Exercise I:
F. g:
$$X \rightarrow Y$$
 Assume
i) Y is Hausdorff:
ii) $f(x) = g(x)$ V $x \in D$,
where D is dense in X.
iii) $f(x) = g(x)$ V $x \in D$,
where D is dense in X.
iii) f and g are continuous.
prot:
Ef that $g(x)$, then d $U_{N} \in \mathcal{C}_{Y}$ s.t. Fine U , $g(x) \in V$ \mathcal{D}
& $U_{N} \times g(x)$, then d $U_{N} \in \mathcal{C}_{Y}$ s.t. Fine U , $g(x) \in V$ \mathcal{D}
& $U_{N} \times g(x)$, then d order by $A = f$ $U_{N} \cap g'(x)$. Since f.g are
continuous, then A is open.
Note: $V = A$ is such that $f(x) \in U$ and $g(y) \in V$, but by G
 $f(x) \neq g(x)$. $V = A \in open$.
Note: $V = A$ is such that $f(x) \in U$ and $g(y) \in V$, but by G
 $f(x) \neq g(x)$. $V = f(x) \neq g(x)$. $V = f(x) \neq g(x)$.
 $f(x) \neq g(x)$. $V = f(x) \neq g(x)$.
 $f(x) \neq g(x)$. $V = f(x) \neq g(x)$.
 $f(x) \neq g(x)$. $V = f(x) \neq g(x)$.
 $f(x) \neq g(x)$. $V = f(x) \neq g(x)$.
 $f(x) \neq g(x)$. $V = f(x) \neq g(x)$.
 $f(x) \neq g(x)$. $V = f(x) \neq g(x)$.
 $f(x) \neq g(x)$. $V = f(x) \neq g(x)$.
 $f(x) \neq g(x)$. $V = f(x) \neq g(x)$.
 $f(x) \neq g(x)$. $V = f(x) \neq g(x)$.
 $f(x) \neq g(x)$. $V = f(x) \neq g(x)$.
 $f(x) \neq g(x)$. $V = f(x) \neq g(x)$.
 $f(x) \neq g(x)$. $V = f(x) \neq g(x)$.
 $f(x) \neq g(x)$. $V = f(x) \neq g(x)$.
 $f(x) \neq g(x)$. $V = f(x) \neq g(x)$.
 $f(x) \neq g(x)$. $V = f(x) \neq g(x)$.
 $f(x) \neq g(x)$. $V = f(x) \neq g(x)$.
 $f(x) \neq g(x)$. $V = f(x) \neq g(x)$.
 $f(x) \neq g(x)$. $V = f(x) \neq g(x)$.
 $f(x) \neq g(x)$. $V = f(x) \neq g(x)$.
 $f(x) \neq g(x)$. $V = f(x) \neq g(x)$.
 $f(x) \neq g(x)$. $V = f(x) \neq g(x)$.
 $f(x) \neq g(x)$.
 $f(x) \neq g(x)$. $V = f(x) \neq g(x)$.
 $f(x) \neq g(x)$.
 $f(x) \neq g(x)$. $V = f(x) \neq g(x)$.
 $f(x) \neq g(x)$.
 $f(x)$

Exercise 2:) Let (X, 2x) be a topological space. $\Delta_{\chi} = \{(\chi, \chi) : \chi \in \chi \}.$ We want to show: X is Mousdorff iff. Δ_{x} is a closed subset of XxX, proof: Let's stort with $\not=$): $(\Delta_{\kappa} \text{ clused} \Rightarrow \text{Hausdorff})$. If Δ_x is closed in $X \cdot X$, then $(\Delta_x)^c$ is open. Ther What we have: (#)if $(x,y) \in (d_x)^c$, we can find an element of the basis of XxX (recal that luxV; U,VerxY . (x, v) form a basis of X × X), of the form UxV, with u,VET, and (x, v) c U x V C=> X E U Y E V and such that $(U \times V) \cap \Delta_X = \phi$. (see picture: What we need: Take x, y EX s.t. x + y. We want to Find A.BEZX, S.t. $x \in A$, $y \in B$ and $A \cap B \doteq \emptyset$. Since $x \neq y$, then $p = (x, y) \in (\Delta_x)^c$, then, the statement # holds, numely, we can find U, VE 2x s.1. $p \in U \times V \iff \begin{cases} x \in U \\ y \in V \end{cases}$ and $(U \times V) \cap \Delta_x = \emptyset$. Claim: UNV=Q. Reason: if not, then $\exists a \in U \cap V \Rightarrow p = (a, a) \in A_X$ but a e UnV >> (a, a) e UxV => $\int_{a_1} (a_1 a) \in \Delta_x$ contradicting the fod that $(U \cdot V) \cap \Delta_x = \emptyset$. $\int_{a_1} (a_1 a) \in U \times V$

Let's now prove \Rightarrow) (X is Hausdorff $\Rightarrow \Delta_X$ is closed). What we have: V x, yex s.l. x+y, then 3 U, VER s.l. xEU, yEV and $UAV = \emptyset$. What we need? p=(×,*) M_{X} closed $\iff (\Lambda_{X})^{c}$ is open: It suffices to show that $\forall p = (x, y) \in (\Delta_x)^{c}$ 3 an element of the basis UXVEXXX (with U, VE Cx) S.J. p=(x, y) E Ux V and $U \times V \subset (A_{\times})^{c} \Leftrightarrow (U \times V) \land A_{\times} = \not A \not A$ Take $p=(x,y) \in (\Delta_x)^{c} \implies x \neq y$ Hausdorff property => 3 U.VE 2x s.L. xtU, ytV & UNV = Ø. Claim: these U, V are such that i) pEUXV (since XEU & yEV) ii) $(U \times V) \cap \Delta_X = \emptyset$ Reoson: if not, then \exists (a, a) $\in \Delta_X$ s.t. (a, a) EU × V => a EU AV, which contradicts By i) l ii), and the discussion at $(\Delta_x)^{\prime}$ is open.

Comment: From Jean - Paul: Using exercise I to prove I: idea: define V: X -> YXY x > (Flx1, g(x1). $\Psi(D) \subset \Delta_X$ when f=g in D. By continuity, $\Psi(x) = \Psi(\overline{D}) \subset \overline{\Delta}_{x}$ Since X is Hausdouff, by Ex II, Δ_X is closed $\Rightarrow \overline{\Delta}_X = \Delta_X$ $\begin{array}{cccc} & \uparrow h \ \text{us} \ , \ b \nu \ \textcircled{P} \ , & \begin{array}{cccc} & \psi(x) \ \subset \ \bigtriangleup_{x} \ \Rightarrow & \begin{array}{cccc} & f(x) = g(x) \ & V \ & x \in X \ . \end{array} \end{array}$ Exercise II Unit circle Prove that if $f: S' \rightarrow IR$ is continuous, then $\mathcal{F} p \in S' = \mathcal{F}$. f(p) = f(-p)proof: (hint: if f(p) + f(-p) V pes', we consider the function $g: S' \rightarrow R$. $p \mapsto \frac{f(p) - f(-p)}{f(p)} = sign(f(p) - f(-p))$. |f(p) - f(-p)|If $F(y) \neq f(-p) \forall p \in S'$, then the mapping g is well defined and furthermore, Since and signla is continuous in the domain Ritof. So q is continuous. Then, in particular. i) $\bar{q}((\frac{1}{2},\frac{3}{2})) = \bar{q}((\frac{1}{2},\frac{3}{2})) = \bar{q}((\frac{1}{2},\frac{3}{2})) = 0$ is open. in §1 $-\frac{3}{2}$ $-\frac{1}{7}$ $-\frac{1}{2}$ $-\frac{1}{2}$ $-\frac{1}{2}$ $-\frac{1}{2}$ $-\frac{1}{2}$ ii) $q'((-\frac{s}{2},-\frac{1}{2})) = q'((-1)) = V$ is open in \$ Furthermore, U = S' and $U = \emptyset$ Since S' is connected, then, either U=\$ or V=\$. =) 9 is constant.

From here we conclude that either i) $f(p) > f(-p) \vee p \in S^1$ or ii) $f(p) \wedge f(-p) \vee p \in S^1$

If $f(p)>f(-p) \lor p(s')$, we have that by choosing p=1, f(n)>f(-1), but by choosing P=-i, we get f(-1)>f(n), which is a contradiction.

A similar conclusion holds when fipscffpl Y pes.

Therefore, the accumption f(p) + f(-p) V p derin't hold as required