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Moment of honesty...
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Lemma (Stein’s lemma)
Consider the Stein identity

(i, 0 - Df — D?f) = 0, (1)

where D denotes derivative and ¢ the identity function. If (1) holds for
many choices of f, then p is standard Gaussian.

Stein Heuristics
If (1) "more or less holds"”, then p is "more or less semicircular”.

Why Stein’s identity would be natural?



How to cook up Stein’s identity? (personal favorite recipie)

Let v be the standard Gaussian law and N a r.v. with law 7.



How to cook up Stein’s identity? (personal favorite recipie)

Let v be the standard Gaussian law and N a r.v. with law ~. Consider
the semigroup {Py}o>o0,

Po[h](x) = E[f(e %x + /1 — e=29N)].



How to cook up Stein’s identity? (personal favorite recipie)

Let v be the standard Gaussian law and N a r.v. with law ~. Consider
the semigroup {Py}o>o0,

Pylh](x) = E[f(e ’x + V1 — e=20N)].
Then, for a given probability p, and a test function h,

(7, h) = (s h) = (s, Poo[h]) — (i, Polh]).



How to cook up Stein’s identity? (personal favorite recipie)

Let v be the standard Gaussian law and N a r.v. with law ~. Consider
the semigroup {Py}o>o0,

Pylh](x) = E[f(e ’x + V1 — e=20N)].
Then, for a given probability p, and a test function h,
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How to cook up Stein’s identity?

Deriving and integrating, we get

(o) = Gty = [ 50 P40 = G, [ lPoltIa0)
where

L[g](x) := xDg(x) — D°g(x) = (.- Dg — D°g)(x).
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What have we achieved so far?

If his regular enough,

(s h) = s )| = [, LISTAID,

where S[h] is the operator
St = [ (Palb] — Pl

New bottleneck

Bound uniformly |{u, £[g])|, with g = S[h].
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Dealing with the bottleneck for getting CLT

Consider the case

Vp = H1,p %% Hn,n,

with p; , centered, such that
Z Var[p,n] = 1.
k=1

If &1,n, ..., &n n are independent with &g , ~ fuk n, then
(vn, L1g]) = E[S:Dg(S,)] — E[D’g(S)]

with Sy =& 14+ + &nn.
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A Lindeberg-type trick

Define S,(,k) as the part of S, that does not involve & ,. Observe that
E[S,D8(5:)] = 3 ElésnDa(5.)] = 3 Elésn(Dg(S.) — Da(Sk)]
k=1 k=1
Then,
B[S, 08(5,) ~ 3Bl LDE(S)] = 3Bl PIEIDE(S)
k=1 k=1

~ Y Ellécq"JE[D?g(S1))] = E[D?g(S5)]

k=1

Conclusion: (v,, L[g]) =~ 0
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Elements of free probability

Let A be a unital C*-algebra and 7: A — C a positive unital linear
functional. We then say that the pair (A, 7) is a C*-probability space.
Definition (Freeness)
Let {A,}n>1 be a sequence of subalgebras of A. For a € A, denote the
centering of a by 2 := a — 7[a]. We say that {A,},>1 are freely
independent, or free, if

T[§1§2--'§k] = 0, (2)

for ay, ..., ax alternating algebras.

Definition (Free convolution)
Sums of free random variables yields the free convolution .
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Pilu] := Law(e ?X + /1 — e 2Y),

with X ~ g and Y ~ mq[u] + +/ Var[u]s.

This operator 'interpolates’ from p standardized to s, as

(8, ) — (p, h) = (P[ul, h) = (Pou], h)
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Recipie for cooking up a Stein identity

Deriving and integrating, we get
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Recipie for cooking up a Stein identity

Deriving and integrating, we get

(s, h) — (i, h) = /OOO %uvg[u], h)do.

Lemma (Diaz-Jaramillo)

(P31, ) = (P3i] © PSlil, Lol

where Lg[h] is the real function in R?:
La[h](x,y) = xDh(x) — Dh,
where g is the non-commutative derivative

og(x,y) = (g(x) —g(¥))/(x — y).
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What have we achieved in the free case?

For h regular enough,
(s.0) = () = [ (Pili)© Pyl Lalpl) 0.

Lemma (Non-commutative Stein’s lemma)
A law v is semicircular if and only if

(v @ v, Lglh]) =0,

for h smooth with second bounded derivative.
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What have we achieved in the free case?

For h regular enough,

(5, ) — (u, b) = /O " (P31l ® P3[ul. La[H]) 6.

Lemma (Non-commutative Stein’s lemma)
A law v is semicircular if and only if

(v @ v, Lglh]) =0,

for h smooth with second bounded derivative.

As a consequence,

(s, h) = (u, h) = /OOO<P5[M] ® Pylp] = Psolu] @ PX[ul, Lalh])db.
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What have we achieved in the free case? Pt Il

Writing what we have differently,
(s, h) = (u, W) = [(Slul, Lalh)];
where
Sslidi= [ (Pl @ Pyl ~ Pl @ PLi)do,
Compare this with the classical case, stating
(v, by = s B] = [{u, LISTAIDI,
New bottleneck

Bound uniformly |{(p, Lm[g])|, with p = Sg[u]-
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Dealing with the bottleneck when 1 = v,

Consider
Vpi=p1,n BB ppn.

Assume Var[v,] = 1 and that uk , have small supports.
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Dealing with the bottleneck when 1 = v,

Consider
Vpi=p1,n BB ppn.

Assume Var[v,] = 1 and that uk , have small supports. If & ..., &nn
are free with law equal to [, (P — PX,)[1tk,n]d0, then

(Silval, Lalh]) = 7[SaDh(Sh)] = (Splval, ODh),

with 5,7 = 51_’1 + -4 g”y"'
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An important technicallity

Corollary (Superconvergence by Bercovici and Voiculescu)
For n large, Supp(v,) C [—3,3] and Supp(Sg[va]) C [-5,5].

The Cauchy formula yields

1

(Salvl, Lalhl) = 5

/R h(2)(r[Sne(Sa)] — (Silva), Og2))dz.

where R strictly containing [—5,5] and

g(x) = (z—x)"2
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An important technicallity

Corollary (Superconvergence by Bercovici and Voiculescu)
For n large, Supp(v,) C [—3,3] and Supp(Sg[va]) C [-5,5].

The Cauchy formula yields

1

(Salvl, Lalhl) = 5

/R h(2)(r[Sne(Sa)] — (Silva), Og2))dz.

where R strictly containing [—5,5] and

g(x) = (z—x)"2

For total variation, h is bounded by one!
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Moral of the story

For h very smooth and bounded by one, there is a constant only
depending on R, such that

(s, h) — (v, )| < C Sgng[Sngz(Sn)] — (S@lvnl, Ogz)|-
By an approximation argument,

dT\/(<sv h) — (vn, h>) < Czsgg ‘T[Sngz(sn)] - <S%[Vn]7ag2>|'

17



Non-commutative Lindeberg trick?

Define sﬁk) as the part of S, that does not involve £, ,. Observe that
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Non-commutative Lindeberg trick?

Define sﬁk) as the part of S, that does not involve £, ,. Observe that

IE[Sngz(sn)] = ZE[gk,ngz(Sn)] = ZE[gk.n(gz(sn) - gz(sr/;))]
k=1 k=1

Do | need a commutative Taylor?
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The only non-commutative calculus we need

Lemma

For non-commutative variables a, r, define
A(a,r) = 2s[(z — a)r] — r?,

where s denotes the symmetrization operator. Then, for all ¢ > 1,

qg—1

gla+r=g(a+nr(A(arg@)+> ga)(A(ar)eg(a),
j=0
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Consequence

We have the following expansion for all g > 1

n

7[Snge(S) = D 7[6kng (Sn) (B (SK. Ekn) &(S)) ]

k=1

+Zﬂg# A (SK.€cn) & (S9).
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Consequence

We have the following expansion for all g > 1

n

7[Snge(S) = D 7[6kng (Sn) (B (SK. Ekn) &(S)) ]

k=1
+Zf[g (S) (B (S5, €en) & (S)Y].

For g = 2, the boundedness of the g then yields

7[Sng2(Sa)] = O _ 7lléwnl]) + D g (Sn) A (S k,n) & (Si)]
k=1 k=1

=00 7ll&knll) +2) 7lg (SF) s [(z— SK)éwn) & (SK)]-

k=1 k=1
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Consequence

Finally, using freeness,

n

7[Sngz(Sn)] = O 7lléial®l) + 2D rllékallrlg (S5) [(z — Sille ()]
k=1

k=1

= 0> 7ll€nlD) + 2D 7llénlI7lg (Sn) [(z = Sa)l7lg (Sa)]-

The unit variance condition then implies

sup | 7[Sngz(Sn)] — (Slval, 9g2)] < €Y 7ll€knl’]:
A k=1
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Wrapping things up

Theorem (Diaz-Jaramillo)
Under the above considerations,

drv (s, va) < CZ/ %2 k.n(dx).
k=1YR

Some improvements:

1. Neighborhoods of dependency.
2. Uniform convergence of the density.

3. The Mauricio Salazar trick holds.
Some unsolved improvements:

1. Uniform convergence of the derivatives of the density.
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Some questions th t could be interestin

- Free law of rare events

- For Boolean or monotone convolutions, can we still say something in
Wasserstein distance?

- Can we change B by H,, and still say something?

- Extended Mauricio Salazar trick or Edgeworth expansions
- Implementations in large matrix problems

- Multidimensional versions

- Free stable limits

23



Thanks!
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