

Free Berry-Esseen theorem via Stein's method

Arturo Jaramillo Gil (joint work with Mario Diaz)

Centro de Investigación en Matemáticas (CIMAT)

Let $\{\mu_{k,n}\;;\;k,n\geq 1\}$ be a sequence of centered probability measures, and define

$$\nu_n := \mu_{1,n} \boxplus \cdots \boxplus \mu_{n,n}.$$

Let $\{\mu_{k,n} ; k,n \ge 1\}$ be a sequence of centered probability measures, and define

$$\nu_n := \mu_{1,n} \boxplus \cdots \boxplus \mu_{n,n}.$$

Under the condition $Var[\nu_n] = 1$ plus (other technical conditions), we have that $\nu_n \stackrel{Law}{\approx} \mathbf{s}$, where \mathbf{s} is the standard semicircular distribution.

Let $\{\mu_{k,n}\;;\;k,n\geq 1\}$ be a sequence of centered probability measures, and define

$$\nu_n := \mu_{1,n} \boxplus \cdots \boxplus \mu_{n,n}.$$

Under the condition $Var[\nu_n] = 1$ plus (other technical conditions), we have that $\nu_n \stackrel{Law}{\approx} \mathbf{s}$, where \mathbf{s} is the standard semicircular distribution.

Goal

Bound $d_{TV}(\nu_n, \mathbf{s})$ in a probabilistic way.

Let \mathcal{A} be a unital C^* -algebra and $\tau : \mathcal{A} \to \mathbb{C}$ a positive unital linear functional. We then say that the pair (\mathcal{A}, τ) is a C^* -probability space.

Let \mathcal{A} be a unital C^* -algebra and $\tau : \mathcal{A} \to \mathbb{C}$ a positive unital linear functional. We then say that the pair (\mathcal{A}, τ) is a C^* -probability space.

Definition (Freeness)

Let $\{A_n\}_{n\geq 1}$ be a sequence of subalgebras of \mathcal{A} . For $a \in \mathcal{A}$, denote the centering of a by $\bar{a} := a - \tau[a]$. We say that $\{A_n\}_{n\geq 1}$ are freely independent, or free, if

$$\tau[\bar{a}_1\bar{a}_2\cdots\bar{a}_k]=0,\tag{1}$$

for a_1, \ldots, a_k alternating algebras.

Let \mathcal{A} be a unital C^* -algebra and $\tau : \mathcal{A} \to \mathbb{C}$ a positive unital linear functional. We then say that the pair (\mathcal{A}, τ) is a C^* -probability space.

Definition (Freeness) Let $\{A_n\}_{n\geq 1}$ be a sequence of subalgebras of \mathcal{A} . For $a \in \mathcal{A}$, denote the centering of a by $\bar{a} := a - \tau[a]$. We say that $\{A_n\}_{n\geq 1}$ are freely independent, or free, if

$$\tau[\bar{a}_1\bar{a}_2\cdots\bar{a}_k]=0,\tag{1}$$

for a_1, \ldots, a_k alternating algebras.

Definition (Free convolution) Sums of free random variables yields the free convolution \boxplus . Our building block is

Definition

Let $\{P^*_{\theta}\}_{\theta \geq 0}$ be operators **over measures**, defined by

$$\mathcal{P}^*_ heta[\mu] := \mathsf{Law}(e^{- heta}X + \sqrt{1-e^{-2 heta}}Y),$$

with $X \sim \mu$ and $Y \sim m_1[\mu] + \sqrt{Var[\mu]} \mathbf{s}$.

Our building block is

Definition

Let $\{P^*_{\theta}\}_{\theta \geq 0}$ be operators **over measures**, defined by

$$\mathcal{P}^*_{ heta}[\mu] := \mathsf{Law}(e^{- heta}X + \sqrt{1-e^{-2 heta}}Y),$$

with $X \sim \mu$ and $Y \sim m_1[\mu] + \sqrt{Var[\mu]} \mathbf{s}$.

Let $\langle\cdot,\cdot\rangle$ denote dual pairing of measures and functions.

Our building block is

Definition

Let $\{P^*_{\theta}\}_{\theta \geq 0}$ be operators **over measures**, defined by

$$\mathcal{P}^*_ heta[\mu] := \mathsf{Law}(e^{- heta}X + \sqrt{1-e^{-2 heta}}Y),$$

with $X \sim \mu$ and $Y \sim m_1[\mu] + \sqrt{Var[\mu]}s$.

Let $\langle\cdot,\cdot\rangle$ denote dual pairing of measures and functions. The operator P^*_θ 'interpolates' from μ standardized to ${\bf s}$, as

$$\langle \mathbf{s}, h \rangle - \langle \mu, h \rangle = \langle P^*_{\infty}[\mu], h \rangle - \langle P^*_0[\mu], h \rangle$$

Recipie for cooking up a Stein identity

Deriving and integrating, we get

$$\langle \boldsymbol{s}, \boldsymbol{h}
angle - \langle \mu, \boldsymbol{h}
angle = \int_0^\infty rac{d}{d heta} \langle P^*_{ heta}[\mu], \boldsymbol{h}
angle d heta.$$

Recipie for cooking up a Stein identity

Deriving and integrating, we get

$$\langle \boldsymbol{s}, \boldsymbol{h}
angle - \langle \mu, \boldsymbol{h}
angle = \int_0^\infty rac{d}{d heta} \langle P^*_{ heta}[\mu], \boldsymbol{h}
angle d heta.$$

Lemma

$$rac{d}{d heta} \langle {\mathcal P}^*_ heta[\mu], h
angle = \langle {\mathcal P}^*_ heta[\mu] \otimes {\mathcal P}^*_ heta[\mu], {\mathcal L}_{\boxplus}[h]
angle,$$

where $\mathcal{L}_{\boxplus}[h]$ is the real function in \mathbb{R}^2 :

$$\mathcal{L}_{\boxplus}[h](x,y) := xDh(x) - \partial Dh,$$

where D denotes derivative and ∂ the non-commutative derivative

$$\partial g(x,y) := (g(x) - g(y))/(x - y).$$

For h regular enough,

$$\langle \boldsymbol{s},\boldsymbol{h}
angle - \langle \mu,\boldsymbol{h}
angle = \int_0^\infty \langle P^*_{\theta}[\mu]\otimes P^*_{\theta}[\mu], \mathcal{L}_{\boxplus}[\boldsymbol{h}]
angle d heta.$$

Lemma (Non-commutative Stein's lemma) A law ν is semicircular if and only if

 $\langle \nu \otimes \nu, \mathcal{L}_{\boxplus}[h] \rangle = 0,$

for h smooth with second bounded derivative.

For h regular enough,

$$\langle \boldsymbol{s},\boldsymbol{h}
angle - \langle \mu,\boldsymbol{h}
angle = \int_0^\infty \langle P^*_{ heta}[\mu]\otimes P^*_{ heta}[\mu], \mathcal{L}_{\boxplus}[\boldsymbol{h}]
angle d heta.$$

Lemma (Non-commutative Stein's lemma) A law ν is semicircular if and only if

 $\langle \nu \otimes \nu, \mathcal{L}_{\boxplus}[h] \rangle = 0,$

for h smooth with second bounded derivative.

As a consequence,

$$\langle \boldsymbol{s},\boldsymbol{h}
angle-\langle \mu,\boldsymbol{h}
angle=\int_{0}^{\infty}\langle P_{ heta}^{*}[\mu]\otimes P_{ heta}^{*}[\mu]-P_{\infty}^{*}[\mu]\otimes P_{\infty}^{*}[\mu],\mathcal{L}_{\mathbb{H}}[\boldsymbol{h}]
angledd heta.$$

What have we achieved in the free case? Pt II

Writing what we have differently,

$$|\langle \mathbf{s}, \mathbf{h} \rangle - \langle \mu, \mathbf{h} \rangle| = |\langle \mathcal{S}_{\boxplus}^*[\mu], \mathcal{L}_{\boxplus}[\mathbf{h}] \rangle|,$$

where

$$\mathcal{S}^*_{\boxplus}[\mu] := \int_0^\infty (\mathcal{P}^*_{ heta}[\mu] \otimes \mathcal{P}^*_{ heta}[\mu] - \mathcal{P}^*_\infty[\mu] \otimes \mathcal{P}^*_\infty[\mu]) d heta.$$

Writing what we have differently,

$$|\langle \mathbf{s}, \mathbf{h} \rangle - \langle \mu, \mathbf{h} \rangle| = |\langle \mathcal{S}_{\boxplus}^*[\mu], \mathcal{L}_{\boxplus}[\mathbf{h}] \rangle|,$$

where

$$\mathcal{S}^*_{\boxplus}[\mu] := \int_0^\infty (P^*_{ heta}[\mu] \otimes P^*_{ heta}[\mu] - P^*_\infty[\mu] \otimes P^*_\infty[\mu]) d heta.$$

Compare this with the classical case, stating

$$|\langle \gamma, h \rangle - \langle \mu, h \rangle| = |\langle \mu, \mathcal{L}[\mathcal{S}[h]] \rangle|,$$

New bottleneck

Bound uniformly $|\langle \rho, \mathcal{L}_{\boxplus}[g] \rangle|$, with $\rho = \mathcal{S}_{\boxplus}^*[\mu]$.

Consider

$$\nu_n := \mu_{1,n} \boxplus \cdots \boxplus \mu_{n,n}.$$

Assume $Var[\nu_n] = 1$ and that $\mu_{k,n}$ have small supports.

Consider

$$\nu_n := \mu_{1,n} \boxplus \cdots \boxplus \mu_{n,n}.$$

Assume $Var[\nu_n] = 1$ and that $\mu_{k,n}$ have small supports. If $\xi_{1,n}, \ldots, \xi_{n,n}$ are free with law equal to $\int_{\mathbb{R}_+} (P_{\theta}^* - P_{\infty}^*)[\mu_{k,n}]d\theta$, then

$$\langle \mathcal{S}_{\boxplus}^*[\nu_n], \mathcal{L}_{\boxplus}[h] \rangle = \tau[S_n Dh(S_n)] - \langle \mathcal{S}_{\boxplus}^*[\nu_n], \partial Dh \rangle,$$

with $S_n := \xi_{1,1} + \cdots + \xi_{n,n}$.

Corollary (Superconvergence by Bercovici and Voiculescu) For n large, $Supp(\nu_n) \subset [-3,3]$ and $Supp(\mathcal{S}^*_{\boxplus}[\nu_n]) \subset [-5,5]$.

If the test function was holomorphic, the Cauchy formula yields

$$\langle \mathcal{S}_{\boxplus}^*[\nu_n], \mathcal{L}_{\boxplus}[h] \rangle = \frac{1}{2\pi i} \int_{\mathcal{R}} h(z) (\tau[S_n g_z(S_n)] - \langle \mathcal{S}_{\boxplus}^*[\nu_n], \partial g_z \rangle) dz,$$

where \mathcal{R} strictly containing [-5,5] and

$$g(x) := (z - x)^{-2}.$$

Corollary (Superconvergence by Bercovici and Voiculescu) For n large, $Supp(\nu_n) \subset [-3,3]$ and $Supp(\mathcal{S}^*_{\boxplus}[\nu_n]) \subset [-5,5]$.

If the test function was holomorphic, the Cauchy formula yields

$$\langle \mathcal{S}_{\boxplus}^*[\nu_n], \mathcal{L}_{\boxplus}[h] \rangle = \frac{1}{2\pi i} \int_{\mathcal{R}} h(z) (\tau[S_n g_z(S_n)] - \langle \mathcal{S}_{\boxplus}^*[\nu_n], \partial g_z \rangle) dz,$$

where ${\cal R}$ strictly containing [-5,5] and

$$g(x) := (z - x)^{-2}.$$

But for total variation, h must be only bounded, not holomorphic right?

For *h* holomorphic and bounded by one over [-5,5], there is a constant only depending on \mathcal{R} , such that

$$|\langle \mathbf{s}, h \rangle - \langle \nu_n, h \rangle| \leq C \sup_{z \in \mathcal{R}} |\tau[S_n g_z(S_n)] - \langle S^*_{\boxplus}[\nu_n], \partial g_z \rangle|.$$

By an approximation argument,

$$d_{TV}(\langle \mathbf{s}, h \rangle - \langle \nu_n, h \rangle) \leq C \sup_{z \in \mathcal{R}} |\tau[S_n g_z(S_n)] - \langle S^*_{\boxplus}[\nu_n], \partial g_z \rangle|.$$

Define $S_n^{(k)}$ as the part of S_n that does not involve $\xi_{k,n}$. Observe that

$$\mathbb{E}[S_n g_z(S_n)] = \sum_{k=1}^n \mathbb{E}[\xi_{k,n} g_z(S_n)] = \sum_{k=1}^n \mathbb{E}[\xi_{k,n}(g_z(S_n) - g_z(S_n^k))]$$

Define $S_n^{(k)}$ as the part of S_n that does not involve $\xi_{k,n}$. Observe that

$$\mathbb{E}[S_n g_z(S_n)] = \sum_{k=1}^n \mathbb{E}[\xi_{k,n} g_z(S_n)] = \sum_{k=1}^n \mathbb{E}[\xi_{k,n}(g_z(S_n) - g_z(S_n^k))]$$

Do I need a commutative Taylor?

Lemma

For non-commutative variables a, r, define

$$\Delta(a,r) := 2\mathfrak{s}[(z-a)r] - r^2,$$

where \mathfrak{s} denotes the symmetrization operator. Then, for all $q \geq 1$,

$$g(a+r) = g(a+r) (\Delta(a,r)g(a))^{q} + \sum_{j=0}^{q-1} g(a) (\Delta(a,r)g(a))^{j},$$

We have the following expansion for all $q \geq 1$

$$\tau[S_n g_z(S_n)] = \sum_{k=1}^n \tau[\xi_{k,n} g(S_n) \left(\Delta\left(S_n^k, \xi_{k,n}\right) g(S_n^k)\right)^q] + \sum_{j=1}^{q-1} \tau[g(S_n^k) \left(\Delta\left(S_n^k, \xi_{k,n}\right) g(S_n^k)\right)^j].$$

We have the following expansion for all $q \geq 1$

$$\tau[S_n g_z(S_n)] = \sum_{k=1}^n \tau[\xi_{k,n} g(S_n) \left(\Delta\left(S_n^k, \xi_{k,n}\right) g(S_n^k)\right)^q] \\ + \sum_{j=1}^{q-1} \tau[g(S_n^k) \left(\Delta\left(S_n^k, \xi_{k,n}\right) g(S_n^k)\right)^j].$$

For q = 2, the boundedness of the g then yields

$$\tau[S_n g_z(S_n)] = O(\sum_{k=1}^n \tau[|\xi_{k,n}|^3]) + \sum_{k=1}^n \tau[g(S_n^k) \Delta(S_n^k, \xi_{k,n}) g(S_n^k)]$$

= $O(\sum_{k=1}^n \tau[|\xi_{k,n}|^3]) + 2\sum_{k=1}^n \tau[g(S_n^k) \mathfrak{s}[(z - S_n^k)\xi_{k,n}] g(S_n^k)].$

Finally, using freeness,

$$\tau[S_n g_z(S_n)] = O(\sum_{k=1}^n \tau[|\xi_{k,n}|^3]) + 2\sum_{k=1}^n \tau[|\xi_{k,n}|^2]\tau[g(S_n^k)[(z - S_n^k)]\tau[g(S_n^k)]$$
$$= O(\sum_{k=1}^n \tau[|\xi_{k,n}|^3]) + 2\sum_{k=1}^n \tau[|\xi_{k,n}|^2]\tau[g(S_n)[(z - S_n)]\tau[g(S_n)].$$

The unit variance condition then implies

$$\sup_{z\in\mathcal{R}} |\tau[S_ng_z(S_n)] - \langle S_{\boxplus}^*[\nu_n], \partial g_z \rangle| \leq C \sum_{k=1}^n \tau[|\xi_{k,n}|^3].$$

Wrapping things up

Theorem (Diaz-Jaramillo) Under the above considerations,

$$d_{TV}(\mathbf{s},\nu_n) \leq C \sum_{k=1}^n \int_{\mathbb{R}} |x|^3 \mu_{k,n}(dx).$$

Some improvements:

- 1. Neighborhoods of dependency.
- 2. Uniform convergence of the density.
- 3. The Mauricio Salazar trick holds.

Some unsolved improvements:

1. Uniform convergence of the derivatives of the density.

- Free law of rare events
- For Boolean or monotone convolutions, can we still say something in Wasserstein distance?
- Can we change \boxplus by \boxplus_m and still say something?
- Extended Mauricio Salazar trick or Edgeworth expansions
- Implementations in large matrix problems
- Multidimensional versions
- Free stable limits

Thanks!

- - Diaz M., Jaramillo A. Non-commutative Stein's method: Applications to free probability and sums of non-commutative variables.
- G. P. Chistyakov and F. Gotze. Limit theorems in free probability theory.