EXERCISE SESSION V

Exercise I

Let \mathcal{B} be the family of subsets of \mathbb{R} defined as

 $\mathcal{B} := \{ [a, \infty) ; a \in \mathbb{R} \}.$

Prove that \mathcal{B} is a basis of topology. We call by *lower topology* the topology generated by \mathcal{B} , and we denote it by τ_{low} . Compare τ_{low} with the Euclidean topology.

Exercise II

Let \mathcal{B} be the family of subsets of \mathbb{R} defined as

 $\mathcal{B} := \{ [a, b) ; a, b \in \mathbb{R} \text{ with } a < b \}.$

Prove that \mathcal{B} is a basis of topology. We call by *lower limit topology* the topology generated by \mathcal{B} , and we denote it by τ_{lowlim} . Compare τ_{lowlim} with the Euclidean topology.

Exercise III

Compare the topologies τ_{low} and τ_{lowmin} .

Exercise IV

Let τ_0 be the family of subsets of \mathbb{R} defined as

$$\tau_0 := \{\emptyset, \mathbb{R}\} \cup \{(a, \infty) ; a \in \mathbb{R}\}.$$

Recall from previous sessions we proved that τ_0 is a topology. Answer and justify the following questions:

- Is τ_0 finer than τ_{low} ? Is τ_{low} finer than τ_0 ?
- Is τ_0 finer than τ_E ? Is τ_E finer than τ_0 ?
- Is τ_0 finer than τ_{lowlim} ? Is τ_{lowmin} finer than τ_0 ?

Comments:

With the notion of basis, you can redo the following exercises from Session II easier. Exercise V

Let $d: \mathbb{R}^2 \to [0,\infty)$ be distance

$$d((x_1, y_1), (x_2, y_2)) := \max\{|x_2 - x_1|, |y_2 - y_1|\}.$$

- Prove that the topology associated with d is the Euclidean topology on \mathbb{R}^2 .

Exercise VI

Let $d: X \times X \to \mathbb{R}$ be a distance on X. We consider the distance $\overline{d}: X \times X \to \mathbb{R}: (x, y) \mapsto \min\{d(x, y), 1\}.$

- Prove that the topologies associated with \overline{d} and d coincide.