NON-MANDATORY EXERCISES FOR WEEK VI

Exercise I

Let (X, \leq) be a totally ordered set.
(i) Prove that the family made of the finite intersections of the sets

$$
\begin{aligned}
(a, \infty) & :=\{x \in X \mid a<x\} \\
& \text { and } \\
(-\infty, b) & :=\{x \in X \mid x>b\}
\end{aligned}
$$

where $a, b \in X$ is a basis of topology (which is called the order topology).
(ii) What is the order topology on \mathbb{N} ? What is the order topology on \mathbb{R} ?
(iii) What are the isolated points of $\{0,1\} \times \mathbb{N}$, equipped with the order topology relatively to the lexicographic order?
(iv) Compare the Euclidean topology on \mathbb{R}^{2} with the order topology relatively to the lexicographic order on \mathbb{R}^{2} (hint: give a basis of topology).
(v) Let $Y:=[0,4) \cup\{5\}$. Is 5 an isolated point in Y if Y is considered as a subspace of \mathbb{R} equipped with the Euclidean topology? Same question if Y is equipped with the order topology relatively to the restriction on Y of the natural order on \mathbb{R} ?
(vi) Let $Y:=[0,1 \times[0,1]]$. Is $A=\{1 / 2\} \times(1 / 2,1]$ open in Y if Y is considered as a subspace of \mathbb{R}^{2} equipped with the euclidean topology? Same question if Y is equipped with the order topology relatively to the lexicographic order on Y. Same question if Y is considered as a subspace of \mathbb{R}^{2} equipped with the order topology relatively to the lexicographic order on \mathbb{R}^{2}.

Exercise II

Let $\lfloor\cdot\rfloor: \mathbb{R}_{+} \rightarrow \mathbb{N}$ be the floor function, that is, the function that maps x to its integer part. Assume that \mathbb{N} is equipped with the cofinite topology. What is the smallest topology on \mathbb{R}_{+} that turns $\lfloor\cdot\rfloor$ to a continuous function (this topology is called the initial topology relatively to $\lfloor\cdot\rfloor)$?

