

Fractional Brownian motion with small Hurst

Arturo Jaramillo Gil (joint work with Giovanni Peccati and Ivan Nourdin) January 13, 2025

Centro de Investigación en Matemáticas (CIMAT)

A process $B^H = \{B_t^H\}_{t \in \mathbb{R}}$ is a two-sided fractional Brownian motion (fBm) of Hurst parameter $H \in (0, 1)$ if:

A process $B^H = \{B_t^H\}_{t \in \mathbb{R}}$ is a two-sided fractional Brownian motion (fBm) of Hurst parameter $H \in (0, 1)$ if: it is Gaussian, centered and

$$\mathbb{E}[B^H_s B^H_t] = rac{1}{2}(|s|^{2H} + |t|^{2H} - |t-s|^{2H}).$$

A process $B^H = \{B_t^H\}_{t \in \mathbb{R}}$ is a two-sided fractional Brownian motion (fBm) of Hurst parameter $H \in (0, 1)$ if: it is Gaussian, centered and

$$\mathbb{E}[B_s^H B_t^H] = \frac{1}{2}(|s|^{2H} + |t|^{2H} - |t-s|^{2H}).$$

Role of *H*:

- B^H is H self-similar.

A process $B^H = \{B_t^H\}_{t \in \mathbb{R}}$ is a two-sided fractional Brownian motion (fBm) of Hurst parameter $H \in (0, 1)$ if: it is Gaussian, centered and

$$\mathbb{E}[B_s^H B_t^H] = \frac{1}{2}(|s|^{2H} + |t|^{2H} - |t-s|^{2H}).$$

Role of H:

- B^H is H self-similar.
- Controls roughness.

Empirical studies suggest that asset log-volatility often behaving like an fBm with H between 0.05 and 0.2 (Gatheral, Jaison, Rosenbaum, 2018).

Empirical studies suggest that asset log-volatility often behaving like an fBm with H between 0.05 and 0.2 (Gatheral, Jaison, Rosenbaum, 2018).

Goal

Contribute to the understanding of B^H when H tends to zero.

Empirical studies suggest that asset log-volatility often behaving like an fBm with H between 0.05 and 0.2 (Gatheral, Jaison, Rosenbaum, 2018).

Goal

Contribute to the understanding of B^H when H tends to zero.

Mildly uninteresting answer:

 $\mathbb{E}[B_s^0 B_t^0] = 1/2 + \mathbb{1}_{\{s=t\}}/2.$

The process B^0 has a purely decorrelated component and a linear drift.

$$\mathbb{E}[B_s^0 B_t^0] = 1/2 + \mathbb{1}_{\{s=t\}}/2.$$

The process B^0 has a purely decorrelated component and a linear drift.

 $\mathbb{E}[B_s^0 B_t^0] = 1/2 + \mathbb{1}_{\{s=t\}}/2.$

An attempt of removing the trend leads to

Definition

We say that $F^H = \{F^H_t\}_{t \ge 0}$ is a Neuman-Rosenbaum process if

$$F_t^H \stackrel{Law}{=} rac{1}{\sqrt{H}} \left(B_t^H - rac{1}{t} \int_0^t B_u^H du
ight)$$

The process B^0 has a purely decorrelated component and a linear drift.

 $\mathbb{E}[B_s^0 B_t^0] = 1/2 + \mathbb{1}_{\{s=t\}}/2.$

An attempt of removing the trend leads to

Definition

We say that $F^H = \{F^H_t\}_{t \ge 0}$ is a Neuman-Rosenbaum process if

$$F_t^H \stackrel{Law}{=} \frac{1}{\sqrt{H}} \left(B_t^H - \frac{1}{t} \int_0^t B_u^H du \right).$$

 $\label{eq:observation} \begin{array}{l} \mbox{Observation} \\ \mbox{It holds that } Var[F^H_t] \approx 1/H. \end{array}$

Denote by (i) \mathcal{S}_0 the real rapidly decaying functions over $\mathbb R$ with zero integral

\mathcal{S}_0' -convergence

Denote by (i) S_0 the real rapidly decaying functions over \mathbb{R} with zero integral (ii) S'_0 its dual space.

\mathcal{S}'_0 -convergence

Denote by (i) S_0 the real rapidly decaying functions over \mathbb{R} with zero *integral* (ii) S'_0 its dual space.

A process $\{X_t \ ; \ t \in \mathbb{R}\}$ induces a process $\{X_{\psi} \ ; \ \psi \in \mathcal{S}_0\}$ via

$$X_{\psi} := \int_{\mathbb{R}} \psi(x) dX_t.$$

\mathcal{S}'_0 -convergence

Denote by (i) S_0 the real rapidly decaying functions over \mathbb{R} with zero *integral* (ii) S'_0 its dual space.

A process $\{X_t ; t \in \mathbb{R}\}$ induces a process $\{X_{\psi} ; \psi \in S_0\}$ via

$$X_{\psi} := \int_{\mathbb{R}} \psi(x) dX_t.$$

Definition

A collection of processes X^{y} , y > 0 converges in law as y tends to zero, to a random element G in S'_{0} (Gaussian field) in the S'_{0} sense, if

 $X_{\psi} \stackrel{Law}{\rightarrow} \langle G, \psi \rangle,$

for all $\psi \in \mathcal{S}$, where $\langle \cdot, \cdot \rangle$ denotes dual pairing.

The following result serves as the foundation for our results

Theorem (Neuman and Rosenbaum (2018)) The Neuman-Rosenbaum process F^H converges weakly in $S'_0(\mathbb{R})$ as H tends to zero, towards a centered Gaussian field G satisfying

$$\mathbb{E}[\langle G, \psi_1 \rangle \langle G, \psi_2 \rangle] = \int_{\mathbb{R}^2} g(t, s) \psi_1(t) \psi_2(s) ds dt,$$

where

$$g(t,s) = \frac{1}{ts} \int_0^t \int_0^s \log\left(\frac{|s-u||t-u|}{|u-v||t-s|}\right) du dv.$$

- Can we get an exactly log-correlated limit in the domain $s, t \in \mathbb{R}^d$, with $g(t,s) = \log(1/|t-s|)$ (Hager and Neuman, 2020).

- Can we get an exactly log-correlated limit in the domain $s, t \in \mathbb{R}^d$, with $g(t,s) = \log(1/|t-s|)$ (Hager and Neuman, 2020).
- What happens to functionals of F^H as H goes to zero?

- Can we get an exactly log-correlated limit in the domain $s, t \in \mathbb{R}^d$, with $g(t,s) = \log(1/|t-s|)$ (Hager and Neuman, 2020).
- What happens to functionals of F^H as H goes to zero?

- Can we get an exactly log-correlated limit in the domain $s, t \in \mathbb{R}^d$, with $g(t,s) = \log(1/|t-s|)$ (Hager and Neuman, 2020).
- What happens to functionals of F^H as H goes to zero?

We will focus in a particular type of functionals of F^{H} .

Our central objects of interest are the following

- Local times at zero, $L_t^H(0)$ of F^H , defined as

$$L_t^H(0) := \int_0^t \delta_0(F_s^H) ds,$$

where δ_0 is the Dirac-delta function.

Our central objects of interest are the following

- Local times at zero, $L_t^H(0)$ of F^H , defined as

$$L_t^H(0) := \int_0^t \delta_0(F_s^H) ds,$$

where δ_0 is the Dirac-delta function.

- Additive functionals of F^H , defined as

$$\mathcal{A}_t^H[f] := \int_0^t f(F_s^H) ds,$$

where f is a tempered distribution.

Fractional Brownian motion can be formulated in the framework of fractional calculus.

Definition

Let $y \in (0, 1]$ be given. The left-sided y-fractional Riemann-Liouville integral/derivative of order y are defined as

$$I_{-}^{y}[f](t):=\frac{1}{\Gamma(\alpha)}\int_{-\infty}^{t}(t-s)^{y-1}f(s)ds,$$

and

$$D^{y}_{-}[f](t) := I^{-y}_{-}[f](t) := rac{1}{\Gamma(1-lpha)}rac{d}{dt}\int_{-\infty}^{t}(t-s)^{-y}f(s)ds.$$

Let W be a standard Brownian motion defined in a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, with $\mathcal{F} = \sigma(W)$.

Theorem (Mandelbrot Van-Ness (1968)) For some $c_H \approx \sqrt{H}$ as $H \approx 0$,

$$\int_{\mathbb{R}} \mathbb{1}_{[0,t]}(s) dB_s^H := B_t := c_H \int_{\mathbb{R}} I_-^{H-1/2} [\mathbb{1}_{[0,t]}](s) dW_s$$

with $t \ge 0$, is an fBm.

Let W be a standard Brownian motion defined in a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, with $\mathcal{F} = \sigma(W)$.

Theorem (Mandelbrot Van-Ness (1968)) For some $c_H \approx \sqrt{H}$ as $H \approx 0$,

$$\int_{\mathbb{R}} \mathbb{1}_{[0,t]}(s) dB_s^H := B_t := c_H \int_{\mathbb{R}} I_-^{H-1/2} [\mathbb{1}_{[0,t]}](s) dW_s,$$

with $t \ge 0$, is an fBm.

It follows that when H < 1/2,

$$F_t^H := \int_{\mathbb{R}} D_-^{1/2-H}[\psi_t](s)W(ds),$$

with $\psi_t(y) := \frac{y}{t} \mathbb{1}_{[0,t]}(y)$, is a Neuman-Rosenbaum process.

Representing functionals of processes

To describe functionals, define $\mathfrak{H} := L^2(\mathbb{R})$, and define $I_q : \mathfrak{H}^{\otimes q} \to L^2(\Omega)$ by

$$I_q[f_q] := \int_{\mathbb{R}} \int_{-\infty}^{t_1} \cdots \int_{-\infty}^{t_{q-1}} f(t_1, \ldots, t_q) W(dt_q) \cdots W(dt_1).$$

where $f_q \in \mathfrak{H}^{\otimes q}$.

To describe functionals, define $\mathfrak{H} := L^2(\mathbb{R})$, and define $I_q : \mathfrak{H}^{\otimes q} \to L^2(\Omega)$ by

$$I_q[f_q] := \int_{\mathbb{R}} \int_{-\infty}^{t_1} \cdots \int_{-\infty}^{t_{q-1}} f(t_1, \ldots, t_q) W(dt_q) \cdots W(dt_1).$$

where $f_q \in \mathfrak{H}^{\otimes q}$.

Theorem (Chaos decomposition, Itô, 1951) If $F \in L^2(\Omega)$, then there exist unique $f_q \in \mathfrak{H}^{\otimes q}$, such that

$$F = \mathbb{E}[F] + \sum_{q=1}^{\infty} I_q(f_q).$$

The term $J_q[F] := I_q(f_q)$ is called q-th chaos of F.

Do we have access to the chaos if $\mathcal{A}_t^H[f]$? is it hard to handle?

Do we have access to the chaos if $\mathcal{A}_t^H[f]$? is it hard to handle?

Lemma (Jaramillo, Nourdin, Peccati (2025+)) We have the chaos decomposition

$$\mathcal{A}_t^H[f] = \sum_{q=0}^{\infty} \frac{1}{q!} I_q \left[\int_0^t (-1)^q \langle f, \partial^q \phi_{\sigma_{s,H}^2} \rangle D_-^{1/2-H}[\psi_s]^{\otimes q} ds \right],$$

where $\sigma_{s,H}^2$ is the variance of F_s^H and ϕ_{γ} is Gaussian kernel of variance γ .

Do we have access to the chaos if $\mathcal{A}_t^H[f]$? is it hard to handle?

Lemma (Jaramillo, Nourdin, Peccati (2025+)) We have the chaos decomposition

$$\mathcal{A}_t^H[f] = \sum_{q=0}^{\infty} \frac{1}{q!} I_q \left[\int_0^t (-1)^q \langle f, \partial^q \phi_{\sigma_{s,H}^2} \rangle D_-^{1/2-H}[\psi_s]^{\otimes q} ds \right],$$

where $\sigma_{s,H}^2$ is the variance of F_s^H and ϕ_{γ} is Gaussian kernel of variance γ . Observe that if $f = \delta_0$, odd chaoses vanish. The previous slide suggests the "naive approach"

- We can find the chaos of $L_t^H(0)$.
- Odd chaoses of $L_t^H(0)$ are zero.
- Are the even chaoses of $L_t^H(0)$ manageable?

The previous slide suggests the "naive approach"

- We can find the chaos of $L_t^H(0)$.
- Odd chaoses of $L_t^H(0)$ are zero.
- Are the even chaoses of $L_t^H(0)$ manageable?

Naive works!

The previous slide suggests the "naive approach"

- We can find the chaos of $L_t^H(0)$.
- Odd chaoses of $L_t^H(0)$ are zero.
- Are the even chaoses of $L_t^H(0)$ manageable?

Naive works! Recall $\psi_t(y) := \frac{y}{t} \mathbb{1}_{[0,t]}(y)$.

Corollary (Jaramillo, Nourdin, Peccati (2025+)) The local time at zero for F^H satisfies

$$H^{-3/2}\left(L_t^H(0)-\mathbb{E}[L_t^H(0)]\right)\stackrel{L^2(\Omega)}{\to}-\frac{1}{2\sqrt{2\pi}}\int_0^t I_2\left[D_-^{1/2}[\psi_s]^{\otimes 2}\right]ds.$$

Second main result

Suppose that \hat{f} is such that

$$\lim_{r\to 0}\hat{f}(xr)/\hat{f}(r)=x^{\alpha},$$

for some $\alpha > 0$.

Second main result

Suppose that \hat{f} is such that

$$\lim_{\to 0} \hat{f}(xr)/\hat{f}(r) = x^{\alpha},$$

for some $\alpha > 0$. Recall that $\psi_t(y) := \frac{y}{t} \mathbb{1}_{[0,t]}(y)$.

r

Suppose that \hat{f} is such that

$$\lim_{\to 0} \hat{f}(xr)/\hat{f}(r) = x^{\alpha},$$

for some $\alpha > 0$. Recall that $\psi_t(y) := \frac{y}{t} \mathbb{1}_{[0,t]}(y)$.

Theorem (Jaramillo, Nourdin, Peccati (2025+)) Under mild conditions on f, we can find $c_f \in \mathbb{R}$, such that

$$H^{-(q+1+\alpha)/2} J_q[\mathcal{A}_t^H[\mathbf{f}]] \stackrel{L^2(\Omega)}{\to} c_\mathbf{f} I_q[\int_0^t D^{1/2}[\psi_s]^{\otimes Q} ds],$$

Suppose that \hat{f} is such that

$$\lim_{\to 0} \hat{f}(xr)/\hat{f}(r) = x^{\alpha},$$

for some $\alpha > 0$. Recall that $\psi_t(y) := \frac{y}{t} \mathbb{1}_{[0,t]}(y)$.

Theorem (Jaramillo, Nourdin, Peccati (2025+)) Under mild conditions on f, we can find $c_f \in \mathbb{R}$, such that

$$H^{-(q+1+\alpha)/2} J_q[\mathcal{A}_t^H[\mathbf{f}]] \xrightarrow{L^2(\Omega)} c_\mathbf{f} I_q[\int_0^t D^{1/2}[\psi_s]^{\otimes Q} ds],$$

In addition,

$$H^{-(q+d+\alpha)/2}\left(\mathcal{A}_t^H[f] - \sum_{q=0}^{Q-1} J_q[\mathcal{A}_t^H[f]]\right) \stackrel{L^2(\Omega)}{\to} c_{\mathbf{f}} I_q[\int_0^t D^{1/2}[\psi_s]^{\otimes Q} ds].$$

Look at

$$\mathcal{A}_t^H[f] = \sum_{q=0}^{\infty} \frac{1}{q!} I_q \left[\int_0^t (-1)^q \langle f, \partial^q \phi_{\sigma^2_{s,H}} \rangle D_-^{1/2-H}[\psi_s]^{\otimes q} ds \right],$$

Recall that $\sigma_{s,H}^2 = Var[F_s^H]$ goes to infinity like 1/H

Look at

$$\mathcal{A}_t^H[f] = \sum_{q=0}^{\infty} \frac{1}{q!} I_q \left[\int_0^t (-1)^q \langle f, \partial^q \phi_{\sigma^2_{s,H}} \rangle D_-^{1/2-H}[\psi_s]^{\otimes q} ds \right],$$

Recall that $\sigma_{s,H}^2 = Var[F_s^H]$ goes to infinity like 1/H

(i) Use Parseval to prove that $\langle f, \partial^q \phi_r \rangle \approx r^{q+1+\alpha}$ (ii) Plug H = 0 in $D_{-}^{1/2-H}$.

Look at

$$\mathcal{A}_t^H[f] = \sum_{q=0}^{\infty} \frac{1}{q!} I_q \left[\int_0^t (-1)^q \langle f, \partial^q \phi_{\sigma^2_{s,H}} \rangle D_-^{1/2-H}[\psi_s]^{\otimes q} ds \right],$$

Recall that $\sigma_{s,H}^2 = Var[F_s^H]$ goes to infinity like 1/H

(i) Use Parseval to prove that $\langle f, \partial^q \phi_r \rangle \approx r^{q+1+\alpha}$ (ii) Plug H = 0 in $D_{-}^{1/2-H}$.

The bottleneck is part (ii). Main tools: fractional calculus.

 Arturo Jaramillo, Ivan Nourdin, and Giovanni Peccati.
 Limit theorems for the local time of the Neuman-Rosenbaum fractional Brownian motion.

In preparation.

Eyal Neuman and Mathieu Rosenbaum.

Fractional Brownian motion with zero Hurst parameter: a rough volatility viewpoint.

Electronic Communications in Probability, 2018.

Paul Hager and Eyal Neuman.

The multiplicative chaos of H = 0 fractional Brownian fields. The Annals of Applied Probability, 2022.