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Joint work with a great mathematician, great fan of Checo
Pérez, and most of all: a great friend
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Objective

Let {µk,n ; k, n ≥ 1} be a sequence of centered probability measures,
and define

νn := µ1,n ⊞ · · · ⊞ µn,n.
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Objective

Let {µk,n ; k, n ≥ 1} be a sequence of centered probability measures,
and define

νn := µ1,n ⊞ · · · ⊞ µn,n.

Under the condition Var [νn] = 1 plus (other technical conditions), we
have that νn

Law≈ s, where s is the standard semicircular distribution.

Goal
Bound dTV (νn, s) in a probabilistic way.

Moment of honesty...
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Classical Stein’s method

Greek letters are probabilities and 〈µ, h〉 :=
󰁕
R h(x)µ(dx).
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Classical Stein’s method

Greek letters are probabilities and 〈µ, h〉 :=
󰁕
R h(x)µ(dx).

Lemma (Stein’s lemma)
Consider the Stein identity

〈µ, ι · Df − D2f 〉 = 0, (1)

where D denotes derivative and ι the identity function. If (1) holds for
many choices of f , then µ is standard Gaussian.
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Classical Stein’s method

Greek letters are probabilities and 〈µ, h〉 :=
󰁕
R h(x)µ(dx).

Lemma (Stein’s lemma)
Consider the Stein identity

〈µ, ι · Df − D2f 〉 = 0, (1)

where D denotes derivative and ι the identity function. If (1) holds for
many choices of f , then µ is standard Gaussian.

Stein Heuristics
If (1) ”more or less holds”, then µ is ”more or less semicircular”.

Why Stein’s identity would be natural?
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How to cook up Stein’s identity? (personal favorite recipie)

Let γ be the standard Gaussian law and N a r.v. with law γ.
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How to cook up Stein’s identity? (personal favorite recipie)

Let γ be the standard Gaussian law and N a r.v. with law γ. Consider
the semigroup {Pθ}θ≥0,

Pθ[h](x) = E[f (e−θx +
󰁳

1 − e−2θN)].

Then, for a given probability µ, and a test function h,

〈γ, h〉 − 〈µ, h〉 = 〈µ, P∞[h]〉 − 〈µ, P0[h]〉.

This operator ’interpolates’ towards Gaussian.
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How to cook up Stein’s identity?

Deriving and integrating, we get

〈γ, h〉 − 〈µ, h〉 =
󰁝 ∞

0

d
dθ

〈µ, Pθ[h]〉dθ = 〈µ,

󰁝 ∞

0
L[Pθ[h]]dθ〉.

where

L[g ](x) := xDg(x) − D2g(x) = (ι · Dg − D2g)(x).
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What have we achieved so far?

If h is regular enough,

|〈γ, h〉 − 〈µ, h〉| = |〈µ, L[S[h]]〉|,

where S[h] is the operator

S[h] :=
󰁝 ∞

0
(Pθ[h] − P∞[h])dθ.
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What have we achieved so far?

If h is regular enough,

|〈γ, h〉 − 〈µ, h〉| = |〈µ, L[S[h]]〉|,

where S[h] is the operator

S[h] :=
󰁝 ∞

0
(Pθ[h] − P∞[h])dθ.

New bottleneck

Bound uniformly |〈µ, L[g ]〉|, with g = S[h].
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Dealing with the bottleneck for getting CLT

Consider the case

νn := µ1,n ∗ · · · ∗ µn,n,

with µj,n centered, such that

n󰁛

k=1
Var [µk,n] = 1.
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Dealing with the bottleneck for getting CLT

Consider the case

νn := µ1,n ∗ · · · ∗ µn,n,

with µj,n centered, such that

n󰁛

k=1
Var [µk,n] = 1.

If ξ1,n, . . . , ξn,n are independent with ξk,n ∼ µk,n, then

〈νn, L[g ]〉 = E[SnDg(Sn)] − E[D2g(Sn)]

with Sn := ξ1,1 + · · · + ξn,n.
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A Lindeberg-type trick

Define S(k)
n as the part of Sn that does not involve ξk,n.
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A Lindeberg-type trick

Define S(k)
n as the part of Sn that does not involve ξk,n. Observe that

E[SnDg(Sn)] =
n󰁛

k=1
E[ξk,nDg(Sn)] =

n󰁛

k=1
E[ξk,n(Dg(Sn) − Dg(Sk

n ))]

Then,

E[SnDg(Sn)] ≈
n󰁛

k=1
E[|ξk,n|2D2g(Sk

n ))] =
n󰁛

k=1
E[|ξk,n|2]E[D2g(Sk

n ))]

≈
n󰁛

k=1
E[|ξk,n|2]E[D2g(Sn))] = E[D2g(Sn)]

Conclusion: 〈νn, L[g ]〉 ≈ 0
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Elements of free probability

Let A be a unital C∗-algebra and τ : A → C a positive unital linear
functional. We then say that the pair (A, τ) is a C∗-probability space.
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functional. We then say that the pair (A, τ) is a C∗-probability space.

Definition (Freeness)
Let {An}n≥1 be a sequence of subalgebras of A. For a ∈ A, denote the
centering of a by ā := a − τ [a]. We say that {An}n≥1 are freely
independent, or free, if

τ [ā1ā2 · · · āk ] = 0, (2)

for a1, . . . , ak alternating algebras.
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Elements of free probability

Let A be a unital C∗-algebra and τ : A → C a positive unital linear
functional. We then say that the pair (A, τ) is a C∗-probability space.

Definition (Freeness)
Let {An}n≥1 be a sequence of subalgebras of A. For a ∈ A, denote the
centering of a by ā := a − τ [a]. We say that {An}n≥1 are freely
independent, or free, if

τ [ā1ā2 · · · āk ] = 0, (2)

for a1, . . . , ak alternating algebras.

Definition (Free convolution)
Sums of free random variables yields the free convolution ⊞.
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Recipie for cooking up a free Stein identity

Our building block before was

Pθ[h](x) = E[h(e−θx +
󰁳

1 − e−2θN)].
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1 − e−2θN)].

now what we do?

Definition
Let {P∗

θ }θ≥0 be operators over measures, defined by

P∗
θ [µ] := Law(e−θX +

󰁳
1 − e−2θY ),

with X ∼ µ and Y ∼ m1[µ] +
󰁳

Var [µ]s.
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Recipie for cooking up a free Stein identity

Our building block before was

Pθ[h](x) = E[h(e−θx +
󰁳

1 − e−2θN)].

now what we do?

Definition
Let {P∗

θ }θ≥0 be operators over measures, defined by

P∗
θ [µ] := Law(e−θX +

󰁳
1 − e−2θY ),

with X ∼ µ and Y ∼ m1[µ] +
󰁳

Var [µ]s.

This operator ’interpolates’ from µ standardized to s, as

〈s, h〉 − 〈µ, h〉 = 〈P∗
∞[µ], h〉 − 〈P∗

0 [µ], h〉
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Recipie for cooking up a Stein identity

Deriving and integrating, we get

〈s, h〉 − 〈µ, h〉 =
󰁝 ∞

0

d
dθ

〈P∗
θ [µ], h〉dθ.
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Recipie for cooking up a Stein identity

Deriving and integrating, we get

〈s, h〉 − 〈µ, h〉 =
󰁝 ∞

0

d
dθ

〈P∗
θ [µ], h〉dθ.

Lemma (Diaz-Jaramillo)

d
dθ

〈P∗
θ [µ], h〉 = 〈P∗

θ [µ] ⊗ P∗
θ [µ], L⊞[h]〉,

where L⊞[h] is the real function in R2:

L⊞[h](x , y) := xDh(x) − ∂Dh,

where g is the non-commutative derivative

∂g(x , y) := (g(x) − g(y))/(x − y).
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What have we achieved in the free case?

For h regular enough,

〈s, h〉 − 〈µ, h〉 =
󰁝 ∞

0
〈P∗

θ [µ] ⊗ P∗
θ [µ], L⊞[h]〉dθ.

Lemma (Non-commutative Stein’s lemma)
A law ν is semicircular if and only if

〈ν ⊗ ν, L⊞[h]〉 = 0,

for h smooth with second bounded derivative.
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What have we achieved in the free case?

For h regular enough,

〈s, h〉 − 〈µ, h〉 =
󰁝 ∞

0
〈P∗

θ [µ] ⊗ P∗
θ [µ], L⊞[h]〉dθ.

Lemma (Non-commutative Stein’s lemma)
A law ν is semicircular if and only if

〈ν ⊗ ν, L⊞[h]〉 = 0,

for h smooth with second bounded derivative.

As a consequence,

〈s, h〉 − 〈µ, h〉 =
󰁝 ∞

0
〈P∗

θ [µ] ⊗ P∗
θ [µ] − P∗

∞[µ] ⊗ P∗
∞[µ], L⊞[h]〉dθ.
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What have we achieved in the free case? Pt II

Writing what we have differently,

|〈s, h〉 − 〈µ, h〉| = |〈S∗
⊞[µ], L⊞[h]〉|,

where

S∗
⊞[µ] :=

󰁝 ∞

0
(P∗

θ [µ] ⊗ P∗
θ [µ] − P∗

∞[µ] ⊗ P∗
∞[µ])dθ.
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What have we achieved in the free case? Pt II

Writing what we have differently,

|〈s, h〉 − 〈µ, h〉| = |〈S∗
⊞[µ], L⊞[h]〉|,

where

S∗
⊞[µ] :=

󰁝 ∞

0
(P∗

θ [µ] ⊗ P∗
θ [µ] − P∗

∞[µ] ⊗ P∗
∞[µ])dθ.

Compare this with the classical case, stating

|〈γ, h〉 − 〈µ, h〉| = |〈µ, L[S[h]]〉|,

New bottleneck

Bound uniformly |〈ρ, L⊞[g ]〉|, with ρ = S∗
⊞[µ].
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Dealing with the bottleneck when µ = νn

Consider

νn := µ1,n ⊞ · · · ⊞ µn,n.

Assume Var [νn] = 1 and that µk,n have small supports.
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Dealing with the bottleneck when µ = νn

Consider

νn := µ1,n ⊞ · · · ⊞ µn,n.

Assume Var [νn] = 1 and that µk,n have small supports. If ξ1,n, . . . , ξn,n
are free with law equal to

󰁕
R+

(P∗
θ − P∗

∞)[µk,n]dθ, then

〈S∗
⊞[νn], L⊞[h]〉 = τ [SnDh(Sn)] − 〈S∗

⊞[νn], ∂Dh〉,

with Sn := ξ1,1 + · · · + ξn,n.

15



An important technicallity

Corollary (Superconvergence by Bercovici and Voiculescu)
For n large, Supp(νn) ⊂ [−3, 3] and Supp(S∗

⊞[νn]) ⊂ [−5, 5].

The Cauchy formula yields

〈S∗
⊞[νn], L⊞[h]〉 = 1

2πi

󰁝

R
h(z)(τ [Sngz(Sn)] − 〈S∗

⊞[νn], ∂gz〉)dz ,

where R strictly containing [−5, 5] and

g(x) := (z − x)−2.
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An important technicallity

Corollary (Superconvergence by Bercovici and Voiculescu)
For n large, Supp(νn) ⊂ [−3, 3] and Supp(S∗

⊞[νn]) ⊂ [−5, 5].

The Cauchy formula yields

〈S∗
⊞[νn], L⊞[h]〉 = 1

2πi

󰁝

R
h(z)(τ [Sngz(Sn)] − 〈S∗

⊞[νn], ∂gz〉)dz ,

where R strictly containing [−5, 5] and

g(x) := (z − x)−2.

For total variation, h is bounded by one!
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Moral of the story

For h very smooth and bounded by one, there is a constant only
depending on R, such that

|〈s, h〉 − 〈νn, h〉| ≤ C sup
z∈R

|τ [Sngz(Sn)] − 〈S∗
⊞[νn], ∂gz〉|.

By an approximation argument,

dTV (〈s, h〉 − 〈νn, h〉) ≤ C sup
z∈R

|τ [Sngz(Sn)] − 〈S∗
⊞[νn], ∂gz〉|.
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Non-commutative Lindeberg trick?

Define S(k)
n as the part of Sn that does not involve ξk,n. Observe that

E[Sngz(Sn)] =
n󰁛

k=1
E[ξk,ngz(Sn)] =

n󰁛

k=1
E[ξk,n(gz(Sn) − gz(Sk

n ))]
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Non-commutative Lindeberg trick?

Define S(k)
n as the part of Sn that does not involve ξk,n. Observe that

E[Sngz(Sn)] =
n󰁛

k=1
E[ξk,ngz(Sn)] =

n󰁛

k=1
E[ξk,n(gz(Sn) − gz(Sk

n ))]

Do I need a commutative Taylor?
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The only non-commutative calculus we need

Lemma

For non-commutative variables a, r , define

∆ (a, r) := 2s[(z − a)r ] − r2,

where s denotes the symmetrization operator. Then, for all q ≥ 1,

g (a + r) = g (a + r) (∆ (a, r) g(a))q +
q−1󰁛

j=0
g (a) (∆ (a, r) g (a))j

,
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Consequence

We have the following expansion for all q ≥ 1

τ [Sngz(Sn)] =
n󰁛

k=1
τ [ξk,ng (Sn)

󰀃
∆

󰀃
Sk

n , ξk,n
󰀄

g(Sk
n )

󰀄q]

+
q−1󰁛

j=1
τ [g

󰀃
Sk

n
󰀄 󰀃

∆
󰀃
Sk

n , ξk,n
󰀄

g
󰀃
Sk

n
󰀄󰀄j ].
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Consequence

We have the following expansion for all q ≥ 1

τ [Sngz(Sn)] =
n󰁛

k=1
τ [ξk,ng (Sn)

󰀃
∆

󰀃
Sk

n , ξk,n
󰀄

g(Sk
n )

󰀄q]

+
q−1󰁛

j=1
τ [g

󰀃
Sk

n
󰀄 󰀃

∆
󰀃
Sk

n , ξk,n
󰀄

g
󰀃
Sk

n
󰀄󰀄j ].

For q = 2, the boundedness of the g then yields

τ [Sngz(Sn)] = O(
n󰁛

k=1
τ [|ξk,n|3]) +

n󰁛

k=1
τ [g

󰀃
Sk

n
󰀄

∆
󰀃
Sk

n , ξk,n
󰀄

g
󰀃
Sk

n
󰀄
]

= O(
n󰁛

k=1
τ [|ξk,n|3]) + 2

n󰁛

k=1
τ [g

󰀃
Sk

n
󰀄
s

󰀅
(z − Sk

n )ξk,n
󰀆

g
󰀃
Sk

n
󰀄
].
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Consequence

Finally, using freeness,

τ [Sngz(Sn)] = O(
n󰁛

k=1
τ [|ξk,n|3]) + 2

n󰁛

k=1
τ [|ξk,n|2]τ [g

󰀃
Sk

n
󰀄

[(z − Sk
n )]τ [g

󰀃
Sk

n
󰀄
]

= O(
n󰁛

k=1
τ [|ξk,n|3]) + 2

n󰁛

k=1
τ [|ξk,n|2]τ [g (Sn) [(z − Sn)]τ [g (Sn)].

The unit variance condition then implies

sup
z∈R

|τ [Sngz(Sn)] − 〈S∗
⊞[νn], ∂gz〉| ≤ C

n󰁛

k=1
τ [|ξk,n|3].
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Wrapping things up

Theorem (Diaz-Jaramillo)
Under the above considerations,

dTV (s, νn) ≤ C
n󰁛

k=1

󰁝

R
|x |3µk,n(dx).

Some improvements:

1. Neighborhoods of dependency.
2. Uniform convergence of the density.
3. The Mauricio Salazar trick holds.

Some unsolved improvements:

1. Uniform convergence of the derivatives of the density.
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Some questions that I thought could be interesting

- Free law of rare events
- For Boolean or monotone convolutions, can we still say something in

Wasserstein distance?
- Can we change ⊞ by ⊞m and still say something?
- Extended Mauricio Salazar trick or Edgeworth expansions
- Implementations in large matrix problems
- Multidimensional versions
- Free stable limits
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Thanks!

24



References

Diaz M., Jaramillo A. Non-commutative Stein’s method:
Applications to free probability and sums of non-commutative
variables.
G. P. Chistyakov and F. Gotze. Limit theorems in free probability
theory.

25


