High frequency statistics and local times for the fractional Brownian motion

Arturo Jaramillo Gil

Université du Luxembourg
National University of Singapore

Overview

Let $\left\{X_{t}\right\}_{t \geq 0}$ be a fractional Brownian motion of Hurst parameter $H \in(0,1)$.

Overview

Let $\left\{X_{t}\right\}_{t \geq 0}$ be a fractional Brownian motion of Hurst parameter
$H \in(0,1)$. Namely, X is centered and Gaussian, with covariance function

$$
\mathbb{E}\left[X_{s} X_{t}\right]=\frac{1}{2}\left(t^{2 H}+s^{2 H}-|s-t|^{2 H}\right)
$$

Overview

Let $\left\{X_{t}\right\}_{t \geq 0}$ be a fractional Brownian motion of Hurst parameter $H \in(0,1)$. Namely, X is centered and Gaussian, with covariance function

$$
\mathbb{E}\left[X_{s} X_{t}\right]=\frac{1}{2}\left(t^{2 H}+s^{2 H}-|s-t|^{2 H}\right)
$$

We will observe realizations of X in discrete times

where $t>0$.

Overview

Let $\left\{X_{t}\right\}_{t \geq 0}$ be a fractional Brownian motion of Hurst parameter $H \in(0,1)$. Namely, X is centered and Gaussian, with covariance function

$$
\mathbb{E}\left[X_{s} X_{t}\right]=\frac{1}{2}\left(t^{2 H}+s^{2 H}-|s-t|^{2 H}\right)
$$

We will observe realizations of X in discrete times

where $t>0$. Our starting point is the study of a suitable normalization of the variables

$$
\sum_{i=1}^{\lfloor n t\rfloor} f\left(X_{i}\right)
$$

Overview

Let $\left\{X_{t}\right\}_{t \geq 0}$ be a fractional Brownian motion of Hurst parameter $H \in(0,1)$. Namely, X is centered and Gaussian, with covariance function

$$
\mathbb{E}\left[X_{s} X_{t}\right]=\frac{1}{2}\left(t^{2 H}+s^{2 H}-|s-t|^{2 H}\right)
$$

We will observe realizations of X in discrete times

where $t>0$. Our starting point is the study of a suitable normalization of the variables

$$
\sum_{i=1}^{\lfloor n t\rfloor} f\left(X_{i}\right) \stackrel{\lfloor a w}{=} \sum_{i=1}^{\lfloor n t\rfloor} f\left(n^{H} X_{\frac{i}{n}}\right)
$$

where f is some test function, with properties to be specified later.

Overview

These type of variables are a special instance of the statistics

$$
\begin{equation*}
G_{a, t}^{(n)}:=b_{n} \sum_{i=1}^{\lfloor n t\rfloor} f\left(n^{a}\left(X_{\frac{i}{n}}-\lambda\right)\right), \tag{1}
\end{equation*}
$$

where $b_{n}>0$ is a normalizing constant, $f: \mathbb{R} \rightarrow \mathbb{R}$ is a test function, $\lambda \in \mathbb{R}$ and $a>0$.

Overview

These type of variables are a special instance of the statistics

$$
\begin{equation*}
G_{a, t}^{(n)}:=b_{n} \sum_{i=1}^{\lfloor n t\rfloor} f\left(n^{a}\left(X_{\frac{i}{n}}-\lambda\right)\right), \tag{1}
\end{equation*}
$$

where $b_{n}>0$ is a normalizing constant, $f: \mathbb{R} \rightarrow \mathbb{R}$ is a test function, $\lambda \in \mathbb{R}$ and $a>0$.

Specific aim: Study the first and second order fluctuations of such random functions.

Overview

These type of variables are a special instance of the statistics

$$
\begin{equation*}
G_{a, t}^{(n)}:=b_{n} \sum_{i=1}^{\lfloor n t\rfloor} f\left(n^{a}\left(X_{\frac{i}{n}}-\lambda\right)\right), \tag{1}
\end{equation*}
$$

where $b_{n}>0$ is a normalizing constant, $f: \mathbb{R} \rightarrow \mathbb{R}$ is a test function, $\lambda \in \mathbb{R}$ and $a>0$.

Specific aim: Study the first and second order fluctuations of such random functions.

What will come later: The variables $G_{a, t}^{(n)}$ are closely related to the local time of X at the level λ.

Overview

These type of variables are a special instance of the statistics

$$
\begin{equation*}
G_{a, t}^{(n)}:=b_{n} \sum_{i=1}^{\lfloor n t\rfloor} f\left(n^{a}\left(X_{\frac{i}{n}}-\lambda\right)\right), \tag{1}
\end{equation*}
$$

where $b_{n}>0$ is a normalizing constant, $f: \mathbb{R} \rightarrow \mathbb{R}$ is a test function, $\lambda \in \mathbb{R}$ and $a>0$.

Specific aim: Study the first and second order fluctuations of such random functions.

What will come later: The variables $G_{a, t}^{(n)}$ are closely related to the local time of X at the level λ. The fluctuations are going to be closely related to the formal derivatives of the local time of X !

Preliminaries: local times

The local time of X at $\lambda \in \mathbb{R}$, is heuristically defined by $\int_{0}^{t} \delta_{0}\left(X_{s}-\lambda\right) d s$.

Preliminaries: local times

The local time of X at $\lambda \in \mathbb{R}$, is heuristically defined by $\int_{0}^{t} \delta_{0}\left(X_{s}-\lambda\right) d s$. Rigorously,

$$
L_{t}(\lambda):=\lim _{\varepsilon \rightarrow 0} \int_{0}^{t} \phi_{\varepsilon}\left(X_{s}-\lambda\right) d s
$$

where the convergence is taken in the L^{2}-sense and ϕ_{ε} is the heat kernel with variance $\varepsilon>0$, defined by $\phi_{\varepsilon}(x):=(2 \pi \varepsilon)^{-\frac{1}{2}} \exp \left\{-\frac{1}{2 \varepsilon}|x|^{2}\right\}$.

Historical context (first order approximation)

The first order approximation of our problem was solved by Jeganathan (2004), who showed that for all $H \in(0,1)$, if $f \in L^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R})$,

$$
\begin{equation*}
n^{H-1} \sum_{i=1}^{\lfloor n t\rfloor} f\left(n^{H}\left(X_{\frac{i-1}{n}}-\lambda\right)\right) \xrightarrow{L^{2}(\Omega)} L_{t}(\lambda) \int_{\mathbb{R}} f(x) d x . \tag{2}
\end{equation*}
$$

Historical context (first order approximation)

The first order approximation of our problem was solved by Jeganathan (2004), who showed that for all $H \in(0,1)$, if $f \in L^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R})$,

$$
\begin{equation*}
n^{H-1} \sum_{i=1}^{\lfloor n t\rfloor} f\left(n^{H}\left(X_{\frac{i-1}{n}}-\lambda\right)\right) \xrightarrow{L^{2}(\Omega)} L_{t}(\lambda) \int_{\mathbb{R}} f(x) d x . \tag{2}
\end{equation*}
$$

Remark: one sees immediately that (2) implies a trivial conclusion in the case $\int_{\mathbb{R}} f(x) d x=0$.

Historical context (second order approximation)

A refinement of the previous result was first obtained by Jeganathan, who showed that if $1 / 3<H<1, \int_{\mathbb{R}}\left(|f(x)|^{p}+|x f(x)|\right) d x<\infty$ for $p=1,2,3,4$, and $\int_{\mathbb{R}} f(x) d x=0$, then,

Historical context (second order approximation)

A refinement of the previous result was first obtained by Jeganathan, who showed that if $1 / 3<H<1, \int_{\mathbb{R}}\left(|f(x)|^{p}+|x f(x)|\right) d x<\infty$ for $p=1,2,3,4$, and $\int_{\mathbb{R}} f(x) d x=0$, then,

$$
\begin{equation*}
n^{\frac{H-1}{2}} \sum_{i=1}^{\lfloor n t\rfloor} f\left(n^{H}\left(X_{\frac{i-1}{n}}-\lambda\right)\right) \xrightarrow{f . d . d .} \sqrt{b} W_{L_{t}(\lambda)}, \tag{3}
\end{equation*}
$$

where $\xrightarrow{\text { f.d.d. }}$ indicates convergence in the sense of finite-dimensional distributions.

Historical context (second order approximation)

A refinement of the previous result was first obtained by Jeganathan, who showed that if $1 / 3<H<1, \int_{\mathbb{R}}\left(|f(x)|^{p}+|x f(x)|\right) d x<\infty$ for $p=1,2,3,4$, and $\int_{\mathbb{R}} f(x) d x=0$, then,

$$
\begin{equation*}
n^{\frac{H-1}{2}} \sum_{i=1}^{\lfloor n t\rfloor} f\left(n^{H}\left(X_{\frac{i-1}{n}}-\lambda\right)\right) \xrightarrow{\text { f.d.d. }} \sqrt{b} W_{L_{t}(\lambda)}, \tag{3}
\end{equation*}
$$

where $\xrightarrow{\text { f.d.d. }}$ indicates convergence in the sense of finite-dimensional distributions.

Questions

- What happens when $H \leq \frac{1}{3}$?

Historical context (second order approximation)

A refinement of the previous result was first obtained by Jeganathan, who showed that if $1 / 3<H<1, \int_{\mathbb{R}}\left(|f(x)|^{p}+|x f(x)|\right) d x<\infty$ for $p=1,2,3,4$, and $\int_{\mathbb{R}} f(x) d x=0$, then,

$$
\begin{equation*}
n^{\frac{H-1}{2}} \sum_{i=1}^{\lfloor n t\rfloor} f\left(n^{H}\left(X_{\frac{i-1}{n}}-\lambda\right)\right) \xrightarrow{\text { f.d.d. }} \sqrt{b} W_{L_{t}(\lambda)}, \tag{3}
\end{equation*}
$$

where $\xrightarrow{\text { f.d.d. }}$ indicates convergence in the sense of finite-dimensional distributions.

Questions

- What happens when $H \leq \frac{1}{3}$?
- Can something be said in the non-zero energy case?

Handling the "rough case", where H is small.

The main ingredient for handling the remaining cases of the theorems previously studied by Jeganathan and Nualart et.al. is the spatial derivative of the local time.

Handling the "rough case", where H is small.

The main ingredient for handling the remaining cases of the theorems previously studied by Jeganathan and Nualart et.al. is the spatial derivative of the local time.

Lemma

Let $\ell \in \mathbb{Z}$ be such that $0<H<\frac{1}{2 \ell+1}$. Then, for every $t \geq 0$ and $\lambda \in \mathbb{R}$, the random variables

$$
\begin{equation*}
L_{t, \varepsilon}^{(\ell)}(\lambda)=\int_{0}^{t} \delta_{0}^{(\ell)}\left(X_{s}-\lambda\right) d s:=\int_{0}^{t} \phi_{\varepsilon}^{(\ell)}\left(X_{s}-\lambda\right) d s, \quad \varepsilon>0 \tag{4}
\end{equation*}
$$

converge in L^{2} to a limit $L_{t}^{(\ell)}(\lambda)$, as $\varepsilon \rightarrow 0$.

A more general model

One can easily prove that all functions f of the form $f=g^{\prime}$ with $g, g^{\prime} \in L^{1}(\mathbb{R})$ satisfy the property $\int_{\mathbb{R}} f(x) d x=0$.

A more general model

One can easily prove that all functions f of the form $f=g^{\prime}$ with $g, g^{\prime} \in L^{1}(\mathbb{R})$ satisfy the property $\int_{\mathbb{R}} f(x) d x=0$.

For $\ell \in \mathbb{N}$ and a function g in the set $W^{\ell, 1}$ of real functions with weak derivatives of order ℓ satisfying

$$
\sum_{i=1}^{\ell} \int_{\mathbb{R}}\left|g^{(i)}(x)\right| d x<\infty
$$

we define

$$
G_{t, \lambda, a}^{(n, \ell)}[g]:=\sum_{i=2}^{\lfloor n t\rfloor} g^{(\ell)}\left(n^{a}\left(X_{\frac{i-1}{n}}-\lambda\right)\right)
$$

Main results

Theorem (Jaramillo, Nourdin, Peccati (2019))
Assume that $H(2 \ell+1)<1$ and $g \in W^{1, \ell}$ satisfies $g^{(\ell)} \in L^{2}(\mathbb{R})$ and $\left(1+|x|^{1+\varepsilon}\right)|g(x)| \in L^{1}(\mathbb{R})$. Then, for all $0<a \leq H$,

$$
n^{a(\ell+1)-1} G_{t, \lambda, a}^{(n, \ell)}[g] \xrightarrow{L^{2}} L_{t}^{(\ell)}(\lambda) \int_{\mathbb{R}} g(x) d x .
$$

Main results

Theorem (Jaramillo, Nourdin, Peccati (2019))
Assume that $H(2 \ell+1)<1$ and $g \in W^{1, \ell}$ satisfies $g^{(\ell)} \in L^{2}(\mathbb{R})$ and $\left(1+|x|^{1+\varepsilon}\right)|g(x)| \in L^{1}(\mathbb{R})$. Then, for all $0<a \leq H$,

$$
n^{a(\ell+1)-1} G_{t, \lambda, a}^{(n, \ell)}[g] \xrightarrow{L^{2}} L_{t}^{(\ell)}(\lambda) \int_{\mathbb{R}} g(x) d x .
$$

Moreover, for $T_{1}, T_{2}>0$,

$$
\sup _{t \in\left[T_{1}, T_{2}\right]}\left|n^{a(\ell+1)-1} G_{t, \lambda, a}^{(n, \ell)}[g]-L_{t}^{(\ell)}(\lambda) \int_{\mathbb{R}} g(x) d x\right| \xrightarrow{\mathbb{P}} 0
$$

Main results

Theorem (Jaramillo, Nourdin, Peccati (2019))
Assume that $H(2 \ell+1)<1$ and $g \in W^{1, \ell}$ satisfies $g^{(\ell)} \in L^{2}(\mathbb{R})$ and $\left(1+|x|^{1+\varepsilon}\right)|g(x)| \in L^{1}(\mathbb{R})$. Then, for all $0<a \leq H$,

$$
n^{a(\ell+1)-1} G_{t, \lambda, a}^{(n, \ell)}[g] \xrightarrow{L^{2}} L_{t}^{(\ell)}(\lambda) \int_{\mathbb{R}} g(x) d x .
$$

Moreover, for $T_{1}, T_{2}>0$,

$$
\sup _{t \in\left[T_{1}, T_{2}\right]}\left|n^{a(\ell+1)-1} G_{t, \lambda, a}^{(n, \ell)}[g]-L_{t}^{(\ell)}(\lambda) \int_{\mathbb{R}} g(x) d x\right| \xrightarrow{\mathbb{P}} 0
$$

If $\ell \geq 1,(2 \ell+2) H<1$ and $T>0$, then

$$
\sup _{t \in[0, T]}\left|n^{a(\ell+1)-1} G_{t, \lambda, a}^{(n, \ell)}[g]-L_{t}^{(\ell)}(\lambda) \int_{\mathbb{R}} g(x) d x\right| \xrightarrow{\mathbb{P}} 0
$$

Main results

Theorem (Jaramillo, Nourdin, Peccati (2019))

Assume that $H(2 \ell+3)<1$ and let g be as before. If $0<a \leq H$,

$$
n^{a}\left(n^{a(\ell+1)-1} G_{t, \lambda, a}^{(n, \ell)}[g]-L_{t}^{(\ell)}(\lambda) \int_{\mathbb{R}} g(x) d x\right) \xrightarrow{L^{2}}-L_{t}^{(\ell+1)}(\lambda) \int_{\mathbb{R}} x g(x) d x .
$$

Main results

Theorem (Jaramillo, Nourdin, Peccati (2019))
Assume that $H(2 \ell+3)<1$ and let g be as before. If $0<a \leq H$,

$$
n^{a}\left(n^{a(\ell+1)-1} G_{t, \lambda, a}^{(n, \ell)}[g]-L_{t}^{(\ell)}(\lambda) \int_{\mathbb{R}} g(x) d x\right) \xrightarrow{L^{2}}-L_{t}^{(\ell+1)}(\lambda) \int_{\mathbb{R}} x g(x) d x .
$$

If $T_{1}, T_{2}>0$, then

$$
\begin{aligned}
\sup _{t \in\left[T_{1}, T_{2}\right]} \mid n^{a}\left(n^{a(\ell+1)-1}\right. & \left.G_{t, \lambda, a}^{(n, \ell)}[g]-L_{t}^{(\ell)}(\lambda) \int_{\mathbb{R}} g(x) d x\right) \\
& +L_{t}^{(\ell+1)}(\lambda) \int_{\mathbb{R}} x g(x) d x \mid \xrightarrow{\mathbb{P}} 0
\end{aligned}
$$

Main results

Theorem (Jaramillo, Nourdin, Peccati (2019))
Assume that $H(2 \ell+3)<1$ and let g be as before. If $0<a \leq H$,

$$
n^{a}\left(n^{a(\ell+1)-1} G_{t, \lambda, a}^{(n, \ell)}[g]-L_{t}^{(\ell)}(\lambda) \int_{\mathbb{R}} g(x) d x\right) \xrightarrow{L^{2}}-L_{t}^{(\ell+1)}(\lambda) \int_{\mathbb{R}} x g(x) d x
$$

If $T_{1}, T_{2}>0$, then

$$
\begin{array}{r}
\sup _{t \in\left[T_{1}, T_{2}\right]} \mid n^{a}\left(n^{a(\ell+1)-1} G_{t, \lambda, a}^{(n, \ell)}[g]-L_{t}^{(\ell)}(\lambda) \int_{\mathbb{R}} g(x) d x\right) \\
+L_{t}^{(\ell+1)}(\lambda) \int_{\mathbb{R}} x g(x) d x \mid \xrightarrow{\mathbb{P}} 0
\end{array}
$$

Moreover, if $\mathrm{H}(2 \ell+4)<1$ and $T>0$, then

$$
\begin{aligned}
\sup _{t \in[0, T]} \mid n^{a}\left(n^{a(\ell+1)-1} G_{t, \lambda, a}^{(n, \ell)}[g]-L_{t}^{(\ell)}(\lambda)\right. & \left.\int_{\mathbb{R}} g(x) d x\right) \\
& +L_{t}^{(\ell+1)}(\lambda) \int_{\mathbb{R}} x g(x) d x \mid \xrightarrow{\mathbb{P}} 0
\end{aligned}
$$

Bibliography

E. A. Jaramillo, I. Nourdin, G. Peccati (2019). Approximation of local times: zero energy and weak derivatives (Preprint).
(Jeganathan, P. (2004). Convergence of functionals of sums of r.v.s to local times of fractional stable motions. Ann. Probab.
國 Hu, Y., Nualart, D., and Xu, F. (2014). Central limit theorem for an additive functional of the fractional Brownian motion. Ann. Probab.

