Exercise session I (problems taken from the exercise sheet from Bruno Teheux)

Arturo Jaramillo September 18, 2020

Exercise I

Give all possible topologies on a three element set.

Exercise II

Let τ be the collection of sets

 $\tau := \{\emptyset, \mathbb{R}\} \cup \{(a, \infty) \ ; \ a \in \mathbb{R}\}.$

Prove that τ is a topology over the set X.

Exercise III

Let X be a set and $A \subset X$. Prove that

$$\tau := \{\emptyset\} \cup \{\Omega \subset X \ ; \ A \subset \Omega\}$$

is a topology over X.

Exercise IV

State the definition of topology in terms only of closed sets (justify your answer).

Exercise V

Let τ be the collection of subsets of $\mathbb R$ of the form

 $\tau = \{\emptyset, \mathbb{R}\} \cup \{(q, \infty) \ ; \ q \in \mathbb{Q}\}.$

Prove or disprove: τ is a topology over \mathbb{R} .