 27
=—45+2(72—-45)=2xT72—-3x45
=2x72—-3(909 — 12 x 72) = —3 x 909 + 38 x 72
= —3 x 909 4 38(1890 — 2 x 909) = 38 x 1890 — 79 x 909.

6. Primes and Irreducibles

Definition. An integer p > 1 is a prime if it satisfies the property: for
all integers a, b, if p | ab then p | a or p | b.
An integer p > 1 is wrreducible if its only factors are +1 and +p.

Of course, you will immediately say that primes and irreducibles
are the same thing, which is true but we have to prove it. If you think
the proof should be trivial, put these notes down and try it yourself.

Theorem 1.7. (irreducibles and primes are the same) p > 1 is irre-
ducible if and only if it is prime.

PrROOF. Let p > 1 be a prime. We want to show that p is irre-
ducible; i.e. that the only factors of p are +1 and +p. Suppose a € Z
is a factor of p. Then we can write p = ab where b € Z. Then p | ab.
Since p is a prime, by definition, we have p | a or p | b. Let’s look at
these possibilities separately:

(a) Suppose first that p | a. Then a | p and p | a so a = £p.
(b) Suppose that p | b. Then b = pc for some ¢ € Z. Hence
p =ab=apc, so ac =1 and so a = +1.
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In other words, the only factors of p are £1 and +p, so p is irreducible.

Now we have to do the converse direction. Let p > 1 be irreducible.
We want to show that p is prime. So suppose that p | ab and we want
to show that p | @ or p | b. Let d = ged(a,p). Then d | p. As p is
irreducible, d = £1 or d = £p, but GCDs are non-negative, so d = 1
ord=p. lf d=pthenp|a (asd=pisthe GCD of a and p). Suppose
d = 1; i.e. ged(a,p) = 1. Using p | ab and Euler’s Lemma (Lemma 1.5)
we obtain that p | b. Hence either p | a or p | b, and so p must be
prime. U

From now on we will not mention the word irreducible again, as
irreducibles are the same as primes. But what is vital is to know that
the two definitions are equivalent. A positive integer m > 1 which is
not a prime is called a composite. Note that m > 1 is a composite iff
we can write m = ab with 1 < a,b < m.

You’ll have no trouble seeing why the following lemma is true.

Lemma 1.8. Ifp | a;...a, where p is a prime then p | a; for some
1=1,...,n.

Theorem 1.9. (The Fundamental Theorem of Arithmetic) Every pos-
itive integer n can be written as a product of prime numbers, this fac-
torisation into primes is unique up to the order of the factors.

PROOF. Let us prove the existence of factorisation into primes first
and then the uniquenss. The proof is by induction. Note that n =1 is
regarded as the ‘empty’ product of primes. If n is a prime then there
is nothing to prove. Suppose that n > 1 is composite. Then we can
write n = ab with 1 < a,b < n. By the inductive hypothesis, a, b can
be written as products of primes and so n = ab is a product of primes.
This proves the existence.

Now let us prove the uniqueness. Again we do this by induction.
This is clear for n = 1. Suppose n > 1 and uniquness is established for
m < n. Suppose

n=prcPr =G gs
where the p; and the ¢; are primes. We want to show that r = s and
the p; and ¢; are the same up to ordering. Now p, | ¢ ---¢s and so
pr | ¢; for some j. By reordering the ¢s we may assume that p, | ¢s and
so p, = ¢s. Cancelling we obtain

PrePr—1=Gq1"" " (gs—1-

By the inductive hypothesis, r — 1 = s — 1 and ¢, -+ ,qs_1 are a
rearrangement of py,--- ,p._y. Hence r = s and ¢, -+ ,qs is a re-
arrangement of py,--- , p,. O
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You should have no trouble remembering the following theorem or
its proof from Foundations.

Theorem 1.10. (Euclid) There are infinitely many primes.

PROOF. Suppose that there are finitely many and let them be
Pis---yPn. Let N = pipy---p, + 1. Then N > 2 and so by the
Fundamental Theorem of Arithmetic must have a prime divisor. This
must be one of py,...,p,; say it’s p;. Then p; | N and p; | pip1- - - pn-
Hence p; divides N — pyp; - - - p, = 1 giving a contradiction. U

This proof is a model for many other proofs. For example, we’ll
show later that there are infinitely many primes p =1 (mod 4), p = 3
(mod 4), p=1 (mod 3) etc.

7. Coprimality

Definition. We say that integers mq, ms, ..., m, are coprime if
ged(my, mag,...,m,) = 1.
We say that integers my, ..., m, are pairwise coprime if gcd(m;, m;) =

1 whenever ¢ # j.

Lemma 1.11. Let mq,...,m, be pairwise coprime integers and sup-
pose my; | x for all i. Then M | x where M = []m,.

PROOF. Let us prove it for n = 2. The general case then follows
by induction. So m; |  and ms |  where ged(my, ms) = 1. We can
write z = km; for some integer k. So my | kmy and by Euler’s Lemma
(Lemma 1.5) we have that ms | k. So k = cmy for some integer c.
Hence x = kmy = emymy = ¢M, which gives the desired M | x.

O

8. ord,

Let p be a prime, and let n be a non-zero integer. We define ord,(n)
by the property

e = ord,(n) if and only if p© | n and p“™* { n.

In a sense, ord,(n) measures how divisible n is by powers of p. We
define ord,(0) = oo.

Example 8.1. If n = 2% x 3% x 7, then ordy(n) = 3, ords(n) = 2,
ordz(n) =1 and ord,(n) = 0 for all primes p # 2, 3, 7.
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We extend ord, to a function Q — Z U {oo} by defining

a

ord, (5) = ord,(a) — ord,(b)

for any non-zero integers a, b.

Exercise 8.2. Check that ord, is well-defined on Q*. In other words,
if a, b, ¢, d are integers and a/b = ¢/d then ord,(a/b) = ord,(c/d).

Theorem 1.12. (Another formulation of the Fundamental Theorem of
Arithmetic) Every non-zero rational number o can be expressed uniquely
in the form

o — + Hpordp(a)

peP

where P is the set of all primes.

Note the following obvious corollary.

Corollary 1.13. Let «, 8 be non-zero rationals.
(i) @ = %8 if and only if ord, (o) = ord,(B) for all primes p.
(ii) a = %1 if and only if ord, () = 0 for all primes p.
(iii) « is a square of some other rational if and only if ord,(c) is
even for all primes p.
The following is the fundamental theorem about ord,.

Theorem 1.14. (Properties of ord,) Let p be a prime, and o, B ra-
tional numbers. Then,

(1) ord,(af) = ord,(a) + ord,(5).
(2) orjpgg)—kﬁ) > min{ord,(a), ord,(3)} with equality if ord, (o) #

Before proving Theorem 1.14 we need the following observation
whose proof is an easy exercise.

Lemma 1.15. Any non-zero rational o can be written as

_ ordp(e)

a=p

SalS

where a, b are integers and pt a, b.

PROOF OF THEOREM 1.14. Part (1) is obvious from Lemma 1.15.
Let’s prove part (2). Write

a
a=p 57 5:pvg
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where p does not divide a, b, ¢, d. Here u = ord,(a) and v = ord,(f).
Without loss of generality, we suppose that © < v. Then

wl(®  u L, ad 4+ p’""be
R ) R e

Note that p t bd. However, we don’t know if the integer ad + p*~“bc is
divisible by p, so let’s write ad + p"~“bc = p“e, where p{ e and w > 0,
and write f = bd. Hence

C

€
a+B=pts

and so
ordy(a + ) = v+ w > u = min(u, v) = min(ord,(«), ord,(5)).

To complete the proof, suppose that ord,(a) # ord,(8), or in other
words, u # v. Since we are assuming u < v we have u < v and so
v—u > 0. Now if p | (ad 4+ p*~"bc) then p | ad which contradicts p 1 a,
d. Hence p 1 (ad 4+ p*~“bc) which says that w = 0. We obtain the
desired equality

ord,(a + 8) = u+ w = u = min(u, v) = min(ord,(a), ord,(53)).
U

9. Congruences

We are still revising the material you have met in the first year
Foundations module.

Definition. Let a, b and m be integers with m positive. We say a
is congruent to b modulo m and write @ = b (mod m) if and only if
m | (a —b).
Lemma 1.16. Congruence modulo a fixed positive integer m is an
equivalence relation:

e Reflexive: a = a (mod m) for all integers a;

e Symmetric: if a =b (mod m) then b = a (mod m);

e Transitive: ifa =b (mod m) and b = ¢ (mod m) thena =c

(mod m).
The equivalence classes are represented by 0,1,....m — 1. In other
words, every integer is congruent to precisely one of 0,1,....,m — 1
modulo m.
Lemma 1.17. (a) If a = b (mod m) and ¢ = d (mod m) then

a+c=b+d (mod m) and ac = bd (mod m).
(b) Ifa=b (mod m) and d | m then a =b (mod d).
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(¢) If a=0b (mod m) then na = nb (mod nm).

(d) If ac = be (mod m) then a = b (mod m') where m' = wedlen-
In particular, if ged(c,m) = 1 and ac = be (mod m) then

a=b (mod m).

PRrOOF. Parts (a), (b), (c) are easy consequences of the definition
and the properties of divisibility. Let us prove (d), so suppose ac = be
(mod m). Suppose first that ged(c,m) = 1 which is easier. Then
m | ¢(a —b) and so by Euler’s Lemma (Lemma 1.5), m | (¢ — b) which
gives a = b (mod m).

Now let’s do the general case. Let d = ged(c,m) and let ¢ = ¢/d
and m’ = m/d. Observe that ged(c/,m’) = 1. From ac = bc (mod m),
we know that m | (ac — bec) which means

(a —b)c =km
for some integer k. Dividing both sides by d we obtain
(a —b)d = km'

and so m’' | (a — b)d. As ged(d/,m’) = 1, Euler’s Lemma tells us that
m’ | (a —b). Hence a = b (mod m') as required. O

Example 9.1. You should be very careful with cancellation where
congruences are involved. For example, 100 = 60 (mod 8), but 10 # 6
(mod 8). However, using part (d) of the above lemma to cancel the
factor of 10, we get 10 = 6 (mod 8/ gcd(8,10)) which means 10 = 6
(mod 4) and this is true.

9.1. Inverses modulo m.

Lemma 1.18. Suppose that a, m are integers with m > 1. Then there
exists an integer b such that ab =1 (mod m) if and only if ged(a,m) =
1.

PROOF. Suppose ged(a, m) = 1. We know from Euclid’s algorithm
that there are integers b, ¢ such that ab + cm = 1. Reducing modulo
m we obtain ab =1 (mod m) as required.

To prove the converse, suppose ab =1 (mod m). Thus ab—1 = km
for some integer k. Write g = ged(a,m). Now g | a and g | m, so g | ab
and g | km. Hence g | (ab — km) = 1. Thus ged(a,m) = g = 1
completing the proof. O

You should pay special attention to the above proof as it gives
us a practical way of inverting elements modulo m; see the following
example.
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Example 9.2. Let us find the inverse of 502 modulo 2001. One way
of doing this is to try all the numbers b = 0,1, --- ;2000 and see which
one satisfies 502b = 1 (mod 2001). Using Euclid’s algorithm is much
faster!

2001 = 3 x 502 + 495,
502 = 1 x 495 + 7,
495 =70 x 7+ 5,

T=1x5+2,
5=2x2+1.
Therefore ged(502,2001) = 1. Moreover,

1=5-2x2
=5—-2(7T—5)=—-2xT7+3x5
= —2x7+3(495—70 x 7) = 3 x 495 — 212 x 7
=3 x 495 — 212(502 — 495) = —212 x 502 + 215 x 495
= —212 x 502 4+ 215(2001 — 3 x 502) = 215 x 2001 — 857 x 502.

Reducing 215 x 2001 — 857 x 502 = 1 modulo 2001 we obtain —857 x
502 =1 (mod 2001), so the inverse of 502 is —857 = 2001 —857 = 1144
(mod 2001).

9.2. Complete Residue Systems. A complete residue system
modulo m is a set of m integers {ai,as,...,a,} such that a; # q;
(mod m) whenever i # j.

Example 9.3. Theset {0, 1,2,4} isn’t a complete residue system mod-
ulo 5, since it has too few elements. The set {0,1,2,3,6} also isn’t a
complete residue system since 6 = 1 (mod 5). However, {0,1,2,3,4}
is a complete residue system modulo 5 and so is {2, 3,4, 5,6} and so is
(0,6, —3,13,24}.

Lemma 1.19. (a) Let {ai,...,an} be a complete residue system
modulo m, then every integer is congruent to precisely one a;
modulo m.

(b) Let {ay,...,am} and {by,..., by} be complete residue systems
modulo m. Then, after reordering the b; if necessary, a; = b;
(mod m) for alli.

PROOF. Let ¢; be the unique integer in {0, 1,...,m — 1} satisfying
¢; = a; (mod m). Since a; # a; (mod m) whenever i # j, we have
¢; # ¢; (mod m) and so ¢; # ¢;. Hence ¢y, ¢o,..., ¢, are m distinct

elements of the set {0, 1, ..., m—1}, which itself has precisely m distinct
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elements. Hence ¢y, co,..., ¢y is a rearrangment of {0,1,...,m — 1}.
This quickly proves parts (a) and (b). O

9.3. Reduced Residue Systems.

Definition. We define Fuler’s @-function as follows. Let m > 1. Let
©(m) be the number of integers a in the set {0, 1,..., m — 1} satisfying
ged(a,m) = 1. If you like symbols,

o(m)=#{a|0<a<m-—1and ged(a,m) =1}.

Example 9.4. You’ll have no trouble seeing, for example, that ¢(5) =
4 and ¢(24) = 8.

Definition. A reduced residue system modulo m is a set {a1, az, . .., Gp(m)}
of ¢(m) elements such that ged(a;,m) = 1 for all ¢ and a; # a;
(mod m) whenever i # j.

Example 9.5. {1,3,5,7} is a reduced residue system modulo 8, and
so is {7,5,9,—5}. However {2,3,5,7} isn’t, nor is {1,3,5} nor is
(1,3,5,13).

There are no prizes for guessing what comes next.

Lemma 1.20. (a) Let{a1,...,apm)} be areduced residue system
modulo m, then every integer a satisfying ged(a,m) = 1 is
congruent to precisely one a; modulo m.

(b) Let {ay,...,apm)} and {bi,... bym)} be reduced residue sys-
tems modulo m. Then, after reordering the b; if necessary,
a; = b; (mod m) for all i.
The proof is left as an exercise. You have to follow the same steps
as in the proof of Lemma 1.19, but you’ll need the following lemma,
whose proof is also an exercise.

Lemma 1.21. Ifa =b (mod m) then ged(a,m) = ged(b,m).

Lemma 1.22. If{ai,...,aym)} is a reduced residue system modulo m,
and ged(c,m) = 1 then {cai,cas, ..., cayum} is also a reduced residue
system modulo m.

PRrROOF. Note that the set {cay, cas, ..., caym)} has precisely ¢(m)
elements and that all are coprime to m. Suppose 7 # j. We want to
show that ca; # ca; (mod m), so suppose that ca; = ca; (mod m).
Since ged(c,m) = 1 we obtain that a; = a; (mod m) by part (d) of
Lemma 1.17; this contradicts the fact that {ai, ..., aymm} is a reduced
residue system modulo m. 0

9.4. The Theorems of Fermat and Euler.
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Theorem 1.23. (Euler’s Theorem) If ged(c,m) = 1 then c¢#™ = 1
(mod m).

PROOF. Suppose first that {ai,...,au,mm)} and {b1,..., by} are
reduced residue systems modulo m. By part (b) of Lemma 1.20 we
have

©(m)
H a; = H b; (mod m)
i=1

Now let {ay, ..., ayum)} be any reduced residue system and observe that
{cai,cas, ... cayum} is also a reduced residue system by Lemma 1.22.
Hence

©(m) w(m)

We may rewrite this as A = ¢#(™ A (mod m) where A =[] a;. Clearly
ged(A,m) = 1, and by part (d) of Lemma 1.17 we obtain ¢#™ = 1
(mod m). N

Corollary 1.24. (Fermat’s Little Theorem)
(i) If p is a prime and p 1 a then

a?'=1 (mod p).
(i) If p is a prime and a is any integer then
a’? =a (mod p).

PROOF. Let p be a prime. Note that the only integer in the set
{0,1,...,p — 1} that is not coprime with p is 0. Hence, by definition
of ¢, we have p(p) = p — 1. Now (i) follows from Euler’s Theorem.
Let us prove (ii). If p{ a then (ii) follows from (i) on multiplying both
sides by a. If p | a then (ii) is obvious since both sides are congruent
to 0 modulo p. O

10. The Chinese Remainder Theorem

Theorem 1.25. (The Chinese Remainder Theorem) Letay, ..., a,
and my, ..., m, be integers with m; positive and ged(m;, m;) = 1 when-
ever i # j. Write M = [[m;. Then there ezists a unique integer
such that © = a; (mod m;) fori =1,2,....,n and 0 <z < M — 1.
Moreover, if ' also satisfies ' = a; (mod m;) then 2’ = x (mod M).

For the proof we need a the following lemma.
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Lemma 1.26. With notation as in the Chinese Remainder Theorem,
there exists integers uy, Us, . .., u, such that

) " = {1 (mod m;)

0 (mod m;) whenever j # i.

PROOF. Let us prove this for u;. Put M; = H#l m;. Then
ged(my, My) = 1 and by Euclid’s Algorithm there are integers r; and
sy such that rym; + 1My = 1. Let u; = sy M;. Clearly u; satisfies
(1). O

Now the proof of the Chinese Remainder Theorem is easy.

PRrROOF OF THE CHINESE REMAINDER THEOREM. Let the wu; be
as in Lemma 1.26. Write

Y = AUy + QoUg + -+ * + Aply,.
From (1) we see that y = a; (mod m;). Now let x satisfy 0 <z < M —1
and x =y (mod M). Clearly x = y (mod m;) for all i and so z = ¢;
(mod m;) for all i. The uniqueness of x follows from the second part
of the Chinese Remainder Theorem that we’re about to prove.
Suppose also that 2’ = a; (mod m;) for all i. Then m; | (2’ — z)

for all 7. By Lemma 1.11, as the m; are coprime, M | (¢’ — x) where

You should pay particular attention to the proof of the Chinese
Remainder Theorem. It’s constructive; this means that it gives us
a practical method of solving a system of simultaneous congruences.
Once again it is the Euclidean Algorithm that does the work, and so
you must make sure that you know how to use it to express the ged as
a linear combination. See the following example.

Example 10.1. Solve the simultaneous congruences
r=3 (mod 4), x=5 (modT7).
Answer: Using Euclid’s Algorithm you will see that
2x4—-1xT7=1.
Let uy = -1 x7=—7and uy =2 x 4 = 8. Note that
1 (mod 4), 0 (mod 4),
Uy = Ug =
0 (mod 7), 1 (mod 7).

Now let y =3 X u; + 5 X ug = —21 4+ 40 = 19. Then the solutions to
the simultaneous congruences are precisely those values of x such that
r =19 (mod 28).



CHAPTER 2

Multiplicative Structure Modulo m

1. Euler’s ¢ Revisited

With the help of the Chinese Remainder Theorem we will derive a
convenient formula for . For this we have to revisit reduced residue
systems.

Lemma 2.1. If ged(my,mg) = 1 then @(mims) = @(mq)p(ms).
PRrROOF. For a positive integer m define
Um)={a|0<a<m-—1and ged(a,m)=1}.

Note that ¢(m) = #U(m). Now let my, my be coprime and write
M = mymy. We will shortly define a bijection

f:U(my) x U(mg) — U(M).

You know if two finite sets are related by a bijection then they have
the same number of elements. Assuming the existence of the bijection
f we obtain

p(mimy) = (M) = #U(M) = # (U(m1) x U(mz))
= #U(m1) X #U(ma) = p(m1)e(m2).

So to complete the proof all we have to do is to define f and show
that it’s a bijection. Now let a; € U(m;) for i = 1,2. Let f(a1,az)
be the unique z satisfying 0 < x < M — 1 and z = a; (mod m;)
whose existence is guaranteed by the Chinese Remainder Theorem.
For the map f to be well-defined, we have to show that ged(z, M) = 1.
However, ged(x, m;) = ged(a;, m;) = 1 and as M = mymsy we obtain
that ged(x, M) = 1 as required. Thus f(ai,a2) = x is in U(M). Now
let us show that f is 1 — 1. Suppose that © = f(ay,a2) = f(by,ba).
Then z = a; (mod m;) and z = b; (mod m;) and so a; = b; (mod m;).
As 0 < a;, b < m; — 1, we have a; = b; for i« = 1, 2, so that f is
1 — 1. Finally let us show that f is onto. Let ¢ € U(M). Let a; be
the unique integer satisfying 0 < a; < m; — 1 and ¢ = a; (mod m;).
Then ged(a;, m;) = ged(e,m;) and this divides ged(e, M) = 1. Hence
ged(a;,m;) = 1so a; € U(m;). Now f(ai,as) = x is the unique integer

23
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satisfying * = a; (mod m;) and 0 < x < m; — 1. But c satisfies these
properties, so ¢ = x = f(ay, az). This shows that f is onto, and so is a
bijection. O

Theorem 2.2. Let m > 2 be an integer and let

n
n=10n
=1

be its factorisation into prime powers with r; > 1. Then
p(m) =[] (i — D).
i=1

PrROOF. We will prove that if p is a prime and r > 1 then ¢(p") =
p""}(p —1). The theorem follows from this and Lemma 2.1.

By definition, ¢(p") is the number of integers m in the interval
0 <m < p" — 1 that are coprime with p”; in otherwords not divisible
by p. There are p" integers in the interval, and the ones divisible by p
are

07 b, 2p7 3p7 S (pr_l - 1)p

Clearly there are p"~! integers in the interval that are divisible by p,
so(p’) =p" —p L =p"L(p—1) as required. O

2. Orders Modulo m

Definition. Let gcd(a, m) = 1. We define the order of a modulo m to
be the least positive integer d such that a? =1 (mod m).

Lemma 2.3. Suppose

a*=a"=1 (mod m).

and let w = ged(u,v). Then a® =1 (mod m).

Proor. By Euclid’s Algorithm, there are r, s such that w = ru +
sv. So that
a¥ = (a")"(a")* =1 (mod m).

4

Theorem 2.4. Let ged(a,m) = 1, and let d be the order of a modulo
m.
oF

If a* =1 (mod m) then d | e.
(ii) d .

ae
| o(m). In particular, if m = p is prime then d | (p — 1).
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PROOF. Let d be the order of a modulo m. Then a? =1 (mod m)
by definition of order. Suppose that a® =1 (mod m). By Lemma 2.3,
a? =1 (mod m) where d’ = ged(d, e). Note that d' | d and so d’ < d.
But by definition of order, d is the least positive integer satisfying
a®=1 (mod m). Hence d < d and so d = d’. As d' | e we have d | e.
This proves (i).

Part (ii) follows from (i) and Euler’s Theorem. O

Lemma 2.5. Let ged(g;,m) = 1 for i = 1,2 and suppose that g; has
order d; modulo m. Suppose that gcd(dy,ds) = 1. Then g1g2 has order
dyds modulo m.

PRrROOF. Let d be the order of g = g;9o modulo m. Note that
gd1d2 — (gf1)d2 (932)d1 =1 (mod m)

Hence by Theorem 2.4, d | dyds.
From g =1 (mod m) we obtain

glgy =1 (mod m)
and raising both sides to dy we have that
91"(g2’)' =1 (mod m).

But ¢5> = 1 (mod m), so g{® =1 (mod m). By Theorem 2.4, d, | dds.
Since ged(dy,dy) = 1, Euler’'s Lemma tells us that d; | d. Likewise
dy | d. So didy | d. As we've already observed that d | didy we obtain
that d = dldg. O

3. Primitive Roots
Lemma 2.6. Let p be a prime and X an indeterminate. Then
Xl 1=(X-1D)(X-2)---(X—(p—1) (mod p).

PROOF. By Fermat’s Little Theorem, "' = 1 (mod p) for a =
1,2,...,p—1. So XP"'—~1must havea = 1,2, --- , p—1 as roots modulo
p. Thus, modulo p, the polynomial (X —1)(X —2)--- (X —(p—1)) is
a factor of XP~! — 1. But both are monic of degree p — 1, so they must
be the same modulo p. O

Lemma 2.7. Let p be a prime. Ifn | (p—1) then 2™ =1 (mod p) has
exactly n incongruent solutions modulo p.

PRrOOF. Let p — 1 = nd. Recall the factorization
Xp—l 1= Xnd 1= (Xn . 1)(Xn(d—l) +Xn(d—2) NS 1)
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By Lemma 2.6, X?~! — 1 factors completely modulo p and has distinct
roots. Since X™—1 is a factor of X?~!1—1, it must also factor completely
and have distinct roots modulo p. This proves the lemma. U

Definition. A primitive root modulo p is a number g such that p { g
and g has order p — 1.

Theorem 2.8. If g is a primitive root modulo p then 1, g, ¢, ..., gP2
15 a reduced residue system modulo p. In particular, for every integer
a Z 0 (mod p), there is a unique 0 < r < p — 2 such that a = ¢"
(mod p).

PROOF. The second part follows from the first and the definition of
a reduced residue system. Let us prove the first part. Note that every
element of 1, g, g, ..., g’ "2 is coprime to p and the set has p—1 = ¢(p)
elements. All we have to do is to show that no two elements of this
set are congruent modulo p. Now suppose ¢g" = ¢° (mod p) where
0<r<s<p—2. Then ¢°" =1 (mod p). By definition of primitive
root, g has order p—1 and so (p—1) | (s —r). This is impossible unless
s=r. [

Theorem 2.9. If p is prime, there exists a primitive root modulo p.

PROOF. Want to find an integer g such that p { ¢ and has order
p — 1 modulo p. Let the prime-power factorization of p — 1 be

€1 €2

p—l=q'e" . .q"
By Lemma 2.7,
o 10 =1 (mod p) has ¢;* incongruent solutions modulo p, and
ozt =1 (mod p) has qffl incongruent solutions modulo p.
So there must be some integer g; with

€q e;—1
g/ =1 (modp), g #1 (modp),
Thus g; has exact order ¢;* modulo p. Let g = ¢192 ... ¢,. By Lemma 2.5,
g has order p — 1 modulo p, and so ¢ is a primitive root. U

Here is a past exam question.

Example 3.1. Find a primitive root for 149. You may use the follow-
ing observations:

149 = 22x37+1, 57 =44* =1 (mod 149), 44* #1 (mod 149).
Answer. The order of 5 modulo 149 divides 37. But the only positive

divisors of 37 are 1 and 37. Moreover, 5! # 1 (mod 149), so 5 has
order 37 modulo 149.
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The order of 44 modulo 149 divides 4 and so is 1, 2 or 4. But
44 # 1 (mod 149), and 442 = 1936 = 148 # 1 (mod 149). Hence the
order of 44 is 4.

Now we use Lemma 2.5. Since ged(37,4) = 1, we find that the
order of 20 = 5 x 4 modulo 149 is 37 x 4 = 149 — 1. Hence 20 is a
primitive root modulo 149.






CHAPTER 3

Quadratic Reciprocity

1. Quadratic Residues and Non-Residues

Definition. Let ged(a,m) = 1. We say that a is a quadratic residue
2

modulo m if the congruence z* = a (mod m) has a solution. Otherwise
we say that a is a quadratic non-residue.
Example 1.1. Note that

’=6°=1, 22=5"=4, 3¥=4"=2 (mod?7).

Hence the quadratic residues modulo 7 are 1, 2 and 4. The quadratic
non-residues modulo 7 are 3, 5 and 6.

Definition. Let p be an odd prime. Let

1 if a is a quadratic residue modulo p

a
(—) =< —1 if a is a quadratic non-residue modulo p

b 0 ifp|a

The symbol (2) is called a Legendre symbol.
p

The Legendre symbol is extremely convenient for discussing qua-
dratic residues.

Example 1.2. From Example 1.1 we have

O (-0-0)-
(0)-()-()--

We will focus on quadratic residues modulo primes and return to
quadratic residues modulo arbitrary positive integers later.

and

2. Quadratic Residues and Primitive Roots

Lemma 3.1. Let p be an odd prime and let g be a primitive root modulo
p.
29
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e The quadratic residues modulo p are of the form g" where 0 <
r<p-—2andr is even.

e The quadratic non-residues are of the form g" where 0 < r <
p—2 and r 1s odd.

In particular, exactly half the non-zero residues are quadratic residues
modulo p and the other half are quadratic non-residues.

PROOF. Let g be a primitive root modulo p. Modulo p, the integers
1 <a < p-—1 are a rearrangement of the integers 1,¢,...,¢g? 2, since
both lists are reduced residue systems. Note that ¢" is certainly a
quadratic residue modulo p for all even integers r. Let us prove the
converse. Suppose that ¢" = 22 (mod p). Then we can write z = ¢°
(mod p) for some 0 < s < p—2. Thus ¢" 2 =1 (mod p). As g is a
primitive root, p — 1 divides r — 2s. But p — 1 is even so r — 2s is even
and so r is even. Thus we know that ¢" is a quadratic residue modulo
p if and only if r is even. Hence the quadratic residues modulo p are
1,¢% g% ..., g? % and the quadratic non-residues are g, ¢>, ¢°, ..., g" 2.
This proves the lemma. O

Before we start proving properties of the Legendre symbol, we need
another important fact about primitive roots.

Lemma 3.2. Let p be an odd prime and g a primitive root modulo p.
Then

gP V2 = _1  (mod p).
PROOF. Let h = ¢g»"Y/2, Then h? = ¢! = 1 (mod p). So p |
(h* = 1) = (h+1)(h —1). Hence h = £1 (mod p). If h =1 (mod p)
then ¢»~1/2 =1 (mod p) contradicting the fact that the order of g (a

primitive root) is exactly p — 1. Hence h = —1 (mod p) which is what
we want. ]

3. First Properties of the Legendre Symbol

Proposition 3.3. Let p be an odd prime, and a, b integers.
b
(i) If a =0 (mod p) then (2> = (—)
p p
(ii) (Euler’s Criterion) ) = q-v/2 (mod p).

p
b b
(iii) For integers a, b we have <a ) = <2) (—)
p p

= |
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ProoFr. (i) follows straightaway from the definition, and (iii) fol-
lows from (ii). Let’s prove (ii). Let a be an integer. If p | a then

<2) =0=a?"V? (mod p).
p

Hence suppose that p { a. Let g be a primitive root modulo p. We
know from Lemma 3.1 that a = ¢" (mod p) for some 0 < r < p—2
and that r is even if and only if a is a quadratic residue. Hence

a2 = (@ /2" = (~1)"  (mod p)

by Lemma 3.2. This proves (ii). O

4. The Law of Quadratic Reciprocity

The main theorem on quadratic reciprocity is the Law of Quadratic
Reciprocity.

Theorem 3.4. Let p and q be distinct odd primes. Then

(a) (Law of Quadratic Reciprocity) (E) (g) = (—1)%&%
q
(b) (First Supplement to the Law of Quadratic Reciprocity)
-1\ _J1 ifp=1 (mod4)
p) -1 ifp=3 (mod 4).

(¢) (Second Supplement to the Law of Quadratic Reci-

) (2) =4t T
procity p) -1 ifp=35 (mod 8).

Remark. Note that we can rephrase the Law of Quadratic Reciprocity
as follows:

:—<%) ifp=¢=3 (mod4)
:(2> ifp=lorg=1 (mod 4)

p

[SRESTICSN ]

Example 4.1. Is 94 a square modulo 2577 One way to decide this
is to run through the integers x = 0,1,...,256 and see if 94 = 22
(mod 257). It is much quicker to use Proposition 3.3 and the Law of
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Quadratic Reciprocity.

94 2 47
(257) (257) (257) by Proposition 3.3

> using the second supplement

> since 257 =1 (mod 4)

g) 11=2 (mod 3)

=-1 using the second supplement.

Hence 94 is not a square modulo 47.
Actually the proof of the first supplement is straightforward.

PROOF OF THE FIRST SUPPLEMENT. By Euler’s Criterion (Propo-
sition 3.3),

() =0 odp.

p

Thus <_71) =1 if and only if (p — 1)/2 is even. This is the case if and
only if p =1 (mod 4). O

To prove the Law of Quadratic Reciprocity we need Gauss’ Lemma.
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Theorem 3.5. (Gauss’ Lemma) Let p be an odd prime and write

p—1
=<1,2. ..., — .
S {77 ) 2 }

For integer n let n be the unique integer satisfying n = n (mod p) and
—p/2 <n<p/2. Let pta and let

aS = {as:s e S}

Define ju(a) to be the number of negative members of the set aS. Then

(0)-cr

Example 4.2. Let us determine ( 3 ) using Gauss’ Lemma. Note that
S ={1,2,3,4,5}

and

~

35 = {3,6,9,12,15} = {3, -5, —-2,1,4}.
3
() =1

Thus 1(3) = 2 and so

) =

PROOF OF GAUSS’ LEMMA. We will show that (—1)#(®)qP~1/2 =
1 (mod p). Gauss’ Lemma will then follow from Euler’s Criterion.

By definition, u(a) is the number of negative elements in aS. Let
S| = {|@s| : s € S}. We claim that |aS| = S. Let’s assume this for
the moment and use it to complete the proof. We will return to prove
the claim later on. Now

HSZHt as S = |a)|

seS te‘a\g‘
= H|d?s| by definition of |(;§|
seS

= (=D 1] as as = —las| for precisely u(a) values of s € S
seS

= (-1)r@ H as since as = as  (mod p)
ses

= (—1)M@)glPr- 1/2H5 (mod p) since #5 = (p—1)/2.

seS

Cancelling [T, 4 s we obtain the desired conclusion that (—1)*(®q®~D/2 =
1 (mod p).
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It remains to prove our claim that \ES* | = S. Suppose s € S. Then
—p/2 < as < p/2so0 < |as| < p/2. But as # 0 since pfa and p 1 s.
Hence as € S. This shows that ](ﬁ'\ C S. To show that the two sets
are equal, we must show that the have the same number of elements.
Suppose that s, t € S satisfy |@s| = |at|. Then as = 4at (mod p)
and so s = £t (mod p). But —p/2 < s, 4t < p/2, so their difference
can’t be divisible by p liI\lleSS it is 0. Thus s = £t. But s, t € S so
s = t. This shows that |aS| has as many elements as S, completing the
proof. O

Gauss’ Lemma enables us to prove the second supplement to the
Law of Quadratic Reciprocity.

PROOF OF THE SECOND SUPPLEMENT. We want to show that
(2)_ 1 ifp=1,7 (mod38)
p) |-1 ifp=35 (modS8).
Consider the case p = 1 (mod 8); the other cases are similar and are left

as an exercise. Then p = 8m + 1 for some integer m. Here (p—1)/2 =

4m. We will apply Gauss’ Lemma to determine % . For this we need

to compute 27 where 7 = 1,2,...,4m. Now for x = 1,2,...,2m we
have 0 < 2z < p/2 and so 27 = 2z which is positive. However, for
x=2m+1,2m+ 2,...,4m we have p/2 < 2x <pand§§ =2r—p
which is negative. Hence p(2) = 2m, so by Gauss’ Lemma

Q) D

PrROOF OF THE LAW OF QUADRATIC RECIPROCITY. The original
proof is due to Gauss. Gauss altogether gave eight different proofs of
LQR, and there are hundreds of published proofs. The proof we give
is due to Eisenstein. It starts with the following trigonometric identity
which everyone knows. Let m be an odd positive integer and let

m—1
m=41,23,...,— 7.
O

Then
. 27t
(2) sin mx _ (_4>(m—1)/2 H (SmQ x — sin? i) .

sin x m
tESm

Observe that if u = v (mod p) then 27u/p and 27v/p differ by a
multiple of 27 and so sin(27u/p) = sin(27v/p). Let sgn(u) denote the
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sign of u so that u = sgn(u)|u|. Then sin(27u/p) = sgn(u) sin(27|u|/p).
Now for s € S,

qs = ¢5 = sgn(q5)|¢s|  (mod p).
Thus N
27qs . . 2m|qs]
= sgn(qs) sin .
p

In the notation of Gauss’ Lemma, exactly p(q) of the ¢s are negative.

Hence
(%) — T sen(@).

s€Sp

sin

From the last two equations,

2 27| G3
H sin mqs = (g> H sin 7T|q8|.
p

sES) p sESp p

However, from the proof of Gauss’s Lemma, {|¢s|:s € S,} = ]q/S\p] =

S,. Hence
. 2mgqs (q) . 27s
Hsm == sin —,
s€Sp

5, p p p
which can be rewritten as

(g) _ [ Sierasp

P 5, sin(27s/p)

Using the identity (2) with m = ¢ and « = 27s/p we obtain

(%) =TT T it ems/p) - s ent)

sESp teS,
= (—4)P~D0a-D/4 H (sin*(2ms/p) — sin®(27t/q))
sESp,tESy

as S, has (p — 1)/2 members. Now interchanging p and g we have

<1_9> _ (_4)((1—1)(17—1)/4 H (sin2(27rt/q) — sin2(27rs/p)) )

q sESp,teSy

The right-hand sides of the last two equations are identical except for a

minus sign for each term in the product. But there are (#5S,)(#5S,) =

(P—1(g—1)
2 2

terms in the product. Thus

(2) (&) = o
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completing the proof. O

5. The Sheer Pleasure of Quadratic Reciprocity

Did you enjoy the proof of the Law of Quadratic Reciprocity? Or
did the flicker of light at the end of the long, dark tunnel not seem
worth it? If you're having doubts prepare to dispel them: we're going
to exhilarate ourselves with several applications of LQR.

5.1. Mersenne Numbers. You have met the Mersenne numbers
M, = 2" — 1 in the homework, and know that if n is composite then
so is M,,. What if n = ¢ is prime; is M, necessarily prime? Computing
the first few we find

My=3, My=7 Ms=31, M,;=127,

which are all prime numbers. Now M;; = 2047 which is already not
entirely trivial to factor by hand. The following theorem gives us a large
supply of Mersenne numbers M, where ¢ is prime but M, is composite.

Theorem 3.6. Let ¢ = 3 (mod 4) be a prime such that p = 2q + 1
is also prime. Then p divides M,. In particular, for ¢ > 3, M, is
composite.

Before proving Theorem 3.6 let us apply it with ¢ = 11. Note that
¢ =3 (mod 4) and p = 2¢ + 1 = 23 is prime. Then according to the
Theorem 3.6, p divides M, and indeed we find that M;; = 2047 =
23 x 89. You can use the same argument to find a factor of M, for

q=11,23,83,131,179,191, 239, 251, 359, 419, 431, 443, 491, 659, . ..

PROOF OF THEOREM 3.6. Since ¢ = 3 (mod 4), we have that p =
2¢+1=7 (mod 8). Hence

But by Euler’s Criterion

21 = 9" = (2) =1 (mod p).

Hence M, = 27 — 1 is divisible by p. To prove the last statement in
Theorem 3.6, observe that M, is composite if M, > p. This is the same
as 29 — 1 > 2¢ + 1 which is satisfied if ¢ > 3. U
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5.2. A Diophantine Equation. A Diophantine equation is one
where we are interested in integer solutions. It can be very hard to
determine all the solutions of a Diophantine equations (e.g. Fermat’s
Last Theorem). However, quadratic reciprocity can sometimes be used
to show that there are no solutions. Here is an example.

Theorem 3.7. The equation
y2 — 1,3 -5
has no solutions with x, y € Z.

PrROOF. We proceed by contradiction. Suppose that x, y € Z sat-
isfy 4> = 23 — 5. If z is even then 3> = —5 = 3 (mod 8) which is
impossible as the squares modulo 8 are 0, 1 and 4. Thus x is odd. Now
rewrite the equation as

v4+a4=2"-1=(r—-1)(z>+z+1).
Note that 22 + 2 + 1 = odd + odd + odd and so is odd. Moreover
22+ +1 is positive (e.g. by completing the square). Let p be a prime
divisor of 2+ 2+ 1. Then p | (y*+4) and so y* = —4 (mod p). Hence

)

Thus p =1 (mod 4). As this is true of all prime divisors of 2% + z + 1
we have

P +2z+1=1 (mod 4).
If z =1 (mod 4) then 2?2 + z + 1 = 3 (mod 4) giving a contradiction.
Hence # = 3 (mod 4). Hence y? =23 —5=3—5=2 (mod 4), which
is impossible. O






CHAPTER 4

p-adic Numbers

1. Congruences Modulo p™

In quadratic reciprocity we studied congruences of the form 2% = a
(mod p). We now turn our attention to situations where p is replaced
by a power of p.

We shall need the following lemma whose proof is an easy exercise,
but try out a few examples first to convince yourself that it is true.

Lemma 4.1. Let f(X) € Z[X] and let n > 0 be an integer. Then
f™(X)/n! has integer coefficients.
Next is Hensel’s Lemma which is the main result of this section.

Theorem 4.2. (Hensel’s Lemma) Let f(X) € Z[X]. Let p be a
prime and m > 1. Suppose a € 7 satisfies

f(a)=0 (mod p™), f'(a) £0 (mod p).
Then there exists some b € Z such that
(3) b=a (modp™), f(b) =0 (mod p™™).
We say that we lift a to a solution modulo p™**.

Proor or HENSEL’S LEMMA. By Taylor’s Theorem

(2) (n)
fla+x) :f(a)+f'(a)x—|—f2—'(CL)x2+-~-+fn—'(a)x”

where n is the degree of f (note that all higher derivatives vanish). We
want b to satisfy two conditions, one of them that b = a (mod p™).
Let us write b = a + p™y where the integer y will be determined later.
Then

f(b) = f(a) +p™ f'(a)y + p™" (integer).
Since f(a) = 0 (mod p™) we have f(a) = p™c where ¢ is an integer.
Thus

f(b) =p™(c+ f'(a)y) + p™" (integer).
Note that p™*! | p>™. To make f(b) = 0 (mod p™*!) it is enough to
choose y so that p | (¢ + f'(a)y). In otherwords, we want y so that
f'(a)y = —c (mod p). But f'(a) # 0 (mod p) and so is invertible

39
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modulo p. Let h satisfy hf’'(a) = 1 (mod p). Then we choose y =
—he and take b = a — hep™ and then both congruences in (3) are
satisfied. 0

The proof of Hensel’s Lemma is constructive; this means that it
can be used to solve congruences modulo prime powers. You need
to practice Hensel’s Lemma a few times to get the hang of it. The
following example will help show you how.

Example 1.1. Solve the congruence 2 =2 (mod 73).

Answer: [t is easy to solve 22 = 2 (mod 7) by trying all the values
modulo 7. We get that x = 3,4 (mod 7). Note that obviously if u is a
solution then —wu is also a solution.

Next we solve 22 = 2 (mod 7?). Note that any solution must also
satisfy 2 = 2 (mod 7) and so # = 3,4 (mod 7). Suppose first that
x =3 (mod 7). Then x = 3 + 7Ty where y is an integer. Substituting
in 2 =2 (mod 7%) we obtain

9442y +49y* =2 (mod 7?)

or equivalently
7(1+6y) =0 (mod 7?)

or equivalently 14 6y = 0 (mod 7), so y = 1 (mod 7), so we obtain
that z = 3+ 7y = 3+ 7 = 10 (mod 7?). Similarly, if x = 4 (mod 7)
then z = 39 (mod 49) (which is the same as —10 modulo 49).

Now let us solve 2 = 2 (mod 7%). Then z = 10,39 (mod 7?).
Suppose first £ = 10 (mod 72). Then x = 10 + 7?2z for some integer 2.
Hence

100+2x 10 x T*2+ 722 =2 (mod 7°).

Note 100 — 2 = 98 = 2 x 72. Thus
7 x2(1+10z) =0 (mod 7°).

This is equivalent to 1 + 10z = 0 (mod 7) which gives z =2 (mod 7).
Hence z = 10 + 7%z = 108 (mod 7°). Similarly starting from = = 39
(mod 7%) would give z = 235 (mod 72).

In the above example, we note that to obtain a solution modulo 72
we had to add 7y = 1 x 7 and to obtain a solution modulo 73 we had
to add a 7%z = 2 x 72. We can continue this calculation and write up
our solutions in the following suggestive manner:
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m | solutions to x*> = 2 (mod 7™)
1 [ £3

2 | £(3+7)

3 34+T74+2x%x 77

4

>

=
+(B+T+2XT*+6xT73)
+B+T+2xT*+6x 73+ 74

We are writing solutions as a series in powers of 7 with coefficients
between 0 and 6. This suggests very much an analogy with decimal
expansions. We immediately begin to wonder if the series converges
in any sense. Of course it does not converge in the sense of 1st year
analysis as the powers of 7 are tending to infinity. However we will
change our notion of large and small to make it converge.

2. p-Adic Absolute Value

Before we define the p-adic absolute value, it is worth recalling ord,,
and its properties. Remember that if p is a prime and « is a non-zero
rational, then ord,(«) is the unique integer such that

ordy ()

a=p -%, a,beZ, pta,b.

We defined ord,(0) = 4oco0. Recall also that one formulation of the
Unique Factorization Theorem says that any non-zero rational o can
be written as

) o= =[],

peP
where P is the set of all primes. Of course only finitely many of the
exponents ordp(a) are non-zero, so the product makes sense.

Definition. Let p be a prime and « a non-zero rational number. We
define the p-adic absolute value of a to be

|04’p =p ordp(a).

We define |0|, = 0 which is consistent with our convention that ord,(0) =
+00.

Example 2.1. Let « = —50/27. Then

271 p=2

3 p=3
|a|p: 9 P

5) p=>5

1 p# 2,3,5.

Now evaluate [[ cplal,. What do you notice.
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Example 2.2. Notice that |p"|, = p™", so powers of p with positive
exponent are actually ‘small’. It now looks likely that the series where
we seem to be expanding v/2 as a ‘powerseries’ in 7 does converge. We
will come to that soon, but first we need some properties of the p-adic
absolute value.

Theorem 4.3. Let p be a prime and o, 5 € Q. Then
(i) |al, > 0. Moreover, |a|, =0 iff a = 0.
(ii) |eBlp = |afp|Blp-
(ili) |a+ B, < max{|al,, |8y}, with equality if ||, # |5,
Inequality (iii) is called the ultrametric inequality. Notice that
it implies the triangle inequality |o + 8], < |af, + |B], but is actually
much stronger.

PROOF OF THEOREM 4.3. We'll leave (i) and (ii) as exercises. Let’s
do (iii). Recall the following property of ord,:

(5) ord,(a + ) > min{ord,(«), ord,(5)}
with equality if ord,(«) # ord,(5). Write

r = ord,(«), s = ord,(p), t = ord,(a + f),
and suppose that r < s. Then ¢ > min(r, s) = r. Hence

o+ 5|p = p_t <p " =max{p ",p )= max{m‘pv |5|p}

Now suppose that |a, # |B,. Then p=" # p~® which means that r # s.
Hence ord,(a) # ord,(f) and we have equality in (5). Hence ¢t = r and
SO

o+ Bl =p" =p " =max{p™",p~*} = max{|al,, |],}.
l

Example 2.3. The triangle inequality is true for the p-adic absolute
value, so everything you proved previously for the ordinary absolute
value using the triangle inequality also holds for the p-adic absolute
value. But the ultrametric inequality is much stronger. Notice the
following striking consequence of the ultrametric inequality. Let C be
a constant and p a prime. Consider the set

{a€eQ:al, <C}

This is a ‘disc centred at the origin’. However, the ultrametric inequal-
ity tells us that if we add two elements in this ‘disc’, we stay inside it.
Compare this with what happens if you add two elements of the disc
in the complex plane

{aeC:|a| <C}.
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Here it is easy to add two elements in the disc so that you leave the
disc. The triangle inequality for the usual absolute value will tell you
that if |a| < C and || < C then |a+ | < 2C, so you can see that the
ultrametric inequality is much stronger than the triangle inequality.

Theorem 4.4. (The Product Formula) Let o be a non-zero rational

number. Then
o [ Tleds = 1,

peP
where P is the set of primes.

PROOF. Prove this using (4). Notice that all but finitely many
terms in the product are 1, so the product makes sense. ([l

3. Convergence
Definition. We say that the series of rational numbers {a,}°, con-
verges p-adically to a € Q if

T}Lrgo|an —al, =0.
We can also express this in terms of epsilons: the series {a,}7°, con-
verges to a € Q if for every € > 0, there is some N such that for all
n > N, we have |a, —al, <e. A series 377, a; converges p-adically if
the sequence of partial sums s, = Z?:l a; converges p-adically.
Example 3.1. Let a € Q. It is easy to see that the constant sequence
{a}$°, converges p-adically to a.
Example 3.2. The sequence {p"}32, converges to 0 p-adically since

p" =0, =p™" =0  asn— .
Example 3.3. Consider 5-adically the series
1+5+5"+5"+---.

The n-th partial sum is

50 —1 5% 1
n:l 5 RN 5”71: = — — —
S + o+ + 51 1 1

As 5™ — 0, it seems that the sequence of partial sums is converging to

—1/4. Let’s check this:
|sp — (=1/4)|5 = [5" /4] =5""—= 0 as n — oo.
Hence {s,}22, converges 5-adically to —1/4 and we can write

-1
1+5+52+"':T'
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Example 3.4. Now consider 7-adically the same series
1+5+5"+5"+---.
Now the partial sums are exactly the same as before, and find that
|sp, — (—=1/4)|7 = |5" /4], =1—1 as n — 0.

This shows that the series does not 7-adically converge to —1/4. Does
it converge to something else, or not converge at all? We’ll answer this
question shortly.

Definition. A sequence {a,}32, of rational numbers is p-adically
null if it p-adically converges to 0. A sequence {a,}>; of rational
numbers is p-adically Cauchy if
li — = 0.
i = anly =0
Example 3.5. As we saw previously, the sequences {0}22, and {p"}5°,
converge p-adically to 0 and so are both null.

The following lemma will give us lots of examples of Cauchy se-
quences.

Lemma 4.5. If the sequence of rational numbers {a,}>2 | converges
p-adically then it is p-adically Cauchy.

PROOF. Suppose {a,} converges p-adically to a € Q. Then lim,, . |a,—
al, = 0. Now

|am — anlp = [(am — a) — (an — a)|, < max{|a,, — aly, [a, — alp}
using the ultrametric inequality. Hence
|am — aplp — 0 as m,n — oo,

which is what we wanted to prove. Notice that the proof is almost the
same as the proof you saw in first-year analysis with the usual absolute
value. The only difference is that the triangle inequality is replaced by
the ultrametric inequality. U

What about the converse of Lemma 4.5. Does every p-adically
Cauchy sequence of rationals converge to a rational number? If you
recall our earlier example where we were solving 22 = 2 (mod 7"), we
seemed to be constructing a 7-adically Cauchy sequence that converges
to v/2 which is not rational. So it seems that the converse of Lemma 4.5
does not hold unless we replace the rationals by something bigger. We
know that with the usual absolute value a sequence is Cauchy if and
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only if it converges; but here we are talking about real numbers, not
just rational numbers. For example, you know that the sequence

1 n
an:(l—i——)
n

is a Cauchy sequence of rational numbers that converges to e which is
not rational but real. But what is a real number? The best way to
define real numbers is to say that a real number is simply a Cauchy
sequence of rational numbers! Think about it. This motivates our next
definition.

Definition. A p-adic number « is a p-adically Cauchy sequence {a,}5° ,
of rational numbers. We write Q, for the set of p-adic numbers. We
identify Q as a subset of Q, via the map

(6) Q— Qy, a—{ajn;.

Let’s go back to the reals for a moment to make sure that our
definition makes sense. We said that a real number is simply a Cauchy
sequence of rationals. So e is just the sequence (1 + 1/n)". But there
are other sequences converging to e. For example, take the partial sums
of the series

So to say that a real number is a Cauchy sequence seems an ambiguous
way to define real numbers. However, the ambiguity disappears as soon
as we adopt the convention that two Cauchy sequences define the same
real number if their difference is a null sequence. We do the same in
the p-adic setting.

Definition. We say that two p-adic numbers {a, } and {b,} are equal
if the difference {a, — b,} is p-adically null.

Example 3.6. Via the identification (6) we think of 0 € @ to be the
same as the zero sequence {0} in Q,. Now the {p"} and {0} are both
p-adically null sequences and we have that

0= {0} = {p"} = any null sequence of rationl numbers.

Lemma 4.6. Suppose that the sequence of rational numbers {a,} con-
verges p-adically to a € Q. Then in Q,

nh_{f)lo an = a={a,},2;.
PrRoOOF. What is the lemma saying? There is no doubt that lim,, ,., a, =

a. Now a € Q and via the identification (6) we can write a = {a}$2,.
So what we're asked to prove that the sequences {a,}5°, and {a}>2,
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are the same in Q,. In other words, they differ by a p-adically null
sequence. But this true: lim,,_,oo|a, —al, = 0 as {a,};>, converges to
a p-adically. This completes the proof. 0

Lemma 4.6 gives a hint of how to define limits of p-adically Cauchy
sequences that don’t seem to have a rational limit.

Definition. Suppose that {a,}>° is a p-adically Cauchy sequence of
rational numbers. We define the limit

lim a, = {a,},2,.
n—oo

There is no misprint in this definition! A p-adically Cauchy se-
quence converges to a p-adic number that happens to be the sequence
itself. This solves the convergence problem and, by Lemma 4.6, is con-
sistent with the case where the sequence does converge to a rational
number.

It might be said that this is a cowardly way of solving the issue of
p-adically Cauchy sequences for which there is no rational limits. But
mathematics is full of such cowardice. For example, to square-root 2 we
introduce the symbol v/2 and work with it. Everytime we square this
symbol we replace it with 2. This does not tell us what the square-root
of 2 is, but is a convenient psychological way of avoiding answering
the question. Likewise, the only difficulties with accepting the above
definition are purely psychological, and at any rate, it is rather late in
the term to drop MA3H1 and take up something else.

4. Operations on Q,

Of course @, would not be very interesting if it was a set with no
additional structure. In fact we can define addition and multiplication
on @, in a natural way:

{an} + {bn} = {an + bn}
and
{an} - {bn} = {anbn}.

One must check that these operations are well-defined. For a start
we want to make sure that the sequences {a, + b,} and {a,b,} are
p-adically Cauchy so that we are staying in Q,. We also want to
check that if {a,} and {a}} differ by a p-adically null sequence and
if {b,} and {b/,} differ by a p-adically null sequence then {a,, +b,} and
{al, + 0} differ by a p-adically null sequence and {a,b,} and {a,b,}
differ by a p-adically null sequence. These we’ll leave as relatively easy
exercises. We also want to check that the usual properties of addition
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and multiplication hold (commutativity, associativity, distributivity of
multiplication over addition); again these are easy exercises.

What about division? Here there is a slight difficulty. We might
want to define {a,}/{b,} = {a,/b,}. Of course we will exclude the
case when {b,} is p-adically null. But even if {b,} is not null, it might
contain some zeros. We might then say, ignore them, after all ignoring
finitely many terms in a sequence is not going to affect its limit. But
what if {b,} has infinitely many zeros? Well that can’t happen and to
show that we need a lemma.

Lemma 4.7. Let {a,} be a sequence of rational numbers that is p-
adically Cauchy. Then the sequence {|a,|,} converges to some element
in the set {0} U{p" :r € Z}.

Proo¥r. Note that the convergence we're talking about in the sec-
ond sentence of the lemma is covergence with respect to the usual
absolute value. Now certainly |ay,|, is in the set {0} U {p" : r € Z},
and it’s easy to see that any Cauchy subsequence of {0} U {p" : r € Z}
must actually converge to some element of this set. Thus all we have
to show is that {|a,|,} is Cauchy with respect to the usual absolute
value. Now it is an easy exercise to check that

‘ |a|p - |b|p‘ < |a - b|p-

Hence
0< ’ |amlp — ’an’p| < |am — anlp-

As {a,} is p-adically Cauchy, lim,, ,—se0|@m — an|, = 0. Hence by the
Sandwich Theorem,
mlrlgloo} |y — |an|p‘ =0.

This shows that the sequence {|a,|,} is Cauchy with respect to the
usual absolute value and completes the proof. O

Lemma 4.8. Let {b,} be a p-adically Cauchy sequence of rational
numbers that is non-null. Then the sequence contains at most finitely
many zero elements.

PROOF. By the previous lemma, |b,|, has a limit, which is either
zero, or a power of p. However, as {b,} is non-null, this limit must
be non-zero. Now if the sequence contains infinitely many zeros then
{|b,|p} contains infinitely many zeros and hence a subsequence con-
verging to zero. This contradicts that fact that {|b,|,} converges to a
non-zero limit. U
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The above lemma allows us to define division. If {a,} and {b,} are
elements of Q, and {b,,} # 0 (i.e. non-null) then there is some N such
that for n > N, b, # 0 and we define {¢,} = {a,}/{b.} by assigning
¢, randomly for n < N and letting ¢, = a, /b, for n > N. Note that
{c,}-{bn} agrees with {a,} except for finitely many terms and so their
difference is null; in other words {c,} - {b,} = {a,} in Q,.

Theorem 4.9. Q, is a field containing Q as a subfield.

PROOF. The proof is an easy but slightly lengthy verification which
we leave as an exercise. 0

We can extend the p-adic absolute value to @, as follows.

Definition. Let o € Q, be represented by the p-adically Cauchy se-
quence of rationals {a,}. We define the p-adic absolute value of «
by

’O‘|p = T}Lrgo|an|p‘

Note that the limit exists by Lemma 4.7 and is equal to some ele-
ment of the set {0} U {p" : r € Z}, but we still need to show that ||,
is well-defined in the sense that if {a,} = {b,} in Q, then

A Janly = g ol
The assumption that {a,} = {b,} in Q, means that the difference
{a, — b,} is p-adically null. Now by the triangle inequality
|anlp = [(an = bn) + bulp < [an — balp + |bnlp-
Hence
A Janly < Jig Jan = balp - Jig ol
As {a, — b,} is null, lim,,_,|a, — b,|, = 0, so
. <1 '
g fanly < g fouly
Swapping the roles of the as and bs in the above argument gives
. <1 '
Mm [bnlp < lim Jan,
Hence
Ao = i fanls

which shows that |a|, is well-defined for o € Q.
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4.1. Properties of p-adic absolute value. Now that we have
defined the p-adic absolute value on Q,, it is natural to ask if it has
the same properties it had on Q, and it does.

Theorem 4.10. Let p be a prime and o, B € Q,. Then
(i) o], > 0. Moreover, |a|, =0 iff « = 0.
(11) laBly, = |alp|Blp- . o
(iii) o+ B, < max{|aly, |8y}, with equality if |a, # |5],-

ProOF. The proof follows by choosing p-adically Cauchy sequences
of rationals representing o and § and then using the definition of |-|,
in terms of these sequences and Theorem 4.3. We leave this as an
exercise. U

5. Convergence of Series

The ultrametric inequality has a dramatic effect of making the con-
vergence of series very easy to check.

Theorem 4.11. Let p be a prime. The series Z;’il a; converges p-
adically if and only if lim;_,|a;|, = 0.

We know that with the usual absolute value the theorem is true
only in the left to right direction. The famous counterexample being
the harmonic series

iyl
273 4 7

which diverges even though lim; .. 1/ = 0. Working p-adically, we
don’t need any of the complicated convergence tests of first-year analysis—
the theorem makes it all very easy!

PROOF OF THEOREM 4.11. Suppose that lim, ,|a,|, = 0. All
we have to do is to show the the sequence of partial sums s, = 2?21 a;
is Cauchy. A Cauchy sequence converges to some element of QQ, (which
happens to equal the sequence itself). Now suppose m > n. Then

|Sm - 3n|p = |apg1 + ppo + -+ CL?ﬂlp = n+r1n§%?;m’aj|p’

by the ultrametric inequality. For any € > 0, there is some N such that

if j > N then |a;|, < e. Hence if m,n > N then |s,, — s,|, < €, proving

that the sequence {s,} is p-adically Cauchy. O
6. p-adic Integers

Definition. The set of p-adic integers Z, is defined by
Zy,={a€Q, : |af, <1}
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So Z, ‘looks’ like a disc of radius 1 centred at the origin. In this
sense, the following theorem is striking.

Theorem 4.12. Z, is a ring and contains Z as a subring.

PrOOF. Note first that if a € Z then ord,(a) > 0 and so |a|, =
p~ (@) < 1. Hence Z C L.

To complete the proof we must show that Z, is a ring. You don’t
have to know anything about rings except the definition. Note that
Z, C Q, and Q, is already a field. So we have to show that Z, is
closed under addition and multiplication (it already contains 0 and 1).
But if a, 8 € Z, then

laBlp = lalp|Bl, <1-1=1,
and
la+ B, < max{[aly, |B],} < max{1,1} = 1.
Hence af, a + 8 € Z,. O

Lemma 4.13. If {a,} is a p-adically Cauchy sequence with a, € 7
then lim,,_,o a,, s in Z,. Conversely, any o € Zj, is the limit of such a
sequence.

PROOF. Suppose {a,} is a p-adically Cauchy sequence with a,, € Z
and let o = lim,,_,, a,,. Then |a,|, <1 and so

al, = Tlli_)n;olan‘p <1

which shows that o € Z,. The converse is harder. Suppose a € Z,.
Now Z, C Q, and so o = lim,,_,, a,, where {a,} is a p-adically Cauchy
sequence of rational numbers, but there is a priori no reason for the
a, be integral. We will construct a p-adically Cauchy sequence {b,}
where the b, are in Z and {a,, — b, } is a p-adically null sequence. Then
a = lim,,_, b, as required. Now

Ji_fgo‘anb =lal, < 1.

Consider ord,