Quantitative Erdös-Kac theorem for additive functions, a self-contained probabilistic approach

Joint work with X. Yang and Louis H. Y. Chen

Arturo Jaramillo Gil

Université du Luxembourg
National University of Singapore

Goal

Denote the set of primes by \mathcal{P}.

Goal

Denote the set of primes by \mathcal{P}. Let $\omega: \mathbb{N} \rightarrow \mathbb{N}$ denote the prime factor counting function,

$$
\omega(n):=\mid\{p \in \mathcal{P} ; p \text { divides } n\} \mid
$$

Goal

Denote the set of primes by \mathcal{P}. Let $\omega: \mathbb{N} \rightarrow \mathbb{N}$ denote the prime factor counting function,

$$
\omega(n):=\mid\{p \in \mathcal{P} ; p \text { divides } n\} \mid .
$$

For instance, $\omega(54)=\omega\left(2 \times 3^{2}\right)=2$.

Goal

Denote the set of primes by \mathcal{P}. Let $\omega: \mathbb{N} \rightarrow \mathbb{N}$ denote the prime factor counting function,

$$
\omega(n):=\mid\{p \in \mathcal{P} ; p \text { divides } n\} \mid .
$$

For instance, $\omega(54)=\omega\left(2 \times 3^{2}\right)=2$. Let J_{n} be a random variable with uniform distribution over $\{1, \ldots, n\}$.

Goal

Denote the set of primes by \mathcal{P}. Let $\omega: \mathbb{N} \rightarrow \mathbb{N}$ denote the prime factor counting function,

$$
\omega(n):=\mid\{p \in \mathcal{P} ; p \text { divides } n\} \mid .
$$

For instance, $\omega(54)=\omega\left(2 \times 3^{2}\right)=2$. Let J_{n} be a random variable with uniform distribution over $\{1, \ldots, n\}$.

Goal

- Study $\omega\left(J_{n}\right)$.

Goal

Denote the set of primes by \mathcal{P}. Let $\omega: \mathbb{N} \rightarrow \mathbb{N}$ denote the prime factor counting function,

$$
\omega(n):=\mid\{p \in \mathcal{P} ; p \text { divides } n\} \mid .
$$

For instance, $\omega(54)=\omega\left(2 \times 3^{2}\right)=2$. Let J_{n} be a random variable with uniform distribution over $\{1, \ldots, n\}$.

Goal

- Study $\omega\left(J_{n}\right)$. Describe as accurately as possible the asymptotic behavior of $\frac{\omega\left(J_{n}\right)-\mu_{n}}{\sigma_{n}}$, for suitable chosen μ_{n} and σ_{n}.

Goal

Denote the set of primes by \mathcal{P}. Let $\omega: \mathbb{N} \rightarrow \mathbb{N}$ denote the prime factor counting function,

$$
\omega(n):=\mid\{p \in \mathcal{P} ; p \text { divides } n\} \mid .
$$

For instance, $\omega(54)=\omega\left(2 \times 3^{2}\right)=2$. Let J_{n} be a random variable with uniform distribution over $\{1, \ldots, n\}$.

Goal

- Study $\omega\left(J_{n}\right)$. Describe as accurately as possible the asymptotic behavior of $\frac{\omega\left(J_{n}\right)-\mu_{n}}{\sigma_{n}}$, for suitable chosen μ_{n} and σ_{n}.
- What can be said when ω is replaced by a general function $\psi: \mathbb{N} \rightarrow \mathbb{N}$ only satisfying $\psi(a b)=\psi(a)+\psi(b)$ for $a, b \in \mathbb{N}$ coprime?

Plan

1. Historical context
2. Main results
3. Ideas behind the proofs

Simplifying the model
Stein's method

Historical context

Classical Erdös-Kac theorem (1940)

Starting point: Paul Erdös and Mark Kac, proved that

$$
\begin{equation*}
Z_{n}:=\frac{\omega\left(J_{n}\right)-\log \log (n)}{\sqrt{\log \log (n)}} \tag{1}
\end{equation*}
$$

converge in distribution towards a standard Gaussian random variable \mathcal{N}.

Classical Erdös-Kac theorem (1940)

Starting point: Paul Erdös and Mark Kac, proved that

$$
\begin{equation*}
Z_{n}:=\frac{\omega\left(J_{n}\right)-\log \log (n)}{\sqrt{\log \log (n)}} \tag{1}
\end{equation*}
$$

converge in distribution towards a standard Gaussian random variable \mathcal{N}.

Some intuition: Denote $\mathcal{P}_{n}:=\mathcal{P} \cap[1, n]$.

Classical Erdös-Kac theorem (1940)

Starting point: Paul Erdös and Mark Kac, proved that

$$
\begin{equation*}
Z_{n}:=\frac{\omega\left(J_{n}\right)-\log \log (n)}{\sqrt{\log \log (n)}} \tag{1}
\end{equation*}
$$

converge in distribution towards a standard Gaussian random variable \mathcal{N}.

Some intuition: Denote $\mathcal{P}_{n}:=\mathcal{P} \cap[1, n]$. The convergence in (1) is hinted by the decomposition

$$
\begin{equation*}
\omega\left(J_{n}\right)=\sum_{p \in \mathcal{P}_{n}} \mathbb{1}_{\left\{p \text { divides } J_{n}\right\}}, \tag{2}
\end{equation*}
$$

Intuition about Erdös-Kac theorem

One guesses that $\mathbb{1}_{\left\{p \text { divides } J_{n}\right\}}$ are weakly dependent since for $d \in \mathbb{N}$,

$$
\begin{equation*}
\mathbb{P}\left[d \text { divides } J_{n}\right]=\frac{1}{n} \sum_{k=1}^{n} \mathbb{1}_{\{d \text { divides } k\}}=\frac{1}{n}\left\lfloor\frac{n}{d}\right\rfloor \approx \frac{1}{d} . \tag{3}
\end{equation*}
$$

Intuition about Erdös-Kac theorem

One guesses that $\mathbb{1}_{\left\{p \text { divides } J_{n}\right\}}$ are weakly dependent since for $d \in \mathbb{N}$,

$$
\begin{equation*}
\mathbb{P}\left[d \text { divides } J_{n}\right]=\frac{1}{n} \sum_{k=1}^{n} \mathbb{1}_{\{d \text { divides } k\}}=\frac{1}{n}\left\lfloor\frac{n}{d}\right\rfloor \approx \frac{1}{d} . \tag{3}
\end{equation*}
$$

Thus, if $p_{1}, \ldots, p_{r} \in \mathcal{P}_{n}$ are different primes,

$$
\begin{aligned}
\mathbb{P}\left[\mathbb{1}_{\left\{p_{1} \text { divides } J_{n}\right\}}=1, \ldots, \mathbb{1}_{\left\{p_{r} \text { divides } J_{n}\right\}}=1\right] & \approx \frac{1}{p_{1} \cdots p_{r}} \\
& \approx \mathbb{P}\left[\mathbb{1}_{\left\{p_{1} \text { divides } J_{n}\right\}}=1\right] \cdots \mathbb{P}\left[\mathbb{1}_{\left\{p_{r} \text { divides } J_{n}\right\}}=1\right]
\end{aligned}
$$

Intuition about Erdös-Kac theorem

One guesses that $\mathbb{1}_{\left\{p \text { divides } J_{n}\right\}}$ are weakly dependent since for $d \in \mathbb{N}$,

$$
\begin{equation*}
\mathbb{P}\left[d \text { divides } J_{n}\right]=\frac{1}{n} \sum_{k=1}^{n} \mathbb{1}_{\{d \text { divides } k\}}=\frac{1}{n}\left\lfloor\frac{n}{d}\right\rfloor \approx \frac{1}{d} \tag{3}
\end{equation*}
$$

Thus, if $p_{1}, \ldots, p_{r} \in \mathcal{P}_{n}$ are different primes,

$$
\begin{aligned}
\mathbb{P}\left[\mathbb{1}_{\left\{p_{1} \text { divides } J_{n}\right\}}=1, \ldots,\right. & \left.\mathbb{1}_{\left\{p_{r} \text { divides } J_{n}\right\}}=1\right] \\
& \approx \mathbb{P}\left[\mathbb{1}_{\left\{p_{1} \text { divides } J_{n}\right\}}=1\right] \cdots \mathbb{P}\left[\mathbb{1}_{\left\{p_{r} \text { divides } J_{n}\right\}}=1\right]
\end{aligned}
$$

Warning: nowadays it is known that the r.v. $\mathbb{1}_{\left\{p \text { divides } J_{n}\right\}}$, for $p \in \mathcal{P} \cap\left[1, n^{\frac{1}{\alpha_{n}}}\right]$ are approximately independent if $\alpha_{n} \rightarrow \infty$ is suitably chosen (example: $\left.\alpha_{n}:=3 \log \log (n)^{2}\right)$.

Intuition about Erdös-Kac theorem

One guesses that $\mathbb{1}_{\left\{p \text { divides } J_{n}\right\}}$ are weakly dependent since for $d \in \mathbb{N}$,

$$
\begin{equation*}
\mathbb{P}\left[d \text { divides } J_{n}\right]=\frac{1}{n} \sum_{k=1}^{n} \mathbb{1}_{\{d \text { divides } k\}}=\frac{1}{n}\left\lfloor\frac{n}{d}\right\rfloor \approx \frac{1}{d} \tag{3}
\end{equation*}
$$

Thus, if $p_{1}, \ldots, p_{r} \in \mathcal{P}_{n}$ are different primes,

$$
\begin{aligned}
\mathbb{P}\left[\mathbb{1}_{\left\{p_{1} \text { divides } J_{n}\right\}}=1, \ldots,\right. & \left.\mathbb{1}_{\left\{p_{r} \text { divides } J_{n}\right\}}=1\right] \approx \frac{1}{p_{1} \cdots p_{r}} \\
& \approx \mathbb{P}\left[\mathbb{1}_{\left\{p_{1} \text { divides } J_{n}\right\}}=1\right] \cdots \mathbb{P}\left[\mathbb{1}_{\left\{p_{r} \text { divides } J_{n}\right\}}=1\right]
\end{aligned}
$$

Warning: nowadays it is known that the r.v. $\mathbb{1}_{\left\{p \text { divides } J_{n}\right\}}$, for $p \in \mathcal{P} \cap\left[1, n^{\frac{1}{\alpha_{n}}}\right]$ are approximately independent if $\alpha_{n} \rightarrow \infty$ is suitably chosen (example: $\left.\alpha_{n}:=3 \log \log (n)^{2}\right)$. But α_{n} cannot be equal to one!

Question

Can the asymptotic Gaussianity of Z_{n} be quantitatively assessed with respect to a suitable probability metric? such as distance d_{K}, defined as

$$
d_{\mathrm{K}}(X, Y)=\sup _{z \in \mathbb{R}}|\mathbb{P}[X \leq z]-\mathbb{P}[Y \leq z]|
$$

Question

Can the asymptotic Gaussianity of Z_{n} be quantitatively assessed with respect to a suitable probability metric? such as distance d_{K}, defined as

$$
d_{\mathrm{K}}(X, Y)=\sup _{z \in \mathbb{R}}|\mathbb{P}[X \leq z]-\mathbb{P}[Y \leq z]|
$$

or

$$
d_{1}(X, Y)=\sup _{h \in \operatorname{Lip}_{1}}|\mathbb{E}[h(X)]-\mathbb{E}[h(Y)]|,
$$

where Lip_{1} is the family of Lipschitz functions with Lipschitz constant at most one.

Question

Can the asymptotic Gaussianity of Z_{n} be quantitatively assessed with respect to a suitable probability metric? such as distance d_{K}, defined as

$$
d_{\mathrm{K}}(X, Y)=\sup _{z \in \mathbb{R}}|\mathbb{P}[X \leq z]-\mathbb{P}[Y \leq z]|
$$

or

$$
d_{1}(X, Y)=\sup _{h \in \operatorname{Lip}_{1}}|\mathbb{E}[h(X)]-\mathbb{E}[h(Y)]|,
$$

where Lip_{1} is the family of Lipschitz functions with Lipschitz constant at most one. We define as well

$$
d_{T V}(X, Y)=\sup _{A \in \mathcal{B}(\mathbb{R})}|\mathbb{P}[X \in A]-\mathbb{P}[Y \in A]| .
$$

LeVeque's conjecture (1949)

LeVeque, showed that

$$
d_{\mathrm{K}}\left(Z_{n}, \mathcal{N}\right) \leq C \frac{\log \log \log (n)}{\log \log (n)^{\frac{1}{4}}}
$$

for some constant $C>0$ independent of n.

LeVeque's conjecture (1949)

LeVeque, showed that

$$
d_{\mathrm{K}}\left(Z_{n}, \mathcal{N}\right) \leq C \frac{\log \log \log (n)}{\log \log (n)^{\frac{1}{4}}}
$$

for some constant $C>0$ independent of n. He also conjectured that

$$
d_{\mathrm{K}}\left(Z_{n}, \mathcal{N}\right) \leq C \log \log (n)^{-\frac{1}{2}}
$$

LeVeque's conjecture (1949)

LeVeque, showed that

$$
d_{\mathrm{K}}\left(Z_{n}, \mathcal{N}\right) \leq C \frac{\log \log \log (n)}{\log \log (n)^{\frac{1}{4}}}
$$

for some constant $C>0$ independent of n. He also conjectured that

$$
d_{\mathrm{K}}\left(Z_{n}, \mathcal{N}\right) \leq C \log \log (n)^{-\frac{1}{2}}
$$

This was shown to be true later by Rényi and Turán (1958).

LeVeque's conjecture (1949)

LeVeque, showed that

$$
d_{\mathrm{K}}\left(Z_{n}, \mathcal{N}\right) \leq C \frac{\log \log \log (n)}{\log \log (n)^{\frac{1}{4}}}
$$

for some constant $C>0$ independent of n. He also conjectured that

$$
d_{\mathrm{K}}\left(Z_{n}, \mathcal{N}\right) \leq C \log \log (n)^{-\frac{1}{2}}
$$

This was shown to be true later by Rényi and Turán (1958). The approach consisted on approximating $\mathbb{E}\left[e^{i \lambda \omega\left(J_{n}\right)}\right]$.

LeVeque's conjecture (1949)

LeVeque, showed that

$$
d_{\mathrm{K}}\left(Z_{n}, \mathcal{N}\right) \leq C \frac{\log \log \log (n)}{\log \log (n)^{\frac{1}{4}}},
$$

for some constant $C>0$ independent of n. He also conjectured that

$$
d_{\mathrm{K}}\left(Z_{n}, \mathcal{N}\right) \leq C \log \log (n)^{-\frac{1}{2}}
$$

This was shown to be true later by Rényi and Turán (1958). The approach consisted on approximating $\mathbb{E}\left[e^{i \lambda \omega\left(J_{n}\right)}\right]$.

Main ingredients: Perron's formula, Dirichlet series and some estimates on the Riemann zeta function ζ around the vertical strip $\{z \in \mathbb{C} ; \Re(z)=1\}$.

Mod- ϕ convergence approach (2014)

Nowadays, a lot is known about $\mathbb{E}\left[e^{\mathrm{i} \lambda \omega\left(J_{n}\right)}\right]$.

Mod- ϕ convergence approach (2014)

Nowadays, a lot is known about $\mathbb{E}\left[e^{i \lambda \omega\left(J_{n}\right)}\right]$. This motivated studying the asymptotic properties of $\omega\left(J_{n}\right)$ by analyzing a relation of the type

$$
\frac{\mathbb{E}\left[\mathrm{e}^{\mathrm{i} \lambda \omega\left(J_{n}\right)}\right]}{\mathbb{E}\left[e^{\mathrm{i} \lambda M_{n}}\right]} \approx F(\lambda)
$$

where M_{n} is a random variable with Poisson distribution of parameter $\log \log (n)$ and $F(\lambda)$ is a (possibly non-trivial) function (work by Barbour, Kowalski and Nikeghbali in 2014).

Mod- ϕ convergence approach (2014)

Nowadays, a lot is known about $\mathbb{E}\left[e^{i \lambda \omega\left(J_{n}\right)}\right]$. This motivated studying the asymptotic properties of $\omega\left(J_{n}\right)$ by analyzing a relation of the type

$$
\frac{\mathbb{E}\left[\mathrm{e}^{\mathrm{i} \lambda \omega\left(J_{n}\right)}\right]}{\mathbb{E}\left[e^{\mathrm{i} \lambda M_{n}}\right]} \approx F(\lambda)
$$

where M_{n} is a random variable with Poisson distribution of parameter $\log \log (n)$ and $F(\lambda)$ is a (possibly non-trivial) function (work by Barbour, Kowalski and Nikeghbali in 2014). This lead to

Theorem

There exists a constant $C>0$, such that

$$
\begin{equation*}
d_{T V}\left(\omega\left(J_{n}\right), M_{n}\right) \leq C \log \log (n)^{-\frac{1}{2}} \tag{4}
\end{equation*}
$$

Other approaches (Stein's method)

Recall the heuristics that $\mathbb{1}_{\left\{p \text { divides } J_{n}\right\}}$, for $p \in \mathcal{P} \cap\left[1, n^{\frac{1}{\alpha_{n}}}\right]$ are approximately independent.

Other approaches (Stein's method)

Recall the heuristics that $\mathbb{1}_{\left\{p \text { divides } J_{n}\right\}}$, for $p \in \mathcal{P} \cap\left[1, n^{\frac{1}{\alpha_{n}}}\right]$ are approximately independent.

Stein's method perspective
Random variables with weak dependence are the main object in the theory of Stein's method.

Other approaches (Stein's method)

Recall the heuristics that $\mathbb{1}_{\left\{p \text { divides } J_{n}\right\}}$, for $p \in \mathcal{P} \cap\left[1, n^{\frac{1}{\alpha_{n}}}\right]$ are approximately independent.

Stein's method perspective

Random variables with weak dependence are the main object in the theory of Stein's method.

Adam Harper (2009) used this so show

$$
d_{T V}\left(\sum_{p \in \mathcal{P} \cap\left[1, n^{\frac{1}{\alpha_{n}}}\right]} \mathbb{1}_{\left\{p \text { divides } J_{n}\right\}}, M_{n}\right) \leq \frac{1}{2 \log \log (n)}+\frac{5.2}{\log \log (n)^{\frac{3}{2}}},
$$

where $\alpha_{n}:=3 \log \log (n)^{2}$.

Other approaches (Stein's method)

Recall the heuristics that $\mathbb{1}_{\left\{p \text { divides } J_{n}\right\}}$, for $p \in \mathcal{P} \cap\left[1, n^{\frac{1}{\alpha_{n}}}\right]$ are approximately independent.

Stein's method perspective

Random variables with weak dependence are the main object in the theory of Stein's method.

Adam Harper (2009) used this so show

$$
d_{T V}\left(\sum_{p \in \mathcal{P} \cap\left[1, n^{\frac{1}{\alpha_{n}}}\right]} \mathbb{1}_{\left\{p \text { divides } J_{n}\right\}}, M_{n}\right) \leq \frac{1}{2 \log \log (n)}+\frac{5.2}{\log \log (n)^{\frac{3}{2}}},
$$

where $\alpha_{n}:=3 \log \log (n)^{2}$. Consequence,

$$
d_{K}\left(\omega\left(J_{n}\right), M_{n}\right) \leq \frac{C \log \log \log (n)}{\sqrt{\log \log (n)}} .
$$

Other approaches (Independence approximation)

Another idea consists on comparing ($\mathbb{1}_{\left\{p \text { divides } J_{n}\right\}} ; p \in \mathcal{P} \cap\left[1, n^{\frac{1}{\beta_{n}}}\right.$) with independent random variables.

Other approaches (Independence approximation)

Another idea consists on comparing ($\mathbb{1}_{\left\{p \text { divides } J_{n}\right\}} ; p \in \mathcal{P} \cap\left[1, n^{\frac{1}{\beta_{n}}}\right.$) with independent random variables.

Kubilius (1964) showed that if $\beta_{n} \rightarrow \infty$,

$$
d_{T V}\left(\left(\mathbb{1}_{\left\{p \text { divides } J_{n}\right\}} ; p \in \mathcal{P} \cap\left[1, n^{\frac{1}{\beta_{n}}}\right]\right),\left(B_{p} \in \mathcal{P} \cap\left[1, n^{\frac{1}{\beta_{n}}}\right]\right)\right) \leq e^{-c \beta_{n}},
$$

where B_{p} are independent Bernoulli r.v. with $\mathbb{P}\left[B_{p}\right]=1 / p$.

Other approaches (Independence approximation)

Another idea consists on comparing $\left(\mathbb{1}_{\left\{p \text { divides } J_{n}\right\}} ; p \in \mathcal{P} \cap\left[1, n^{\frac{1}{\beta_{n}}}\right.\right.$) with independent random variables.

Kubilius (1964) showed that if $\beta_{n} \rightarrow \infty$,

$$
d_{T V}\left(\left(\mathbb{1}_{\left\{p \text { divides } J_{n}\right\}} ; p \in \mathcal{P} \cap\left[1, n^{\frac{1}{\beta_{n}}}\right]\right),\left(B_{p} \in \mathcal{P} \cap\left[1, n^{\frac{1}{\beta_{n}}}\right]\right)\right) \leq e^{-c \beta_{n}},
$$

where B_{p} are independent Bernoulli r.v. with $\mathbb{P}\left[B_{p}\right]=1 / p$. Thus,

$$
\sum_{p \in \mathcal{P} \cap\left[1, n^{\frac{1}{\beta_{n}}}\right]} \mathbb{1}_{\left\{p \text { divides } J_{n}\right\}} \approx \sum_{p \in \mathcal{P} \cap\left[1, n^{\frac{1}{\beta_{n}}}\right]} B_{p}
$$

Consequence similar to Harper's result.

The size biased permutation approach

Arratia (2013) suggests comparing J_{n} with a partial product of a biased permutation of factors T_{n} and a random prime P_{n}. He proves that

$$
d_{T V}\left(J_{n}, T_{n} Q_{n}\right) \leq C \frac{\log \log (n)}{\log (n)} .
$$

The size biased permutation approach

Arratia (2013) suggests comparing J_{n} with a partial product of a biased permutation of factors T_{n} and a random prime P_{n}. He proves that

$$
d_{T V}\left(J_{n}, T_{n} Q_{n}\right) \leq C \frac{\log \log (n)}{\log (n)} .
$$

This is used to show that if $d_{\Omega}: \mathbb{N}^{2} \rightarrow \mathbb{N}$ denotes the insertion deletion distance $d_{\Omega}\left(\prod_{p \in \mathcal{P}} p^{\alpha_{p}}, \prod_{p \in \mathcal{P}} p^{\beta_{p}}\right):=\sum_{p \in \mathcal{P}}\left|\alpha_{p}-\beta_{p}\right|$, and $d_{1, \Omega}$ the associated Wasserstein distance,

The size biased permutation approach

Arratia (2013) suggests comparing J_{n} with a partial product of a biased permutation of factors T_{n} and a random prime P_{n}. He proves that

$$
d_{T V}\left(J_{n}, T_{n} Q_{n}\right) \leq C \frac{\log \log (n)}{\log (n)} .
$$

This is used to show that if $d_{\Omega}: \mathbb{N}^{2} \rightarrow \mathbb{N}$ denotes the insertion deletion distance $d_{\Omega}\left(\prod_{p \in \mathcal{P}} p^{\alpha_{p}}, \prod_{p \in \mathcal{P}} p^{\beta_{p}}\right):=\sum_{p \in \mathcal{P}}\left|\alpha_{p}-\beta_{p}\right|$, and $d_{1, \Omega}$ the associated Wasserstein distance,

$$
\lim _{n \rightarrow \infty} d_{1, \Omega}\left(J_{n}, \prod_{p \in \mathcal{P}_{n}} p^{\xi_{p}}\right)=2
$$

where

$$
\mathbb{P}\left[\xi_{p}=k\right]=p^{-k}(1-1 / p)
$$

for $k \in \mathbb{N}_{0}:=\mathbb{N} \cup\{0\}$.

Main results

CLT for additive functions

Let $\psi: \mathbb{N} \rightarrow \mathbb{N}$ be such that $\psi(a b)=\psi(a)+\psi(b)$ for a, b co-prime.
(H1) We have that

$$
\|\psi\|_{\mathcal{P}}:=\sup _{p \in \mathcal{P}}|\psi(p)|<\infty
$$

(H2) There exists a (possibly unbounded) function $\Psi: \mathcal{P} \rightarrow \mathbb{R}_{+}$satisfying

$$
\|\Psi\|_{\mathcal{P}}:=\left(\sum_{p \in \mathcal{P}} \frac{\Psi(p)^{2}}{p^{2}}\right)^{1 / 2}<\infty
$$

and such that for all $p \in \mathcal{P}_{n}$,

$$
\left\|\psi\left(p^{\xi_{P}+2}\right)\right\|_{L^{2}(\Omega)} \leq \Psi(p) .
$$

Main result for Kolmogorov distance

Let μ_{n} and $\sigma_{n}>0$ be given by

$$
\begin{equation*}
\mu_{n}=\sum_{p \in \mathcal{P}_{n}} \mathbb{E}\left[\psi\left(p^{\xi_{p}}\right)\right] \quad \text { and } \quad \sigma_{n}^{2}=\sum_{p \in \mathcal{P}_{n}} \operatorname{Var}\left[\psi\left(p^{\xi_{p}}\right)\right] \tag{5}
\end{equation*}
$$

Main result for Kolmogorov distance

Let μ_{n} and $\sigma_{n}>0$ be given by

$$
\begin{equation*}
\mu_{n}=\sum_{p \in \mathcal{P}_{n}} \mathbb{E}\left[\psi\left(p^{\xi_{p}}\right)\right] \quad \text { and } \quad \sigma_{n}^{2}=\sum_{p \in \mathcal{P}_{n}} \operatorname{Var}\left[\psi\left(p^{\xi_{p}}\right)\right] \tag{5}
\end{equation*}
$$

Theorem (Chen, Jaramillo, Yang)
Suppose that ψ satisfies (H1) and (H2). Then, if $X_{p}:=\sigma_{n}^{-1} \psi\left(p^{\xi_{p}}\right)$, and provided that $\sigma_{n}^{2} \geq 3\left(\|\psi\|_{\mathcal{P}}^{2}+\|\Psi\|_{\mathcal{P}}^{2}\right)$,

$$
d_{\mathrm{K}}\left(\frac{\psi\left(J_{n}\right)-\mu_{n}}{\sigma_{n}}, \mathcal{N}\right) \leq \frac{\kappa_{1}}{\sigma_{n}}+\kappa_{2} \sum_{p \in \mathcal{P}_{n}} \mathbb{E}\left[\left|X_{p}\right|^{3}\right]+\frac{\kappa_{3} \log \log (n)}{\log (n)}
$$

where

$$
\begin{equation*}
\kappa_{1}:=29.2\|\psi\|_{\mathcal{P}}+34.8\|\Psi\|_{\mathcal{P}} \quad \kappa_{2}:=97.2 \quad \kappa_{3}:=61 \tag{6}
\end{equation*}
$$

Main result for Wasserstein distance

Theorem (Chen, Jaramillo, Yang)

$$
\begin{equation*}
d_{1}\left(\frac{\psi\left(J_{n}\right)-\mu_{n}}{\sigma_{n}}, \mathcal{N}\right) \leq \frac{\kappa_{4}}{\sigma_{n}}+\kappa_{5} \sum_{p \in \mathcal{P}_{n}} \mathbb{E}\left[\left|X_{p}\right|^{3}\right]+\kappa_{6} \frac{\log \log (n)^{\frac{3}{2}}}{\log (n)^{\frac{1}{2}}}, \tag{7}
\end{equation*}
$$

where

$$
\kappa_{4}:=16.6\|\psi\|_{\mathcal{P}}+11.3\|\Psi\|_{\mathcal{P}} \quad \kappa_{5}:=24 \quad \kappa_{6}:=21\|\psi\|_{\mathcal{P}}+45 .
$$

Ideas behind the proofs

Multiplicities of prime factors

For a given $p \in \mathcal{P}$, define $\alpha_{p}: \mathbb{N} \rightarrow \mathbb{N}$, by

$$
\begin{equation*}
k=\prod_{p \in \mathcal{P}} p^{\alpha_{p}(k)} . \tag{8}
\end{equation*}
$$

Multiplicities of prime factors

For a given $p \in \mathcal{P}$, define $\alpha_{p}: \mathbb{N} \rightarrow \mathbb{N}$, by

$$
\begin{equation*}
k=\prod_{p \in \mathcal{P}} p^{\alpha_{\rho}(k)} . \tag{8}
\end{equation*}
$$

For any $i \in \mathbb{N}$ and $k_{1}, \ldots, k_{i} \in \mathbb{N}_{0}$,

$$
\bigcap_{j=1}^{i}\left\{\alpha_{p_{j}}\left(J_{n}\right) \geq k_{j}\right\}=\bigcap_{j=1}^{i}\left\{p_{j}^{k_{j}} \text { divides } J_{n}\right\}=\left\{\prod_{j=1}^{i} p_{j}^{k_{j}} \text { divides } J_{n}\right\},
$$

Multiplicities of prime factors

For a given $p \in \mathcal{P}$, define $\alpha_{p}: \mathbb{N} \rightarrow \mathbb{N}$, by

$$
\begin{equation*}
k=\prod_{p \in \mathcal{P}} p^{\alpha_{\rho}(k)} . \tag{8}
\end{equation*}
$$

For any $i \in \mathbb{N}$ and $k_{1}, \ldots, k_{i} \in \mathbb{N}_{0}$,

$$
\bigcap_{j=1}^{i}\left\{\alpha_{p_{j}}\left(J_{n}\right) \geq k_{j}\right\}=\bigcap_{j=1}^{i}\left\{p_{j}^{k_{j}} \text { divides } J_{n}\right\}=\left\{\prod_{j=1}^{i} p_{j}^{k_{j}} \text { divides } J_{n}\right\},
$$

so $\lim _{n \rightarrow \infty} \mathbb{P}\left[\alpha_{p_{j}}\left(J_{n}\right) \geq k_{j}\right.$ for all $\left.1 \leq j \leq i\right]=p_{1}^{-k_{1}} \cdots p_{i}^{-k_{i}}$.

Multiplicities of prime factors

For a given $p \in \mathcal{P}$, define $\alpha_{p}: \mathbb{N} \rightarrow \mathbb{N}$, by

$$
\begin{equation*}
k=\prod_{p \in \mathcal{P}} p^{\alpha_{\rho}(k)} . \tag{8}
\end{equation*}
$$

For any $i \in \mathbb{N}$ and $k_{1}, \ldots, k_{i} \in \mathbb{N}_{0}$,

$$
\bigcap_{j=1}^{i}\left\{\alpha_{p_{j}}\left(J_{n}\right) \geq k_{j}\right\}=\bigcap_{j=1}^{i}\left\{p_{j}^{k_{j}} \text { divides } J_{n}\right\}=\left\{\prod_{j=1}^{i} p_{j}^{k_{j}} \text { divides } J_{n}\right\},
$$

so $\lim _{n \rightarrow \infty} \mathbb{P}\left[\alpha_{p_{j}}\left(J_{n}\right) \geq k_{j}\right.$ for all $\left.1 \leq j \leq i\right]=p_{1}^{-k_{1}} \cdots p_{i}^{-k_{i}}$. This gives

$$
\left(\alpha_{p_{1}}\left(J_{n}\right), \ldots, \alpha_{p_{i}}\left(J_{n}\right)\right) \xrightarrow{\text { Law }}\left(\xi_{p_{1}}, \ldots, \xi_{p_{i}}\right)
$$

Multiplicities of prime factors

For a given $p \in \mathcal{P}$, define $\alpha_{p}: \mathbb{N} \rightarrow \mathbb{N}$, by

$$
\begin{equation*}
k=\prod_{p \in \mathcal{P}} p^{\alpha_{\rho}(k)} \tag{8}
\end{equation*}
$$

For any $i \in \mathbb{N}$ and $k_{1}, \ldots, k_{i} \in \mathbb{N}_{0}$,

$$
\bigcap_{j=1}^{i}\left\{\alpha_{p_{j}}\left(J_{n}\right) \geq k_{j}\right\}=\bigcap_{j=1}^{i}\left\{p_{j}^{k_{j}} \text { divides } J_{n}\right\}=\left\{\prod_{j=1}^{i} p_{j}^{k_{j}} \text { divides } J_{n}\right\},
$$

so $\lim _{n \rightarrow \infty} \mathbb{P}\left[\alpha_{p_{j}}\left(J_{n}\right) \geq k_{j}\right.$ for all $\left.1 \leq j \leq i\right]=p_{1}^{-k_{1}} \cdots p_{i}^{-k_{i}}$. This gives

$$
\left(\alpha_{p_{1}}\left(J_{n}\right), \ldots, \alpha_{p_{i}}\left(J_{n}\right)\right) \xrightarrow{\operatorname{Lan}}\left(\xi_{p_{1}}, \ldots, \xi_{p_{i}}\right)
$$

Question: can we use the ξ_{p} to construct a r.v. equal in law to J_{n} ?

Multiplicities of prime factors

For a given $p \in \mathcal{P}$, define $\alpha_{p}: \mathbb{N} \rightarrow \mathbb{N}$, by

$$
\begin{equation*}
k=\prod_{p \in \mathcal{P}} p^{\alpha_{\rho}(k)} \tag{8}
\end{equation*}
$$

For any $i \in \mathbb{N}$ and $k_{1}, \ldots, k_{i} \in \mathbb{N}_{0}$,

$$
\bigcap_{j=1}^{i}\left\{\alpha_{p_{j}}\left(J_{n}\right) \geq k_{j}\right\}=\bigcap_{j=1}^{i}\left\{p_{j}^{k_{j}} \text { divides } J_{n}\right\}=\left\{\prod_{j=1}^{i} p_{j}^{k_{j}} \text { divides } J_{n}\right\},
$$

so $\lim _{n \rightarrow \infty} \mathbb{P}\left[\alpha_{p_{j}}\left(J_{n}\right) \geq k_{j}\right.$ for all $\left.1 \leq j \leq i\right]=p_{1}^{-k_{1}} \cdots p_{i}^{-k_{i}}$. This gives

$$
\left(\alpha_{p_{1}}\left(J_{n}\right), \ldots, \alpha_{p_{i}}\left(J_{n}\right)\right) \xrightarrow{\operatorname{Lan}}\left(\xi_{p_{1}}, \ldots, \xi_{p_{i}}\right)
$$

Question: can we use the ξ_{p} to construct a r.v. equal in law to J_{n} ? Answer: not easily

Multiplicities of prime factors

For a given $p \in \mathcal{P}$, define $\alpha_{p}: \mathbb{N} \rightarrow \mathbb{N}$, by

$$
\begin{equation*}
k=\prod_{p \in \mathcal{P}} p^{\alpha_{\rho}(k)} \tag{8}
\end{equation*}
$$

For any $i \in \mathbb{N}$ and $k_{1}, \ldots, k_{i} \in \mathbb{N}_{0}$,

$$
\bigcap_{j=1}^{i}\left\{\alpha_{p_{j}}\left(J_{n}\right) \geq k_{j}\right\}=\bigcap_{j=1}^{i}\left\{p_{j}^{k_{j}} \text { divides } J_{n}\right\}=\left\{\prod_{j=1}^{i} p_{j}^{k_{j}} \text { divides } J_{n}\right\},
$$

so $\lim _{n \rightarrow \infty} \mathbb{P}\left[\alpha_{p_{j}}\left(J_{n}\right) \geq k_{j}\right.$ for all $\left.1 \leq j \leq i\right]=p_{1}^{-k_{1}} \cdots p_{i}^{-k_{i}}$. This gives

$$
\left(\alpha_{p_{1}}\left(J_{n}\right), \ldots, \alpha_{p_{i}}\left(J_{n}\right)\right) \xrightarrow{\operatorname{Lan}}\left(\xi_{p_{1}}, \ldots, \xi_{p_{i}}\right)
$$

Question: can we use the ξ_{p} to construct a r.v. equal in law to J_{n} ? Answer: not easily... but...

A simplified model: Harmonic distribution H_{n}

Let H_{n} be a r.v. with $\mathbb{P}\left[H_{n}=k\right]=\frac{1}{L_{n} k}$, where $L_{n}:=\sum_{k=1}^{n} \frac{1}{k}$.

A simplified model: Harmonic distribution H_{n}

Let H_{n} be a r.v. with $\mathbb{P}\left[H_{n}=k\right]=\frac{1}{L_{n} k}$, where $L_{n}:=\sum_{k=1}^{n} \frac{1}{k}$. Then,

Proposition

Suppose that $n \geq 21$. Define the event

$$
\begin{equation*}
A_{n}:=\left\{\prod_{p \in \mathcal{P}_{n}} p^{\xi_{p}} \leq n\right\} \tag{9}
\end{equation*}
$$

as well as the random vector $\vec{C}(n):=\left(\alpha_{p}\left(H_{n}\right) ; p \in \mathcal{P}_{n}\right)$. Then the random variables $Y_{p}:=\psi\left(p^{\xi_{p}}\right)$, indexed by $p \in \mathcal{P}_{n}$, satisfy

$$
\begin{equation*}
\mathcal{L}(\psi(H(n)))=\mathcal{L}\left(\sum_{p \in \mathcal{P}_{n}} Y_{p} \mid A_{n}\right) . \tag{10}
\end{equation*}
$$

Link to the Harmonic distribution

Let $\{Q(k)\}_{k \geq 1}$ be independent r.v. independent of $\left(J_{n}, H_{n}\right)$ with $Q(k)$ uniformly distributed over

$$
\mathcal{P}_{k}^{*}:=\{1\} \cup \mathcal{P}_{k} .
$$

Link to the Harmonic distribution

Let $\{Q(k)\}_{k \geq 1}$ be independent r.v. independent of $\left(J_{n}, H_{n}\right)$ with $Q(k)$ uniformly distributed over

$$
\mathcal{P}_{k}^{*}:=\{1\} \cup \mathcal{P}_{k} .
$$

Let $\pi(n):=|\mathcal{P} \cap[1, n]|$. Using the fact that for $n \geq 229$,

$$
\begin{equation*}
\left|\pi(n)-\int_{0}^{n} \frac{1}{\log (t)} d t\right| \leq \frac{181 n}{\log (n)^{3}}, \tag{11}
\end{equation*}
$$

Link to the Harmonic distribution

Let $\{Q(k)\}_{k \geq 1}$ be independent r.v. independent of $\left(J_{n}, H_{n}\right)$ with $Q(k)$ uniformly distributed over

$$
\mathcal{P}_{k}^{*}:=\{1\} \cup \mathcal{P}_{k} .
$$

Let $\pi(n):=|\mathcal{P} \cap[1, n]|$. Using the fact that for $n \geq 229$,

$$
\begin{equation*}
\left|\pi(n)-\int_{0}^{n} \frac{1}{\log (t)} d t\right| \leq \frac{181 n}{\log (n)^{3}}, \tag{11}
\end{equation*}
$$

Lemma (Chen, Jaramillo and Yang)

The following bound (analogous to the one by Arratia) holds for $n \geq 21$

$$
d_{\mathrm{TV}}\left(J_{n}, H_{n} Q\left(n / H_{n}\right)\right) \leq 61 \frac{\log \log n}{\log n}
$$

Simplifying $\omega\left(J_{n}\right)$ to $\omega\left(H_{n}\right)$

We can easily show that

$$
\begin{aligned}
d_{\mathrm{K}}\left(\frac{\psi\left(J_{n}\right)-\mu_{n}}{\sigma_{n}}, \mathcal{N}\right) & \leq d_{T V}\left(J_{n}, H_{n} Q\left(n / H_{n}\right)\right) \\
& +d_{T V}\left(\psi\left(H_{n} Q\left(n / H_{n}\right)\right), \psi\left(H_{n}\right)+\psi\left(Q\left(n / H_{n}\right)\right)\right) \\
& +d_{\mathrm{K}}\left(\frac{\psi\left(H_{n}\right)+\psi\left(Q\left(n / H_{n}\right)-\mu_{n}\right.}{\sigma_{n}}, \frac{\psi\left(H_{n}\right)-\mu_{n}}{\sigma_{n}}\right) \\
& +d_{\mathrm{K}}\left(\frac{\psi\left(H_{n}\right)-\mu_{n}}{\sigma_{n}}, \mathcal{N}\right) .
\end{aligned}
$$

Simplifying $\omega\left(J_{n}\right)$ to $\omega\left(H_{n}\right)$

We can easily show that

$$
\begin{aligned}
d_{\mathrm{K}}\left(\frac{\psi\left(J_{n}\right)-\mu_{n}}{\sigma_{n}}, \mathcal{N}\right) & \leq d_{T V}\left(J_{n}, H_{n} Q\left(n / H_{n}\right)\right) \\
& +d_{T V}\left(\psi\left(H_{n} Q\left(n / H_{n}\right)\right), \psi\left(H_{n}\right)+\psi\left(Q\left(n / H_{n}\right)\right)\right) \\
& +d_{\mathrm{K}}\left(\frac{\psi\left(H_{n}\right)+\psi\left(Q\left(n / H_{n}\right)-\mu_{n}\right.}{\sigma_{n}}, \frac{\psi\left(H_{n}\right)-\mu_{n}}{\sigma_{n}}\right) \\
& +d_{\mathrm{K}}\left(\frac{\psi\left(H_{n}\right)-\mu_{n}}{\sigma_{n}}, \mathcal{N}\right)
\end{aligned}
$$

New goal: bound $d_{\mathrm{K}}\left(\frac{\psi\left(H_{n}\right)-\mu_{n}}{\sigma_{n}}, \mathcal{N}\right)$

Simplifying $\omega\left(J_{n}\right)$ to $\omega\left(H_{n}\right)$

We can easily show that

$$
\begin{aligned}
d_{\mathrm{K}}\left(\frac{\psi\left(J_{n}\right)-\mu_{n}}{\sigma_{n}}, \mathcal{N}\right) & \leq d_{T V}\left(J_{n}, H_{n} Q\left(n / H_{n}\right)\right) \\
& +d_{T V}\left(\psi\left(H_{n} Q\left(n / H_{n}\right)\right), \psi\left(H_{n}\right)+\psi\left(Q\left(n / H_{n}\right)\right)\right) \\
& +d_{\mathrm{K}}\left(\frac{\psi\left(H_{n}\right)+\psi\left(Q\left(n / H_{n}\right)-\mu_{n}\right.}{\sigma_{n}}, \frac{\psi\left(H_{n}\right)-\mu_{n}}{\sigma_{n}}\right) \\
& +d_{\mathrm{K}}\left(\frac{\psi\left(H_{n}\right)-\mu_{n}}{\sigma_{n}}, \mathcal{N}\right)
\end{aligned}
$$

New goal: bound $d_{\mathrm{K}}\left(\frac{\psi\left(H_{n}\right)-\mu_{n}}{\sigma_{n}}, \mathcal{N}\right)$

Methodology used

Since $\psi\left(H_{n}\right)$ is conditionally equal to $\sum_{p \in \mathcal{P}_{n}} \psi\left(p^{\xi_{p}}\right)$, we use Stein's method.

Stein's method

Lemma (Stein's lemma)
For every smooth $f: \mathbb{R} \rightarrow \mathbb{R}$,

$$
\mathbb{E}\left[f^{\prime}(\mathcal{N})\right]=\mathbb{E}[\mathcal{N} f(\mathcal{N})]
$$

Stein's method

Lemma (Stein's lemma)
For every smooth $f: \mathbb{R} \rightarrow \mathbb{R}$,

$$
\mathbb{E}\left[f^{\prime}(\mathcal{N})\right]=\mathbb{E}[\mathcal{N} f(\mathcal{N})]
$$

Stein's heuristics: if X is an \mathbb{R}-valued random variable such that

$$
\mathbb{E}\left[f^{\prime}(X)\right] \approx \mathbb{E}[X f(X)]
$$

for a large class of functions f, then Z is close to \mathcal{N} in some meaningul sense.

Stein's method

Lemma

Let $h_{r}: \mathbb{R} \rightarrow \mathbb{R}$ be given by $h_{r}(x):=\mathbb{1}_{(-\infty, r]}(x)$, for some $r \in \mathbb{R}$. Then, the equation

$$
f^{\prime}(x)-x f(x)=h_{r}(x)-\mathbb{E}\left[h_{r}(\mathcal{N})\right]
$$

has a unique solution $f=f_{r}$, satisfying

$$
\begin{equation*}
\sup _{w \in \mathbb{R}}\left|f_{r}^{\prime}(w)\right| \leq 2 \quad \text { and } \quad f_{r}(w) \leq \sqrt{\pi / 2} \tag{12}
\end{equation*}
$$

Stein's method

Lemma

Let $h_{r}: \mathbb{R} \rightarrow \mathbb{R}$ be given by $h_{r}(x):=\mathbb{1}_{(-\infty, r]}(x)$, for some $r \in \mathbb{R}$. Then, the equation

$$
f^{\prime}(x)-x f(x)=h_{r}(x)-\mathbb{E}\left[h_{r}(\mathcal{N})\right]
$$

has a unique solution $f=f_{r}$, satisfying

$$
\begin{equation*}
\sup _{w \in \mathbb{R}}\left|f_{r}^{\prime}(w)\right| \leq 2 \quad \text { and } \quad f_{r}(w) \leq \sqrt{\pi / 2} \tag{12}
\end{equation*}
$$

Thus, if X is some r.v.

$$
d_{K}(X, \mathcal{N}) \leq \sup _{f}\left|\mathbb{E}\left[f^{\prime}(X)-X f(X)\right]\right|
$$

where f ranges over the functions satisfying (12)

Stein's method for $\psi\left(H_{n}\right)$

As before, $h_{r}=\mathbb{1}_{\{(-\infty, r]\}}, f_{r}$ is Stein's solution and $Y_{p}:=\psi\left(p^{\xi_{p}}\right)$.

Stein's method for $\psi\left(H_{n}\right)$

As before, $h_{r}=\mathbb{1}_{\{(-\infty, r]\}}, f_{r}$ is Stein's solution and $Y_{p}:=\psi\left(p^{\xi_{p}}\right)$. By the identity

$$
\mathcal{L}(\psi(H(n)))=\mathcal{L}\left(\sum_{p \in \mathcal{P}_{n}} Y_{p} \mid \prod_{p \in \mathcal{P}_{n}} p^{\xi_{p}} \leq n\right),
$$

Stein's method for $\psi\left(H_{n}\right)$

As before, $h_{r}=\mathbb{1}_{\{(-\infty, r]\}}, f_{r}$ is Stein's solution and $Y_{p}:=\psi\left(p^{\xi_{p}}\right)$. By the identity

$$
\mathcal{L}(\psi(H(n)))=\mathcal{L}\left(\sum_{p \in \mathcal{P}_{n}} Y_{p} \mid \prod_{p \in \mathcal{P}_{n}} p^{\xi_{p}} \leq n\right),
$$

we have,

$$
\mathbb{E}\left[h_{r}\left(\frac{\psi\left(H_{n}\right)-\mu_{n}}{\sigma_{n}}\right)-\mathbb{E}\left[h_{r}(\mathcal{N})\right]\right]=\frac{\mathbb{E}\left[\left(f_{r}^{\prime}(W)-W f_{r}(W)\right) /\right]}{\mathbb{P}\left[\prod_{p \in \mathcal{P}_{n}} p^{\xi_{p}} \leq n\right]},
$$

where

$$
\begin{aligned}
W & =W_{n}:=\sigma_{n}^{-1}\left(\sum_{p \in \mathcal{P}_{n}} \psi\left(p^{\xi_{p}}\right)-\mu_{n}\right) \\
I & =I_{n}:=\mathbb{1}_{\left\{\prod_{p \in \mathcal{P}_{n}}{ }^{\left.\xi^{\xi_{p}} \leq n\right\}} .\right.} .
\end{aligned}
$$

Stein's method for $\psi\left(H_{n}\right)$

As before, $h_{r}=\mathbb{1}_{\{(-\infty, r]\}}, f_{r}$ is Stein's solution and $Y_{p}:=\psi\left(p^{\xi_{p}}\right)$. By the identity

$$
\mathcal{L}(\psi(H(n)))=\mathcal{L}\left(\sum_{p \in \mathcal{P}_{n}} Y_{p} \mid \prod_{p \in \mathcal{P}_{n}} p^{\xi_{p}} \leq n\right),
$$

we have,

$$
\mathbb{E}\left[h_{r}\left(\frac{\psi\left(H_{n}\right)-\mu_{n}}{\sigma_{n}}\right)-\mathbb{E}\left[h_{r}(\mathcal{N})\right]\right]=\frac{\mathbb{E}\left[\left(f_{r}^{\prime}(W)-W f_{r}(W)\right) \iota\right]}{\mathbb{P}\left[\prod_{p \in \mathcal{P}_{n}} p^{\xi_{p}} \leq n\right]}
$$

where

$$
\begin{aligned}
W & =W_{n}:=\sigma_{n}^{-1}\left(\sum_{p \in \mathcal{P}_{n}} \psi\left(p^{\xi_{p}}\right)-\mu_{n}\right) \\
I & =I_{n}:=\mathbb{1}_{\left\{\prod_{p \in \mathcal{P}_{n}}{ }^{\xi_{p}} \leq n\right\}} .
\end{aligned}
$$

New goal: estimate

$$
\mathbb{E}\left[\left(f_{r}^{\prime}(W)-W f_{r}(W)\right)!\right]
$$

Bounding $\mathbb{E}\left[\left(f_{r}^{\prime}(W)-W f_{r}(W)\right) /\right]$

Let $\left\{\xi_{p}^{\prime}\right\}_{p \in \mathcal{P}}$ be an independent copy of $\left\{\xi_{p}\right\}_{p \in \mathcal{P}}$, and Θ a random variable uniformly distributed over \mathcal{P}_{n} and independent of $\left\{\left(\xi_{p}^{\prime}, \xi_{p}\right)\right\}_{p \in \mathcal{P}}$.

Bounding $\mathbb{E}\left[\left(f_{r}^{\prime}(W)-W f_{r}(W)\right) /\right]$

Let $\left\{\xi_{p}^{\prime}\right\}_{p \in \mathcal{P}}$ be an independent copy of $\left\{\xi_{p}\right\}_{p \in \mathcal{P}}$, and Θ a random variable uniformly distributed over \mathcal{P}_{n} and independent of $\left\{\left(\xi_{p}^{\prime}, \xi_{p}\right)\right\}_{\boldsymbol{p} \in \mathcal{P}}$.
For each $n \in \mathbb{N}$, set

$$
\begin{aligned}
W^{\prime} & =\sigma_{n}^{-1}\left(\psi\left(\Theta^{\xi_{\theta}^{\prime}}\right)+\sum_{p \in \mathcal{P}_{n} \backslash\{\Theta\}} \psi\left(p^{\xi_{p}}\right)-\mu_{n}\right) \\
I^{\prime} & =\mathbb{1}_{\left\{\theta^{\xi_{\theta}^{\prime}}\right.} \prod_{p \in \mathcal{P}_{n} \backslash\{\theta\}} p^{\left.\xi_{p} \leq n\right\}}
\end{aligned}
$$

Then $\left((W, I),\left(W^{\prime}, I^{\prime}\right)\right) \stackrel{\text { Law }}{=}\left(\left(W^{\prime}, I^{\prime}\right),(W, I)\right)$.

Bounding $\mathbb{E}\left[\left(f_{r}^{\prime}(W)-W f_{r}(W)\right) /\right]$

Let $\left\{\xi_{p}^{\prime}\right\}_{p \in \mathcal{P}}$ be an independent copy of $\left\{\xi_{p}\right\}_{p \in \mathcal{P}}$, and Θ a random variable uniformly distributed over \mathcal{P}_{n} and independent of $\left\{\left(\xi_{p}^{\prime}, \xi_{p}\right)\right\}_{\boldsymbol{p} \in \mathcal{P}}$.
For each $n \in \mathbb{N}$, set

$$
\begin{aligned}
W^{\prime} & =\sigma_{n}^{-1}\left(\psi\left(\Theta^{\xi_{\theta}^{\prime}}\right)+\sum_{p \in \mathcal{P}_{n} \backslash\{\Theta\}} \psi\left(p^{\xi_{p}}\right)-\mu_{n}\right) \\
I^{\prime} & =\mathbb{1}_{\left\{\theta^{\xi_{\theta}^{\prime}}\right.} \prod_{p \in \mathcal{P}_{n} \backslash\{\theta\}} p^{\left.\xi_{p} \leq n\right\}}
\end{aligned}
$$

Then $\left((W, I),\left(W^{\prime}, I^{\prime}\right)\right) \stackrel{\text { Law }}{=}\left(\left(W^{\prime}, I^{\prime}\right),(W, I)\right)$. By exchangeability,

$$
\mathbb{E}\left[\left(W^{\prime}-W\right)\left(f_{r}(W) I-f_{r}\left(W^{\prime}\right) I^{\prime}\right)\right]=0
$$

Bounding $\mathbb{E}\left[\left(f_{r}^{\prime}(W)-W f_{r}(W)\right) /\right]$

Let $\left\{\xi_{p}^{\prime}\right\}_{p \in \mathcal{P}}$ be an independent copy of $\left\{\xi_{p}\right\}_{p \in \mathcal{P}}$, and Θ a random variable uniformly distributed over \mathcal{P}_{n} and independent of $\left\{\left(\xi_{p}^{\prime}, \xi_{p}\right)\right\}_{p \in \mathcal{P}}$.
For each $n \in \mathbb{N}$, set

$$
\begin{aligned}
W^{\prime} & =\sigma_{n}^{-1}\left(\psi\left(\Theta^{\xi_{\theta}^{\prime}}\right)+\sum_{p \in \mathcal{P}_{n} \backslash\{\Theta\}} \psi\left(p^{\xi_{p}}\right)-\mu_{n}\right) \\
I^{\prime} & =\mathbb{1}_{\left\{\theta^{\xi_{\theta}^{\prime}}\right.} \prod_{p \in \mathcal{P}_{n} \backslash\{\theta\}} p^{\left.\xi_{p} \leq n\right\}}
\end{aligned}
$$

Then $\left((W, I),\left(W^{\prime}, I^{\prime}\right)\right) \stackrel{\text { Law }}{=}\left(\left(W^{\prime}, I^{\prime}\right),(W, I)\right)$. By exchangeability,

$$
\mathbb{E}\left[\left(W^{\prime}-W\right)\left(f_{r}(W) I-f_{r}\left(W^{\prime}\right) I^{\prime}\right)\right]=0
$$

SO

$$
-2 \mathbb{E}\left[\left(W^{\prime}-W\right) f_{r}(W)!\right]=\mathbb{E}\left[\left(W^{\prime}-W\right)\left(f_{r}\left(W^{\prime}\right) I^{\prime}-f_{r}(W)!\right)\right]
$$

Handling $-2 \mathbb{E}\left[\left(W^{\prime}-W\right) f_{r}(W)!\right]$

We observe that $L H S:=-2 \mathbb{E}\left[\left(W^{\prime}-W\right) f_{r}(W) I\right]$ satisfies

$$
\begin{aligned}
L H S & =-\frac{2}{\pi(n)} \mathbb{E}\left[\frac{\left(\sum_{\theta \in \mathcal{P}_{n}} Y_{\theta}^{\prime}-\mu_{n}\right)-\left(\sum_{\theta \in \mathcal{P}_{n}} Y_{\theta}-\mu_{n}\right)}{\sigma_{n}} f_{r}(W) I\right] \\
& =\frac{2}{\pi(n)} \mathbb{E}\left[W f_{r}(W)!\right]-\frac{2}{\pi(n)} \mathbb{E}[W] \mathbb{E}\left[f_{r}(W) /\right],
\end{aligned}
$$

Handling $-2 \mathbb{E}\left[\left(W^{\prime}-W\right) f_{r}(W)!\right]$

We observe that $L H S:=-2 \mathbb{E}\left[\left(W^{\prime}-W\right) f_{r}(W) I\right]$ satisfies

$$
\begin{aligned}
L H S & =-\frac{2}{\pi(n)} \mathbb{E}\left[\frac{\left(\sum_{\theta \in \mathcal{P}_{n}} Y_{\theta}^{\prime}-\mu_{n}\right)-\left(\sum_{\theta \in \mathcal{P}_{n}} Y_{\theta}-\mu_{n}\right)}{\sigma_{n}} f_{r}(W) I\right] \\
& =\frac{2}{\pi(n)} \mathbb{E}\left[W f_{r}(W)!\right]-\frac{2}{\pi(n)} \mathbb{E}[W] \mathbb{E}\left[f_{r}(W) /\right],
\end{aligned}
$$

SO

$$
L H S=\frac{2}{\pi(n)} \mathbb{E}\left[W f_{r}(W) /\right],
$$

Handling $\mathbb{E}\left[\left(W^{\prime}-W\right)\left(f_{r}\left(W^{\prime}\right) I^{\prime}-f_{r}(W) I\right)\right]$

Define $X_{p}:=\sigma_{n}^{-1} Y_{p}$ and

$$
R H S:=\mathbb{E}\left[\left(W^{\prime}-W\right)\left(f_{r}\left(W^{\prime}\right) I^{\prime}-f_{r}(W) I\right)\right],
$$

Handling $\mathbb{E}\left[\left(W^{\prime}-W\right)\left(f_{r}\left(W^{\prime}\right) l^{\prime}-f_{r}(W) I\right)\right]$

Define $X_{p}:=\sigma_{n}^{-1} Y_{p}$ and

$$
R H S:=\mathbb{E}\left[\left(W^{\prime}-W\right)\left(f_{r}\left(W^{\prime}\right) I^{\prime}-f_{r}(W) I\right)\right],
$$

To estimate $R H S$ we formalize the approximation

$$
\begin{aligned}
R H S & \approx \frac{1}{\pi(n)} \sum_{p \in \mathcal{P}_{n}} \mathbb{E}\left[\left(X_{p}^{\prime}-X_{p}\right)^{2} f_{r}^{\prime}(W) \iota\right] \\
& \approx \frac{1}{\pi(n)} \sum_{p \in \mathcal{P}_{n}} \mathbb{E}\left[\left(X_{p}^{\prime}-X_{p}\right)^{2}\right] \mathbb{E}\left[f_{r}^{\prime}(W) \iota\right] \\
& =\frac{2 \operatorname{Var}(W)}{\pi(n)} \mathbb{E}\left[f_{r}^{\prime}(W) \iota\right],
\end{aligned}
$$

Handling $\mathbb{E}\left[\left(W^{\prime}-W\right)\left(f_{r}\left(W^{\prime}\right) I^{\prime}-f_{r}(W) I\right)\right]$

Define $X_{p}:=\sigma_{n}^{-1} Y_{p}$ and

$$
R H S:=\mathbb{E}\left[\left(W^{\prime}-W\right)\left(f_{r}\left(W^{\prime}\right) I^{\prime}-f_{r}(W) I\right)\right],
$$

To estimate $R H S$ we formalize the approximation

$$
\begin{aligned}
R H S & \approx \frac{1}{\pi(n)} \sum_{p \in \mathcal{P}_{n}} \mathbb{E}\left[\left(X_{p}^{\prime}-X_{p}\right)^{2} f_{r}^{\prime}(W) \iota\right] \\
& \approx \frac{1}{\pi(n)} \sum_{p \in \mathcal{P}_{n}} \mathbb{E}\left[\left(X_{p}^{\prime}-X_{p}\right)^{2}\right] \mathbb{E}\left[f_{r}^{\prime}(W) \iota\right] \\
& =\frac{2 \operatorname{Var}(W)}{\pi(n)} \mathbb{E}\left[f_{r}^{\prime}(W) \iota\right],
\end{aligned}
$$

to obtain

$$
R H S \approx \frac{2}{\pi(n)} \mathbb{E}\left[f_{r}^{\prime}(W) \iota\right]
$$

Conclusion

We conclude that

$$
0=|R H S-L H S| \approx\left|\frac{2}{\pi(n)}\left(\mathbb{E}\left[W f_{r}(W) r\right]-\mathbb{E}\left[f_{r}^{\prime}(W) r\right]\right)\right|
$$

Thus, the result follows by a careful analysis of the approximations.

Poisson case

Theorem (Chen, Jaramillo and Yang)
Let M_{n} be a Poisson distribution with parameter $\log \log (n)$ and define $\Omega: \mathbb{N} \rightarrow \mathbb{N}$ by $\Omega(m):=\sup _{p \in \mathcal{P}_{n}} \alpha_{p}(m)$.

Poisson case

Theorem (Chen, Jaramillo and Yang)

Let M_{n} be a Poisson distribution with parameter $\log \log (n)$ and define $\Omega: \mathbb{N} \rightarrow \mathbb{N}$ by $\Omega(m):=\sup _{p \in \mathcal{P}_{n}} \alpha_{p}(m)$. Then we have

$$
\begin{aligned}
& d_{\mathrm{TV}}\left(\omega\left(J_{n}\right), M_{n}\right) \leq \frac{7.2}{\sqrt{\log \log (n)}}+67.4 \frac{\log \log (n)}{\log (n)} \\
& d_{\mathrm{TV}}\left(\Omega\left(J_{n}\right), M_{n}\right) \leq \frac{14}{\sqrt{\log \log (n)}} .
\end{aligned}
$$

References

嗇 Chen L., Jaramillo A., Yang X. A probabilistic approach to the Erdös-Kac theorem for additive functions. Soon in Arxiv.

囯 R. Arratia. On the amount of dependence in the prime factorization of a uniform random integer. In Contemporary combinatorics, volume 10 of Bolyai Soc. Math. Stud., pages 29-91. János Bolyai Math. Soc., Budapest, 2002.
(R. D. Barbour, E. Kowalski, and A. Nikeghbali. Mod-discrete expansions. Probab. Theory Related Fields, 158(3-4):859-893, 2014.
(Adam J. Harper. Two new proofs of the Erdös-Kac theorem, with bound on the rate of convergence, by Stein's method for distributional approximations. Math. Proc. Cambridge Philos. Soc., 147(1):95-114, 2009.

