

High-frequency statistics for Levy processes: a Stein's method perspective

Arturo Jaramillo Gil, Chiara Amorino and Mark Podolskij

Centro de Investigación en Matemáticas (CIMAT)

How can we describe the fluctuation $F = S - \hat{S}$ of this approximation?

How can we describe the fluctuation $F = S - \hat{S}$ of this approximation?

-
$$\hat{S} = \mathbb{E}[S] =: \mu$$
.

How can we describe the fluctuation $F = S - \hat{S}$ of this approximation?

- $\hat{S} = \mathbb{E}[S] =: \mu$.
- Fluctuation is $F = S \mu$.

How can we describe the fluctuation $F = S - \hat{S}$ of this approximation?

- $\hat{S} = \mathbb{E}[S] =: \mu$.
- Fluctuation is $F = S \mu$.
- If S is the sum of n i.i.d. random variables with finite moments, then $F \stackrel{Law}{\approx} \sigma N$, with $N \sim \mathcal{N}(0, 1)$ and $\sigma^2 = Var[S]$.

How can we describe the fluctuation $F = S - \hat{S}$ of this approximation?

- $\hat{S} = \mathbb{E}[S] =: \mu$.
- Fluctuation is $F = S \mu$.
- If S is the sum of n i.i.d. random variables with finite moments, then $F \stackrel{Law}{\approx} \sigma N$, with $N \sim \mathcal{N}(0, 1)$ and $\sigma^2 = Var[S]$.
- Berry-Esseen theorem: $d_{\mathcal{K}}(\frac{S-\mu}{\sigma}, N) \leq C/\sqrt{n}$.

Understand the cumulative error when approximating a time series with a good predictor.

Understand the cumulative error when approximating a time series with a good predictor.

Ingredients:

1. A non-accessible time series $\boldsymbol{\xi} = \{\xi_k\}_{k \geq 1}$.

Understand the cumulative error when approximating a time series with a good predictor.

Ingredients:

- 1. A non-accessible time series $\boldsymbol{\xi} = \{\xi_k\}_{k \ge 1}$.
- 2. A very good estimator $\eta = {\eta_k}_{k\geq 1}$ of ξ .

Understand the cumulative error when approximating a time series with a good predictor.

Ingredients:

- 1. A non-accessible time series $\boldsymbol{\xi} = \{\xi_k\}_{k \ge 1}$.
- 2. A very good estimator $\eta = {\eta_k}_{k\geq 1}$ of ξ .

Understand the cumulative error when approximating a time series with a good predictor.

Ingredients:

- 1. A non-accessible time series $\boldsymbol{\xi} = \{\xi_k\}_{k \ge 1}$.
- 2. A very good estimator $\eta = {\eta_k}_{k\geq 1}$ of $\boldsymbol{\xi}$.

Object of interest:

Cumulative error =
$$(\xi_1 - \eta_1) + \cdots + (\xi_n - \eta_n)$$

True context of the problem

I observe a real-valued process $X = \{X_t\}_{t \ge 0}$ in stages:

True context of the problem

I observe a real-valued process $X=\{X_t\}_{t\geq 0}$ in stages: at stage i, I can observe $X_{1/n},\ldots,X_{(i-1)/n}.$

True context of the problem

I observe a real-valued process $X = \{X_t\}_{t \ge 0}$ in stages: at stage *i*, I can observe $X_{1/n}, \ldots, X_{(i-1)/n}$.

Quantities of interest

At stage i, I would like to know

$$\xi_i := g(X_{\frac{i-1}{n}}, a_n \Delta_i X),$$

with $\Delta_i X := X_{\frac{i}{n}} - X_{\frac{i-1}{n}}$, $g : \mathbb{R}^2 \to \mathbb{R}$ an appropriate function, and a_n an appropriate scaling.

I observe a real-valued process $X = \{X_t\}_{t \ge 0}$ in stages: at stage *i*, I can observe $X_{1/n}, \ldots, X_{(i-1)/n}$.

Quantities of interest

At stage i, I would like to know

$$\xi_i := g(X_{\frac{i-1}{n}}, a_n \Delta_i X),$$

with $\Delta_i X := X_{\frac{i}{n}} - X_{\frac{i-1}{n}}$, $g : \mathbb{R}^2 \to \mathbb{R}$ an appropriate function, and a_n an appropriate scaling.

Observation mechanism

At stage *i*, I only have the information $\mathcal{F}_{i-1} := \sigma(X_{\frac{1}{n}}, \dots, X_{\frac{i-1}{n}}).$

I observe a real-valued process $X = \{X_t\}_{t \ge 0}$ in stages: at stage *i*, I can observe $X_{1/n}, \ldots, X_{(i-1)/n}$.

Quantities of interest

At stage i, I would like to know

$$\xi_i := g(X_{\frac{i-1}{n}}, a_n \Delta_i X),$$

with $\Delta_i X := X_{\frac{i}{n}} - X_{\frac{i-1}{n}}$, $g : \mathbb{R}^2 \to \mathbb{R}$ an appropriate function, and a_n an appropriate scaling.

Observation mechanism

At stage *i*, I only have the information $\mathcal{F}_{i-1} := \sigma(X_{\frac{1}{n}}, \dots, X_{\frac{i-1}{n}}).$

Estimator:

$$\eta_i := \mathbb{E}[g(X_{\frac{i-1}{n}}, \Delta_i X) \mid \mathcal{F}_{i-1}].$$

Now indeed: the true context of the problem

Suppose that X starts at zero and has independent and stationary increments.

Now indeed: the true context of the problem

Suppose that X starts at zero and has independent and stationary increments.

For $t \ge 0$, we define the cumulative error on [0, t] as

$$Z_n(t) := \frac{1}{\sqrt{n}} \sum_{i=1}^{nt} (g(X_{\frac{i-1}{n}}, \mathcal{I}_{i,n}) - \mathbb{E}[g(X_{\frac{i-1}{n}}, \mathcal{I}_{i,n}) \mid \mathcal{F}_{i-1}]),$$

with $\mathcal{I}_{i,n} := a_n(X_{\frac{i}{n}} - X_{\frac{i-1}{n}}, \dots, X_{\frac{i+m}{n}} - X_{\frac{i+m-1}{n}})$, and $g : \mathbb{R}^{m+2} \to \mathbb{R}$ an appropriate function.

Suppose that X starts at zero and has independent and stationary increments.

For $t \ge 0$, we define the cumulative error on [0, t] as

$$Z_n(t) := \frac{1}{\sqrt{n}} \sum_{i=1}^{nt} (g(X_{\frac{i-1}{n}}, \mathcal{I}_{i,n}) - \mathbb{E}[g(X_{\frac{i-1}{n}}, \mathcal{I}_{i,n}) \mid \mathcal{F}_{i-1}]),$$

with $\mathcal{I}_{i,n} := a_n(X_{\frac{i}{n}} - X_{\frac{i-1}{n}}, \dots, X_{\frac{i+m}{n}} - X_{\frac{i+m-1}{n}})$, and $g : \mathbb{R}^{m+2} \to \mathbb{R}$ an appropriate function.

Assumptions

- The scaling a_n is such that $a_n X_{1/n}$ converges in law.
- There exists a constant $\alpha > 0$ such that $\mathbb{P}[X \ge s] \le Cts^{-\alpha}$.

First problem of interest

Our object of interest is a process $Z = \{Z_n(t)\}_{t \ge 0}$, defined by

$$Z_n(t) = \frac{1}{\sqrt{n}} \sum_{i=1}^{nt} (g(X_{\frac{i-1}{n}}, \mathcal{I}_{i,n}) - \mathbb{E}[g(X_{\frac{i-1}{n}}, \mathcal{I}_{i,n}) \mid \mathcal{F}_{i-1}]),$$

Key elements:

- Parameter α indicating non-integrability of X.
- Filter function g.

Questions of interest

- What is the limit of Z_n ? (if it exists)
- What is the rate of convergence?

The discrepancy between $F := (S - \mu)/\sigma$ and N is studied using expressions of the form

$$|\mathbb{E}[h(F) - h(N)]|. \tag{1}$$

The discrepancy between $F := (S - \mu)/\sigma$ and N is studied using expressions of the form

$$|\mathbb{E}[h(F) - h(N)]|. \tag{1}$$

Note that $F \stackrel{Law}{=} N$ if the following **property** holds: "(1) is zero for sufficiently many test functions *h*".

The discrepancy between $F := (S - \mu)/\sigma$ and N is studied using expressions of the form

$$|\mathbb{E}[h(F) - h(N)]|. \tag{1}$$

Note that $F \stackrel{Law}{=} N$ if the following **property** holds: "(1) is zero for sufficiently many test functions *h*".

Another property characterizing the normal distribution is...

The discrepancy between $F := (S - \mu)/\sigma$ and N is studied using expressions of the form

$$|\mathbb{E}[h(F) - h(N)]|. \tag{1}$$

Note that $F \stackrel{Law}{=} N$ if the following **property** holds: "(1) is zero for sufficiently many test functions *h*".

Another property characterizing the normal distribution is...

$$|\mathbb{E}[Nf'(N) - f''(N)]| = 0,$$
(2)

for sufficiently many functions f.

The discrepancy between $F := (S - \mu)/\sigma$ and N is studied using expressions of the form

$$|\mathbb{E}[h(F) - h(N)]|. \tag{1}$$

Note that $F \stackrel{Law}{=} N$ if the following **property** holds: "(1) is zero for sufficiently many test functions *h*".

Another property characterizing the normal distribution is...

$$|\mathbb{E}[Nf'(N) - f''(N)]| = 0,$$
(2)

for sufficiently many functions f.

Stein's heuristic

 $|\mathbb{E}[Ff'(F) - f''(F)]| \approx 0 \qquad \Rightarrow \qquad |\mathbb{E}[h(F) - h(N)]| \approx 0.$

For a given function h, consider the equation

$$\mathbf{x} \cdot \nabla f(\mathbf{x}) - Tr[Hess[f](\mathbf{x})\Sigma] = h(\mathbf{x}) - \mathbb{E}[f(\mathbf{N})].$$

For a given function h, consider the equation

$$\mathbf{x} \cdot \nabla f(\mathbf{x}) - Tr[Hess[f](\mathbf{x})\Sigma] = h(\mathbf{x}) - \mathbb{E}[f(\mathbf{N})].$$

The solution is given by

$$f(\boldsymbol{x}) = \int_0^\infty (\mathbb{E}[h(\boldsymbol{N})] - \mathbb{E}_{\boldsymbol{x}}[h(\boldsymbol{Y}_t)]) dt,$$

where Y_t is a Markov process starting at x and converging to N.

For a given function h, consider the equation

$$\mathbf{x} \cdot \nabla f(\mathbf{x}) - Tr[Hess[f](\mathbf{x})\Sigma] = h(\mathbf{x}) - \mathbb{E}[f(\mathbf{N})].$$

The solution is given by

$$f(\mathbf{x}) = \int_0^\infty (\mathbb{E}[h(\mathbf{N})] - \mathbb{E}_{\mathbf{x}}[h(\mathbf{Y}_t)]) dt,$$

where Y_t is a Markov process starting at x and converging to N.

We obtain

 $\mathbb{E}[\boldsymbol{F} \cdot \nabla f(\boldsymbol{F}) - Tr[Hess[f](\boldsymbol{F})\boldsymbol{\Sigma}]] = \mathbb{E}[h(\boldsymbol{F}) - f(\boldsymbol{N})].$

If $\textbf{\textit{F}}$ and $\textbf{\textit{N}}$ are multivariate and $\textbf{\textit{N}}$ has covariance $\Sigma,$ the quantity we need to control is

 $|\mathbb{E}[\boldsymbol{F} \cdot \nabla f_{\Sigma}(\boldsymbol{F}) - Tr[Hess[f_{\Sigma}](\boldsymbol{F})\Sigma]]|.$

If **F** and **N** are multivariate and **N** has covariance Σ , the quantity we need to control is

$$|\mathbb{E}[\boldsymbol{F} \cdot \nabla f_{\Sigma}(\boldsymbol{F}) - Tr[Hess[f_{\Sigma}](\boldsymbol{F})\Sigma]]|.$$

Main challenge of the method:

How do we estimate $\mathbb{E}[\boldsymbol{F} \cdot \nabla f_{\Sigma}(\boldsymbol{F})]$?

If **F** and **N** are multivariate and **N** has covariance Σ , the quantity we need to control is

$$|\mathbb{E}[\boldsymbol{F} \cdot \nabla f_{\Sigma}(\boldsymbol{F}) - Tr[Hess[f_{\Sigma}](\boldsymbol{F})\Sigma]]|.$$

Main challenge of the method:

How do we estimate $\mathbb{E}[\boldsymbol{F} \cdot \nabla f_{\Sigma}(\boldsymbol{F})]$?

Typical approach: use the original ideas from Lindeberg's (or Stein's) method.

The key computation is $\mathbb{E}[\mathbf{Z}_n \cdot \nabla f_{\Sigma}(\mathbf{Z}_n)]$.

The key computation is $\mathbb{E}[\boldsymbol{Z}_n \cdot \nabla f_{\Sigma}(\boldsymbol{Z}_n)]$.In this case,

$$\mathbb{E}[\boldsymbol{Z}_{n} \cdot \nabla f_{\Sigma}(\boldsymbol{Z}_{n})] = \frac{1}{\sqrt{n}} \sum_{i=1}^{nt} \mathbb{E}[(g(\boldsymbol{X}_{\frac{i-1}{n}}, \mathcal{I}_{i,n}) - \mathbb{E}[g(\boldsymbol{X}_{\frac{i-1}{n}}, \mathcal{I}_{i,n}) \mid \mathcal{F}_{i-1}])) \cdot \nabla f_{\Sigma}(\boldsymbol{Z}_{n})]$$

Key observation

The key computation is $\mathbb{E}[\boldsymbol{Z}_n \cdot \nabla f_{\boldsymbol{\Sigma}}(\boldsymbol{Z}_n)]$.In this case,

$$\mathbb{E}[\boldsymbol{Z}_{n} \cdot \nabla f_{\Sigma}(\boldsymbol{Z}_{n})] = \frac{1}{\sqrt{n}} \sum_{i=1}^{nt} \mathbb{E}[(g(X_{\frac{i-1}{n}}, \mathcal{I}_{i,n}) - \mathbb{E}[g(X_{\frac{i-1}{n}}, \mathcal{I}_{i,n}) \mid \mathcal{F}_{i-1}])) \cdot \nabla f_{\Sigma}(\boldsymbol{Z}_{n})]$$

Key observation

$$0 = \frac{1}{\sqrt{n}} \sum_{i=1}^{nt} \mathbb{E}[(g(X_{\frac{i-1}{n}}, \mathcal{I}_{i,n}) - \mathbb{E}[g(X_{\frac{i-1}{n}}, \mathcal{I}_{i,n}) \mid \mathcal{F}_{i-1}])) \cdot \nabla f_{\dot{\Sigma}^{i}}(\dot{\boldsymbol{Z}}_{n}^{i})],$$

where \dot{Z}_n^i and $\dot{\Sigma}^i$ are like Z_n and Σ , but removing the part of X in [(i-1)/n, i/n]

Now we can write

$$\begin{split} \mathbb{E}[\boldsymbol{Z}_{n} \cdot \nabla f_{\boldsymbol{\Sigma}}(\boldsymbol{Z}_{n})] \\ &= \frac{1}{\sqrt{n}} \sum_{i=1}^{nt} \mathbb{E}[(g(\boldsymbol{X}_{\frac{i-1}{n}}, \mathcal{I}_{i,n}) - \mathbb{E}[g(\boldsymbol{X}_{\frac{i-1}{n}}, \mathcal{I}_{i,n}) \mid \mathcal{F}_{i-1}])) \\ &\cdot \nabla (f_{\boldsymbol{\Sigma}}(\boldsymbol{Z}_{n}) - f_{\dot{\boldsymbol{\Sigma}}^{i}}(\dot{\boldsymbol{Z}}_{n}^{i})))] \end{split}$$

New bottleneck:

Now we can write

$$\begin{split} \mathbb{E}[\boldsymbol{Z}_{n} \cdot \nabla f_{\boldsymbol{\Sigma}}(\boldsymbol{Z}_{n})] \\ &= \frac{1}{\sqrt{n}} \sum_{i=1}^{nt} \mathbb{E}[(g(\boldsymbol{X}_{\frac{i-1}{n}}, \mathcal{I}_{i,n}) - \mathbb{E}[g(\boldsymbol{X}_{\frac{i-1}{n}}, \mathcal{I}_{i,n}) \mid \mathcal{F}_{i-1}])) \\ &\cdot \nabla (f_{\boldsymbol{\Sigma}}(\boldsymbol{Z}_{n}) - f_{\dot{\boldsymbol{\Sigma}}^{i}}(\dot{\boldsymbol{Z}}_{n}^{i})))] \end{split}$$

New bottleneck: understand

$$f_{\Sigma}(\boldsymbol{Z}_n) - f_{\dot{\Sigma}^i}(\dot{\boldsymbol{Z}}_n^i)$$

by means of Taylor approximations.

An easy criterion for mixed Gaussian convergence:

An easy criterion for mixed Gaussian convergence:

Theorem (Amorino, Jaramillo, Podolskij) Consider a sequence F_n , which is G-measurable for some σ -algebra. If the convergence

$$\mathbb{E}[Y(\boldsymbol{F}_n \cdot \nabla f(\boldsymbol{F}_n) - Tr[Hess[f](\boldsymbol{F}_n)\boldsymbol{\Sigma}])] \to 0,$$

holds for all bounded G-measurable Y and adequate test functions $h \in C^2(\mathbb{R}^r; \mathbb{R})$ then we obtain

$$S_n \stackrel{Law}{\to} \Sigma^{1/2} N$$
,

where $N \sim N_r(0, id)$ is a standard r-dimensional normal variable defined on an extended space and independent of G.

Main results

Let $X^{(1-m)}, \ldots, X^{(2m)}$ be independent copies of \boldsymbol{X} , and define

$$g_n(\mathbf{x}) := \sum_{j=-m}^m Cov[g(\mathbf{x}, a_n X_{1/n}^{(1)}, \dots, a_n X_{1/n}^{(m+1)}),$$
$$g(\mathbf{x}, a_n X_{1/n}^{(j+1)}, \dots, a_n X_{1/n}^{(j+m+1)})].$$

Main results

Let $X^{(1-m)}, \ldots, X^{(2m)}$ be independent copies of **X**, and define

$$g_n(\mathbf{x}) := \sum_{j=-m}^m Cov[g(\mathbf{x}, a_n X_{1/n}^{(1)}, \dots, a_n X_{1/n}^{(m+1)}),$$
$$g(\mathbf{x}, a_n X_{1/n}^{(j+1)}, \dots, a_n X_{1/n}^{(j+m+1)})].$$

Theorem (Amorino, Jaramillo, Podolskij, 2023) If \mathfrak{g}_n converges and $\alpha \in (0, 1)$, then

$$Z^{(n)} \stackrel{Law}{\to} \{\int_0^t \sqrt{\lim_k \mathfrak{g}_k(\boldsymbol{X}_s)} W(ds)\}_{t \ge 0},$$

where W is a Brownian motion independent of X.

Suppose that X is symmetric α -stable (including $\alpha = 2$), and define

$$d(\mu,\nu):=\sup_{h}\left|\int h\,d\mu-\int h\,d\nu\right|,$$

where the supremum is taken over all functions h satisfying $\|h^{(i)}\|_{\infty} \leq 1$ for i = 0, 1, 2, 3.

Main results (part II)

Theorem (Amorino, Jaramillo, Podolskij, 2023) Given a fixed t, there exists a constant C > 0 depending only on g, such that:

$$- If \alpha \in (1,2), d\left(Z_t^{(n)}, \int_0^t \sqrt{\lim_k \mathfrak{g}_k(X_s)}W(ds)\right) \le Cn^{\frac{1}{2}-\frac{1}{\alpha}}.$$

$$- If \alpha = 1, d\left(Z_t^{(n)}, \int_0^t \sqrt{\lim_k \mathfrak{g}_k(X_s)}W(ds)\right) \le Cn^{-\frac{1}{2}}\log(n).$$

- If $lpha\in(0,1)$,

$$d\left(Z_t^{(n)},\int_0^t\sqrt{\lim_k\mathfrak{g}_k(X_s)}W(ds)\right)\leq Cn^{-\frac{1}{2}}.$$

Theorem (Amorino, Jaramillo, Podolskij, 2023) If g is symmetric and t is fixed, then for all $\alpha \in (1, 2]$, we have

$$d\left(Z_t^{(n)},\int_0^t\sqrt{\lim_k\mathfrak{g}_k(X_s)}W(ds)
ight)\leq Cn^{-rac{1}{2}},$$

even for $\alpha = 2$.

The structure of independent and stationary increments is convenient but not essential.

- Move from high-frequency observations to spaced observations (observe X_k instead of $X_{k/n}$).

- Move from high-frequency observations to spaced observations (observe X_k instead of $X_{k/n}$).
- Remove stationarity of increments of *X*. Do we obtain integrals with time-changed Brownian motion?

- Move from high-frequency observations to spaced observations (observe X_k instead of $X_{k/n}$).
- Remove stationarity of increments of *X*. Do we obtain integrals with time-changed Brownian motion?
- Consider the case when X is a diffusion.

- Move from high-frequency observations to spaced observations (observe X_k instead of $X_{k/n}$).
- Remove stationarity of increments of *X*. Do we obtain integrals with time-changed Brownian motion?
- Consider the case when X is a diffusion.
- Remove independence of increments and consider:
 - (i) Gaussianity, replacing independence by weak dependence.
 - (ii) Replace independence with exchangeability properties.

- Move from high-frequency observations to spaced observations (observe X_k instead of $X_{k/n}$).
- Remove stationarity of increments of *X*. Do we obtain integrals with time-changed Brownian motion?
- Consider the case when X is a diffusion.
- Remove independence of increments and consider:
 - (i) Gaussianity, replacing independence by weak dependence.
 - (ii) Replace independence with exchangeability properties.
- Higher-order approximations (Edgeworth expansions).

- Move from high-frequency observations to spaced observations (observe X_k instead of $X_{k/n}$).
- Remove stationarity of increments of *X*. Do we obtain integrals with time-changed Brownian motion?
- Consider the case when X is a diffusion.
- Remove independence of increments and consider:
 - (i) Gaussianity, replacing independence by weak dependence.
 - (ii) Replace independence with exchangeability properties.
- Higher-order approximations (Edgeworth expansions).
- Allow more flexibility on g (e.g., $g(x) := \delta_0(x)$).

- Move from high-frequency observations to spaced observations (observe X_k instead of $X_{k/n}$).
- Remove stationarity of increments of *X*. Do we obtain integrals with time-changed Brownian motion?
- Consider the case when X is a diffusion.
- Remove independence of increments and consider:
 - (i) Gaussianity, replacing independence by weak dependence.
 - (ii) Replace independence with exchangeability properties.
- Higher-order approximations (Edgeworth expansions).
- Allow more flexibility on g (e.g., $g(x) := \delta_0(x)$).
- Understand the role of regularity of g (comparison with ItÃť integration).

Gracias!

Contacto Arturo Jaramillo jagil@cimat.mx Chiara Amorino, Arturo Jaramillo, Mark Podolskij. Quantitative and stable limits of high-frequency statistics of Levy processes: a Stein's method approach.