






Exercise I : surjective

I
Let f :X → Y be an onto continuous function

.

Prove that

"

if X is normal
,

then Y is normal
"

.

Recall :

(2,7 ) ← topological space .

We say that 2 is normal if
.
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Notice that ki.kz are
.

closed sets of X
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,
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,
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.

V. NV
, -4

and Kiev ,
I kick

p

Take ye C ,
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continuity of f
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We have proved that

- UEYIFCXIV . )

claim I : YIFCXIV . ) is open :

Reason : f closed map

V. EE, ⇒ XIV ,
is closed ⇒ Flav. ) is closed

.

⇒ YIFIXIV. ) is open

Therefore :

•
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. I

•
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⇒ C
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By the same reason
,
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but the surjectivity ⇒ w - fld for some CEX
.

Since Vonk -_ ¢ ,
then lxivilulxlva ) - X

⇒ f Ce XIV ,
which contradicts ④

or

CE Xlvz

This proves that WWnnWz=¢
,

as required .

Note : we used the fact that
. 194 is closed

,

so we need Y to be Hausdorff
.



Exercise I :

Let f.g :X
→ Y two continuous maps ,

with

a
Y Hausdorff .

Prove that C - f kex i flat -

- gal 's forms a closed subspace

of X
.

proof :

Lets show that Xtc is open :

take ae Xtc .
⇒ flat tglal .

by the Hausdorff property , I U.ve Ty S.t.
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Wn F' (v ) ← open since V.V are open & f is continuous
.

By construction
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;
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since #④ holds t aexlc
,

we conclude that Xtc is open

⇒ C is closed .



Exercise I '

.

Let X=Y=tN with the cofinite topology .

i ) Prove that Y is not Hausdorff.

proof :

If y was
Hausdorff

,

then I xty sgqey f

Uxax and 439
,
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,
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°
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Therefore
,

Y is not Hausdorff
.

Part ii) of the exercise :

'

Ii ) Define fig :X → Y as flat -_ x
,

and gixl-mayix.SI .

Prove that

its ) f ,g are continuous
.

I) C -- fxex ; flak gag is not closed.

proof :

if = iii.entity ⇒
f is continuous

.

- Proving
that

g
is continuous :

⇒ girly is open tf Veney
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closed
.

⇒ g
is continuous .

Now let's prove

C-- fxexi flat guy is not closed.

⇒

C -- fxex ; flak gag is infinite ⑧

Notice that
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.

Notice that . if xc-INnl6.at
,

then maxfx.se, =x

⇒ ④ holds ⇒ ( D INNIG.ae ) ← infinite
.

.

'

. C is infinite
,

which proves ⑧

so C is not closed
.


