EXERCISE SESSION IV

Exercise I

Prove that $A^{\circ-} = A^{\circ-\circ-}$ and $A^{-\circ} = A^{-\circ-\circ}$.

Exercise II

Prove that $\overline{A} \cup B^{\circ} = \overline{A} \cup (A \cup B)^{\circ}$.

Exercise III

Let A, B be two subspaces of a topological space X. Show that if A and B are two disjoint closed subspaces of $A \cup B$, then $\overline{A} \cap B = A \cap \overline{B}$.

Exercise IV

Let X be a nonempty set and $Cl: 2^X \to 2^X$ be a map with the following properties

- (1) $Cl(\emptyset) = \emptyset$,
- (2) $A \subset Cl(A)$,
- (3) $Cl(A \cup B) = Cl(A) \cup Cl(B),$
- (4) Cl(Cl(A)) = Cl(A),

for every $A, B \in 2^X$. Prove the following

- (1) If $A \subset B$, prove that $Cl(A) \subset Cl(B)$
- (2) Prove that $\tau = \{X \setminus F | Cl(F) = F\}$ is a topology on X.
- (3) Prove that the closure \overline{A} of a subspace A of (X, τ) is equal to Cl(A).