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Let {pk.n; k,n> 1} be a sequence of centered probability measures,
and define

Upn = H1n H. -8B Hn,n-



Let {pk.n; k,n> 1} be a sequence of centered probability measures,
and define

Upn = H1n H. -8B Hn,n-

Under the condition Var[v,] =1 plus (other technical conditions), we

Law . .. . . .
have that v, = s, where s is the standard semicircular distribution.



Let {pk.n; k,n> 1} be a sequence of centered probability measures,
and define

Upn = H1n H. -8B Hn,n-

Under the condition Var[v,] =1 plus (other technical conditions), we

Law . .. . . .
have that v, = s, where s is the standard semicircular distribution.

Goal
Bound drv(vs,s) in a probabilistic way.
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Elements of free probability

Let A be a unital C*-algebra and 7 : A — C a positive unital linear
functional.

Definition
Let {A,}n>1 be subalgebras of A. Define 3 := a — 7[a]. We say that

{An}n>1 are freely independent if

7[5152"'§k] = 0, (1)

for a1, ..., ax alternating. Sums of free random variables yields the free

convolution H.



A not so mathematical slide

We want drv(v,,s), where

Vp '=p1 o8- Bppn.



A not so mathematical slide

We want drv(v,,s), where
Vp '=p1 o8- Bppn.

Regard distance as a counting steps in a walk.
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Regard distance as a counting steps in a walk.

Trick
If distance is like walking, let’s think of walking from v, to s through a
trail.
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A trail for walking, driven by Stein identity

Definition
Let {P; }9>0 be operators over measures, defined by

P;[u] == Law(e X + /1 — e=20Y),

with X ~ p and Y ~ my[u] + / Var[u]s.

Let (-, -) denote dual pairing of measures and functions. Observe that
(8, h) = (u, h) = (PS[ul, h) — (Fglul, h)

furthermore: Pj is a semigroup.
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Actual connection to Stein identity

Deriving and integrating, we get

(s.) = (k) = [ S (Pali. )0,

Lemma
The red term equals

(Pg (1] ® Pglul, Lalh]),
where
La[h](x,y) = xDh(x) — Dh,
for D denoting derivative and

og(x,y) = (g(x) —g(¥))/(x — y).



What have we achieved in the free case?

For h regular enough,
(o0 = () = [ (P31 © Pyl Lalpl) o,

Lemma (Non-commutative Stein’s lemma)
A law v is semicircular if and only if

(v @ v, Lglh]) =0,

for h smooth with second bounded derivative.



What have we achieved in the free case?

For h regular enough,

(5, ) — (u, b} = /0 " (P31l ® P3[ul. La[H]) 6.

Lemma (Non-commutative Stein’s lemma)
A law v is semicircular if and only if

(v @ v, Lglh]) =0,

for h smooth with second bounded derivative.

Stein's Heuristics.



What have we achieved in the free case?

For h regular enough,

(5, ) — (u, b} = /0 " (P31l ® P3[ul. La[H]) 6.

Lemma (Non-commutative Stein’s lemma)
A law v is semicircular if and only if

(v @ v, Lglh]) =0,

for h smooth with second bounded derivative.

Stein's Heuristics. Also:

(s, h) = (p, h) = /OOO<P§ (1] @ Pglp] = PL[p] © P[], Lalh])do.
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What have we achieved in the free case? Part II

Writing what we have differently,

(s, h) = (u, B)| = [(Swlul, Lalh)];

where
Sl = [ (ol ® P[] = Peli © PLlil)db.
0
Compare this with the classical case:

(s h) = s )| = [, LISTAIDI,

where v is the standard Gaussian and S is defined similarly.

New bottleneck
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Dealing with the bottleneck when 1 = v,

Let &1.py ..., &n,n be free random variables with law
/ (P; — P ) .ol d6.
Ry

Recall v, = pg o B - - - B pin,n, and Var(v,) = 1. Also assume jix , has
small support. Then

(Silval, Lalh]) = 7[SaDh(Sh)] = (Splval, ODh),

where Sp =& 0+ +&nn.



An important technicality

Corollary (Bercovici and Voiculescu)
For n large, (v,) supported in [—3, 3]
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An important technicality

Corollary (Bercovici and Voiculescu)
For n large, (v,) supported in [—3, 3]

This can help with 7[S,Dh(S,)]

If his holomorphic

(Sa@vnl, Lalhl) : / h(z)(7[Sngz(Sn)] — (Salval, Ogz))dz,

2mi Jr

where R is a contour strictly containing [-5,5] and g,(x) := (z — x) 2.
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Moral of the story

For h holomorphic and bounded by one over [—5, 5], there is a constant
only depending on R, such that

(s, h) — (v, )| < C Sgng[Sngz(Sn)] — (S@lvnl, Ogz)|-
By an approximation argument,

drv(s,v,) < C sug |7[Sngz(Sn)] — (SElval, 082)-
ze
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Non-commutative Lindeberg trick?

Define sﬁk) as the part of S, that does not involve £, ,. Observe that

n n

71Snge(Sn)] = > 7l6kng2(Sn)] = 3 7lEkn(g:(Sn) — £:(S))]

k=1 k=1

Idea: use a bit of non-commutative Taylor
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Some steps after

If we (i) applying Taylor (ii) use the boundedness of the g, then

n

7[Sngz(Sn)] = O} 7lléwa*])
k=1

+ 2ZH:T[fk,ngz (5,(,’()) s {(z — Sgk))gk)n} g <Sf(1k))]-
k=1

where s means symmetrization.
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Consequence

Using freeness, and approximating S,(,k) by S,

7[Sngz(Sn)] = O (Z T[Ifk,n|3]> +2) 7l€knl] 7lgz(Sn)(z — Sn)ez(Sn)]-

k=1 k=1

The unit variance condition then implies

sup |7[Sngz(Sn)] — (Sglval. Og2)| < CZTH&(,"P]'
ZER k=1
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Wrapping things up

Theorem (Diaz-Jaramillo)
Under the above considerations,

drv (s, va) < CZ/ %2 k.n(dx).
k=1YR

Some improvements:

- Neighborhoods of dependency.
- Uniform convergence of the density.

- Including sharper approximations under more conditions.
Some unsolved improvements:

- Uniform convergence of the derivatives of the density.
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Some questions that might be interesting

For Boolean or monotone convolutions, can we still say something
(in Wasserstein distance)?

Can we change H by H,, and still say something?
- Extended to Edgeworth expansions
- Implementations in large matrix problems

Free stable limits
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To the memory of the four Gaussians
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