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Goal

Denote the set of primes by P.

Let ω : N→ N denote the prime factor
counting function,

ω(n) := |{p ∈ P; p divides n}|.

For instance, ω(54) = ω(2× 32) = 2. Let Jn be a random variable with
uniform distribution over {1, . . . , n}.

Goal

• Study ω(Jn). Describe as accurately as possible the asymptotic
behavior of ω(Jn)−µn

σn
, for suitable chosen µn and σn.

• What can be said when ω is replaced by a general function
ψ : N→ N only satisfying ψ(ab) = ψ(a) + ψ(b) for a, b ∈ N
coprime?
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Historical context



Classical Erdös-Kac theorem (1940)

Starting point: Paul Erdös and Mark Kac, proved that

Zn := ω(Jn)− log log(n)√
log log(n)

(1)

converge in distribution towards a standard Gaussian random variable N .

Some intuition: Denote Pn := P ∩ [1, n]. The convergence in (1) is
hinted by the decomposition

ω(Jn) =
∑

p∈Pn

1{p divides Jn}, (2)
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Intuition about Erdös-Kac theorem

One guesses that 1{p divides Jn} are weakly dependent since for d ∈ N,

P[d divides Jn] = 1
n

n∑
k=1

1{d divides k} = 1
n

⌊ n
d

⌋
≈ 1

d . (3)

Thus, if p1, . . . , pr ∈ Pn are different primes,

P[1{p1 divides Jn} = 1, . . . ,1{pr divides Jn} = 1] ≈ 1
p1 · · · pr

≈ P[1{p1 divides Jn} = 1] · · ·P[1{pr divides Jn} = 1]

Warning: nowadays it is known that the r.v. 1{p divides Jn}, for
p ∈ P ∩ [1, n

1
αn ] are approximately independent if αn →∞ is suitably

chosen (example: αn := 3 log log(n)2). But αn cannot be equal to one!
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Question

Can the asymptotic Gaussianity of Zn be quantitatively assessed with
respect to a suitable probability metric? such as distance dK, defined as

dK(X ,Y ) = sup
z∈R
|P[X ≤ z ]− P[Y ≤ z ]|

or

d1(X ,Y ) = sup
h∈Lip1

|E[h(X )]− E[h(Y )]|,

where Lip1 is the family of Lipschitz functions with Lipschitz constant at
most one. We define as well

dTV (X ,Y ) = sup
A∈B(R)

|P[X ∈ A]− P[Y ∈ A]|.
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LeVeque’s conjecture (1949)

LeVeque, showed that

dK(Zn,N ) ≤ C log log log(n)
log log(n) 1

4
,

for some constant C > 0 independent of n.

He also conjectured that

dK(Zn,N ) ≤ C log log(n)− 1
2 .

This was shown to be true later by Rényi and Turán (1958). The
approach consisted on approximating E[e iλω(Jn)].

Main ingredients: Perron’s formula, Dirichlet series and some estimates
on the Riemann zeta function ζ around the vertical strip
{z ∈ C ; <(z) = 1}.
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approach consisted on approximating E[e iλω(Jn)].

Main ingredients: Perron’s formula, Dirichlet series and some estimates
on the Riemann zeta function ζ around the vertical strip
{z ∈ C ; <(z) = 1}.

6



LeVeque’s conjecture (1949)

LeVeque, showed that

dK(Zn,N ) ≤ C log log log(n)
log log(n) 1

4
,

for some constant C > 0 independent of n. He also conjectured that

dK(Zn,N ) ≤ C log log(n)− 1
2 .

This was shown to be true later by Rényi and Turán (1958).
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Mod-φ convergence approach (2014)

Nowadays, a lot is known about E[e iλω(Jn)].

This motivated studying the
asymptotic properties of ω(Jn) by analyzing a relation of the type

E[e iλω(Jn)]
E[e iλMn ] ≈ F (λ),

where Mn is a random variable with Poisson distribution of parameter
log log(n) and F (λ) is a (possibly non-trivial) function (work by Barbour,
Kowalski and Nikeghbali in 2014). This lead to

Theorem
There exists a constant C > 0, such that

dTV (ω(Jn),Mn) ≤ C log log(n)− 1
2 . (4)
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Other approaches (Stein’s method)

Recall the heuristics that 1{p divides Jn}, for p ∈ P ∩ [1, n
1

αn ] are
approximately independent.

Stein’s method perspective
Random variables with weak dependence are the main object in the
theory of Stein’s method.

Adam Harper (2009) used this so show

dTV

( ∑
p∈P∩[1,n

1
αn ]

1{p divides Jn},Mn

)
≤ 1

2 log log(n) + 5.2
log log(n) 3

2
,

where αn := 3 log log(n)2. Consequence,

dK
(
ω(Jn),Mn

)
≤ C log log log(n)√

log log(n)
.
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Other approaches (Independence approximation)

Another idea consists on comparing (1{p divides Jn} ; p ∈ P ∩ [1, n
1

βn ) with
independent random variables.

Kubilius (1964) showed that if βn →∞,

dTV

(
(1{p divides Jn}; p ∈ P ∩ [1, n

1
βn ]), (Bp ∈ P ∩ [1, n

1
βn ])
)
≤ e−cβn ,

where Bp are independent Bernoulli r.v. with P[Bp] = 1/p. Thus,∑
p∈P∩[1,n

1
βn ]

1{p divides Jn} ≈
∑

p∈P∩[1,n
1

βn ]

Bp

Consequence similar to Harper’s result.
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The size biased permutation approach

Arratia (2013) suggests comparing Jn with a partial product of a biased
permutation of factors Tn and a random prime Pn. He proves that

dTV (Jn,TnQn) ≤ C log log(n)
log(n) .

This is used to show that if dΩ : N2 → N denotes the insertion deletion
distance dΩ(

∏
p∈P pαp ,

∏
p∈P pβp ) :=

∑
p∈P |αp − βp|, and d1,Ω the

associated Wasserstein distance,

lim
n→∞

d1,Ω(Jn,
∏

p∈Pn

pξp ) = 2,

where
P[ξp = k] = p−k(1− 1/p),

for k ∈ N0 := N ∪ {0}.
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Main results



CLT for additive functions

Let ψ : N→ N be such that ψ(ab) = ψ(a) + ψ(b) for a, b co-prime.

(H1) We have that

‖ψ‖P := sup
p∈P
|ψ(p)| <∞.

(H2) There exists a (possibly unbounded) function Ψ : P → R+ satisfying

|||Ψ|||P :=

∑
p∈P

Ψ(p)2

p2

1/2

<∞,

and such that for all p ∈ Pn,

‖ψ(pξp+2)‖L2(Ω) ≤ Ψ(p).
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Main result for Kolmogorov distance

Let µn and σn > 0 be given by

µn =
∑

p∈Pn

E[ψ(pξp )] and σ2
n =

∑
p∈Pn

Var[ψ(pξp )]. (5)

Theorem (Chen, Jaramillo, Yang)

Suppose that ψ satisfies (H1) and (H2). Then, if Xp := σ−1
n ψ(pξp ), and

provided that σ2
n ≥ 3(‖ψ‖2

P + |||Ψ|||2P),

dK

(
ψ(Jn)− µn

σn
,N
)
≤ κ1
σn

+ κ2
∑

p∈Pn

E[|Xp|3] + κ3 log log(n)
log(n) ,

where

κ1 := 29.2‖ψ‖P + 34.8|||Ψ|||P κ2 := 97.2 κ3 := 61. (6)
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Main result for Wasserstein distance

Theorem (Chen, Jaramillo, Yang)

d1

(
ψ(Jn)− µn

σn
,N
)
≤ κ4
σn

+ κ5
∑

p∈Pn

E[|Xp|3] + κ6
log log(n) 3

2

log(n) 1
2
, (7)

where

κ4 := 16.6‖ψ‖P + 11.3|||Ψ|||P κ5 := 24 κ6 := 21‖ψ‖P + 45.
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Ideas behind the proofs



Multiplicities of prime factors

For a given p ∈ P, define αp : N→ N, by

k =
∏
p∈P

pαp(k). (8)

For any i ∈ N and k1, ..., ki ∈ N0,

i⋂
j=1
{αpj (Jn) ≥ kj} =

i⋂
j=1
{pkj

j divides Jn} =
{ i∏

j=1
pkj

j divides Jn

}
,

so limn→∞ P[αpj (Jn) ≥ kj for all 1 ≤ j ≤ i ] = p−k1
1 · · · p−ki
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A simplified model: Harmonic distribution Hn

Let Hn be a r.v. with P[Hn = k] = 1
Lnk , where Ln :=

∑n
k=1

1
k .

Then,

Proposition

Suppose that n ≥ 21. Define the event

An :=
{ ∏

p∈Pn

pξp ≤ n
}
, (9)

as well as the random vector ~C(n) := (αp(Hn); p ∈ Pn). Then the
random variables Yp := ψ(pξp ), indexed by p ∈ Pn, satisfy

L(ψ(H(n))) = L(
∑

p∈Pn

Yp|An). (10)

15



A simplified model: Harmonic distribution Hn

Let Hn be a r.v. with P[Hn = k] = 1
Lnk , where Ln :=

∑n
k=1

1
k . Then,

Proposition

Suppose that n ≥ 21. Define the event

An :=
{ ∏

p∈Pn

pξp ≤ n
}
, (9)

as well as the random vector ~C(n) := (αp(Hn); p ∈ Pn). Then the
random variables Yp := ψ(pξp ), indexed by p ∈ Pn, satisfy

L(ψ(H(n))) = L(
∑

p∈Pn

Yp|An). (10)

15



Link to the Harmonic distribution

Let {Q(k)}k≥1 be independent r.v. independent of (Jn,Hn) with Q(k)
uniformly distributed over

P∗k := {1} ∪ Pk .

Let π(n) := |P ∩ [1, n]|. Using the fact that for n ≥ 229,∣∣∣∣π(n)−
∫ n

0

1
log(t) dt

∣∣∣∣ ≤ 181n
log(n)3 , (11)

Lemma (Chen, Jaramillo and Yang)

The following bound (analogous to the one by Arratia) holds for n ≥ 21

dTV(Jn,HnQ(n/Hn)) ≤ 61 log log n
log n .
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Simplifying ω(Jn) to ω(Hn)

We can easily show that

dK

(
ψ(Jn)− µn

σn
,N
)
≤ dTV (Jn,HnQ(n/Hn))

+ dTV (ψ(HnQ(n/Hn)), ψ(Hn) + ψ(Q(n/Hn)))

+ dK

(
ψ(Hn) + ψ(Q(n/Hn)− µn

σn
,
ψ(Hn)− µn

σn

)
+ dK

(
ψ(Hn)− µn

σn
,N
)
.

New goal: bound dK

(
ψ(Hn)−µn

σn
,N
)

Methodology used
Since ψ(Hn) is conditionally equal to

∑
p∈Pn

ψ(pξp ), we use Stein’s
method.
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Stein’s method

Lemma (Stein’s lemma)
For every smooth f : R→ R,

E[f ′(N )] = E[N f (N )]

Stein’s heuristics: if X is an R-valued random variable such that

E[f ′(X )] ≈ E[Xf (X )],

for a large class of functions f , then Z is close to N in some meaningul
sense.

18
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Stein’s method

Lemma
Let hr : R→ R be given by hr (x) := 1(−∞,r ](x), for some r ∈ R. Then,
the equation

f ′(x)− xf (x) = hr (x)− E[hr (N )]

has a unique solution f = fr , satisfying

sup
w∈R
|f ′r (w)| ≤ 2 and fr (w) ≤

√
π/2 (12)

Thus, if X is some r.v.

dK (X ,N ) ≤ sup
f
|E[f ′(X )− Xf (X )]|

where f ranges over the functions satisfying (12)
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Stein’s method for ψ(Hn)

As before, hr = 1{(−∞,r ]}, fr is Stein’s solution and Yp := ψ(pξp ).

By
the identity

L(ψ(H(n))) = L(
∑

p∈Pn

Yp|
∏

p∈Pn

pξp ≤ n),

we have,

E
[

hr

(
ψ(Hn)− µn

σn

)
− E[hr (N )]

]
= E[(f ′r (W )−Wfr (W ))I]

P[
∏

p∈Pn
pξp ≤ n] ,

where

W = Wn := σ−1
n (

∑
p∈Pn

ψ(pξp )− µn)

I = In := 1{
∏

p∈Pn
pξp≤n}.

New goal: estimate

E[(f ′r (W )−Wfr (W ))I].
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Bounding E[(f ′
r (W )−Wfr(W ))I ]

Let {ξ′p}p∈P be an independent copy of {ξp}p∈P , and Θ a random
variable uniformly distributed over Pn and independent of {(ξ′p, ξp)}p∈P .

For each n ∈ N, set

W ′ = σ−1
n (ψ(Θξ′

Θ ) +
∑

p∈Pn\{Θ}

ψ(pξp )− µn)

I ′ = 1
{θξ′

θ
∏

p∈Pn\{θ}
pξp≤n}

.

Then ((W , I), (W ′, I ′)) Law= ((W ′, I ′), (W , I)). By exchangeability,

E[(W ′ −W )(fr (W )I − fr (W ′)I ′)] = 0.

so

−2E[(W ′ −W )fr (W )I] = E[(W ′ −W )(fr (W ′)I ′ − fr (W )I)].
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Handling −2E[(W ′ −W )fr(W )I ]

We observe that LHS := −2E[(W ′ −W )fr (W )I] satisfies

LHS = − 2
π(n)E

[ (
∑
θ∈Pn

Y ′θ − µn)− (
∑
θ∈Pn

Yθ − µn)
σn

fr (W )I
]

= 2
π(n)E[Wfr (W )I]− 2

π(n)E[W ]E[fr (W )I],

so
LHS = 2

π(n)E[Wfr (W )I],
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Handling E[(W ′ −W )(fr(W ′)I ′ − fr(W )I)]

Define Xp := σ−1
n Yp and

RHS := E[(W ′ −W )(fr (W ′)I ′ − fr (W )I)],

To estimate RHS we formalize the approximation

RHS ≈ 1
π(n)

∑
p∈Pn

E[(X ′p − Xp)2f ′r (W )I]

≈ 1
π(n)

∑
p∈Pn

E[(X ′p − Xp)2]E[f ′r (W )I]

= 2Var(W )
π(n) E[f ′r (W )I],

to obtain

RHS ≈ 2
π(n)E[f ′r (W )I],
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Conclusion

We conclude that

0 = |RHS − LHS| ≈ | 2
π(n) (E[Wfr (W )I]− E[f ′r (W )I])|.

Thus, the result follows by a careful analysis of the approximations.
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Poisson case

Theorem (Chen, Jaramillo and Yang)

Let Mn be a Poisson distribution with parameter log log(n) and define
Ω : N→ N by Ω(m) := supp∈Pn αp(m).

Then we have

dTV(ω(Jn),Mn) ≤ 7.2√
log log(n)

+ 67.4 log log(n)
log(n)

dTV(Ω(Jn),Mn) ≤ 14√
log log(n)

.
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