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Overview

Let {Xt}t≥0 be a fractional Brownian motion of Hurst parameter
H ∈ (0, 1).

Namely, X is centered and Gaussian, with covariance function

E[XsXt ] = 1
2 (t2H + s2H − |s − t|2H).

We will observe realizations of X in discrete times

X1 X2 X3 · · · Xbntc

where t > 0. Our starting point is the study of a suitable normalization
of the variables

bntc∑
i=1

f (Xi )
Law=

bntc∑
i=1

f (nHX i
n
)

where f is some test function, with properties to be specified later.
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Overview

These type of variables are a special instance of the statistics

G (n)
a,t := bn

bntc∑
i=1

f (na(X i
n
− λ)), (1)

where bn > 0 is a normalizing constant, f : R→ R is a test function,
λ ∈ R and a > 0.

Specific aim: Study the first and second order fluctuations of such
random functions.

What will come later: The variables G (n)
a,t are closely related to the local

time of X at the level λ. The fluctuations are going to be closely related
to the formal derivatives of the local time of X !
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Preliminaries: local times

The local time of X at λ ∈ R, is heuristically defined by
∫ t

0 δ0(Xs − λ)ds.

Rigorously,

Lt(λ) := lim
ε→0

∫ t

0
φε(Xs − λ)ds,

where the convergence is taken in the L2-sense and φε is the heat kernel
with variance ε > 0, defined by φε(x) := (2πε)− 1

2 exp{− 1
2ε |x |

2}.
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Historical context (first order approximation)

The first order approximation of our problem was solved by Jeganathan
(2004), who showed that for all H ∈ (0, 1), if f ∈ L1(R) ∩ L2(R),

nH−1
bntc∑
i=1

f (nH(X i−1
n
− λ)) L2(Ω)−→ Lt(λ)

∫
R

f (x)dx . (2)

Remark: one sees immediately that (2) implies a trivial conclusion in the
case

∫
R f (x)dx = 0.
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Historical context (second order approximation)

A refinement of the previous result was first obtained by Jeganathan,
who showed that if 1/3 < H < 1,

∫
R(|f (x)|p + |xf (x)|)dx <∞ for

p = 1, 2, 3, 4, and
∫
R f (x)dx = 0, then,

n
H−1

2

bntc∑
i=1

f (nH(X i−1
n
− λ)) f .d.d.−→

√
b WLt (λ), (3)

where f .d.d.−→ indicates convergence in the sense of finite-dimensional
distributions.

Questions

- What happens when H ≤ 1
3 ?

- Can something be said in the non-zero energy case?
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Handling the “rough case”, where H is small.

The main ingredient for handling the remaining cases of the theorems
previously studied by Jeganathan and Nualart et.al. is the spatial
derivative of the local time.

Lemma

Let ` ∈ Z be such that 0 < H < 1
2`+1 . Then, for every t ≥ 0 and λ ∈ R,

the random variables

L(`)
t,ε(λ) =

∫ t

0
δ

(`)
0 (Xs − λ)ds :=

∫ t

0
φ(`)
ε (Xs − λ)ds, ε > 0, (4)

converge in L2 to a limit L(`)
t (λ), as ε→ 0 .
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A more general model

One can easily prove that all functions f of the form f = g ′ with
g , g ′ ∈ L1(R) satisfy the property

∫
R f (x)dx = 0.

For ` ∈ N and a function g in the set W `,1 of real functions with weak
derivatives of order ` satisfying

∑̀
i=1

∫
R
|g (i)(x)|dx <∞,

we define

G (n,`)
t,λ,a[g ] :=

bntc∑
i=2

g (`)(na(X i−1
n
− λ)).
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Main results

Theorem (Jaramillo, Nourdin, Peccati (2019))
Assume that H(2`+ 1) < 1 and g ∈W 1,` satisfies g (`) ∈ L2(R) and
(1 + |x |1+ε)|g(x)| ∈ L1(R). Then, for all 0 < a ≤ H,

na(`+1)−1G (n,`)
t,λ,a[g ] L2

→ L(`)
t (λ)

∫
R

g(x)dx .

Moreover, for T1,T2 > 0,

sup
t∈[T1,T2]

|na(`+1)−1G (n,`)
t,λ,a[g ]− L(`)

t (λ)
∫
R

g(x)dx | P→ 0.

If ` ≥ 1, (2`+ 2)H < 1 and T > 0, then

sup
t∈[0,T ]

|na(`+1)−1G (n,`)
t,λ,a[g ]− L(`)

t (λ)
∫
R

g(x)dx | P→ 0.
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Main results

Theorem (Jaramillo, Nourdin, Peccati (2019))
Assume that H(2`+ 3) < 1 and let g be as before. If 0 < a ≤ H,

na(na(`+1)−1G (n,`)
t,λ,a[g ]− L(`)

t (λ)
∫
R

g(x)dx) L2

→ −L(`+1)
t (λ)

∫
R

xg(x)dx .

If T1,T2 > 0, then

sup
t∈[T1,T2]

|na(na(`+1)−1G (n,`)
t,λ,a[g ]− L(`)

t (λ)
∫
R

g(x)dx)

+L(`+1)
t (λ)

∫
R

xg(x)dx | P→ 0.

Moreover, if H(2`+ 4) < 1 and T > 0, then

sup
t∈[0,T ]

|na(na(`+1)−1G (n,`)
t,λ,a[g ]− L(`)

t (λ)
∫
R

g(x)dx)

+ L(`+1)
t (λ)

∫
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