EXERCISE SESSION X

Exercise I

Let $f, g: X \to Y$ be two continuous functions between two topological spaces, such that Y is Hausdorff. Let D be a dense set in X (namely, $\overline{D} = X$). Prove that the following conditions are equivalent

- The functions f and g coincide in X.
- The functions f and g coincide in D.

Exercise II

Let (X, τ) be a topological space and denote by Δ_X denote the diagonal set

$$\Delta_X := \{ (x, x) \ ; \ x \in X \}.$$

Prove that X is Hausdorff if and only if Δ_X is a closed subset of $X \times X$.

Exercise III

Prove that if $f : \mathbb{S}^1 \to \mathbb{R}$ is a continuous map (where \mathbb{S}^1 denotes the unit circle in \mathbb{R}^2), then there exists a point $p \in \mathbb{S}^1$ such that f(p) = f(-p).