NON-MANDATORY EXERCISES FOR WEEK VI

Exercise I

Let (X, \leq) be a totally ordered set.

(i) Prove that the family made of the finite intersections of the sets

$$(a, \infty) := \{ x \in X | a < x \}$$

and

$$(-\infty, b) := \{x \in X | x > b\},\$$

where $a, b \in X$ is a basis of topology (which is called the order topology).

- (ii) What is the order topology on \mathbb{N} ? What is the order topology on \mathbb{R} ?
- (iii) What are the isolated points of $\{0, 1\} \times \mathbb{N}$, equipped with the order topology relatively to the lexicographic order?
- (iv) Compare the Euclidean topology on \mathbb{R}^2 with the order topology relatively to the lexicographic order on \mathbb{R}^2 (hint: give a basis of topology).
- (v) Let $Y := [0, 4) \cup \{5\}$. Is 5 an isolated point in Y if Y is considered as a subspace of \mathbb{R} equipped with the Euclidean topology? Same question if Y is equipped with the order topology relatively to the restriction on Y of the natural order on \mathbb{R} ?
- (vi) Let $Y := [0, 1 \times [0, 1]]$. Is $A = \{1/2\} \times (1/2, 1]$ open in Y if Y is considered as a subspace of \mathbb{R}^2 equipped with the euclidean topology? Same question if Y is equipped with the order topology relatively to the lexicographic order on Y. Same question if Y is considered as a subspace of \mathbb{R}^2 equipped with the order topology relatively to the lexicographic order topology relatively to the lexicographic order on \mathbb{R}^2 .

Exercise II

Let $\lfloor \cdot \rfloor : \mathbb{R}_+ \to \mathbb{N}$ be the floor function, that is, the function that maps x to its integer part. Assume that \mathbb{N} is equipped with the cofinite topology. What is the smallest topology on \mathbb{R}_+ that turns $\lfloor \cdot \rfloor$ to a continuous function (this topology is called the initial topology relatively to $|\cdot|$)?