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Under the condition Var[v,] =1 plus (other technical conditions), we

Law . .. . . .
have that v, = s, where s is the standard semicircular distribution.

Goal
Bound drv(vs,s) in a probabilistic way.
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Elements of free probability

Let A be a unital C*-algebra and 7 : A — C a positive unital linear
functional.

Definition
Let {A,}n>1 be subalgebras of A. Define 3 := a — 7[a]. We say that

{An}n>1 are freely independent if

7[5152"'§k] = 0, (1)

for a1, ..., ax alternating. Sums of free random variables yields the free

convolution H.
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Recipe for cooking up a free Stein identity

Definition
Let {P;}9>0 be operators over measures, defined by

P;[u] == Law(e X + /1 — e=20Y),

with X ~ p and Y ~ my[u] + +/ Var[u]s.

Let (-,-) denote dual pairing of measures and functions. Observe that

(8, h) — (p, h) = (P[ul, h) = (Pou], h)
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Recipe for cooking up a Stein identity

Deriving and integrating, we get

(5.1} = by = [ 5 (PsTl ma.

Lemma

2 (P3l, by = (P31 © P31ul, Ll
where
La[h](x,y) = xDh(x) — Dh,

for D denoting derivative and

og(x,y) = (g(x) —g(¥))/(x — y).
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What have we achieved in the free case?

For h regular enough,

(5, ) — (u, b) = /O " (P31l ® P3[ul. La[H]) 6.

Lemma (Non-commutative Stein’s lemma)
A law v is semicircular if and only if

(v @ v, Lglh]) =0,

for h smooth with second bounded derivative.

As a consequence,

(s, h) = (u, h) = /OOO<P5[M] ® Pylp] = Psolu] @ PX[ul, Lalh])db.



What have we achieved in the free case? Part II
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What have we achieved in the free case? Part II

Writing what we have differently,

(s, h) = (u, h)| = [(Swlul, Lalh)];

where
Sl = [ (ol ® P[] = Peli © PLlil)db.
0
Compare this with the classical case:

(s h) = s )| = [, LISTAIDI,

where v is the standard Gaussian and S is defined similarly.

New bottleneck
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Dealing with the bottleneck when 1 = v,

Let &1.py ..., &n,n be free random variables with law
/ (P; — P ) .ol d6.
Ry

Define v, = p1,, B - - - B ptp n, and assume Var(v,) =1 and that each
[tk,n has small support. Then

(Silval, Lalh]) = 7[SaDh(Sh)] = (Splval, ODh),

where Sp =& 0+ +&nn.
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An important technicality

Corollary (Bercovici and Voiculescu)
For n large, (v,) supported in [—3, 3]

If his holomorphic

1

(Salval, Lalil) = 5

/R h(2)(7[S082(S0)] — (Sislva], De2)) ez,

where R is a contour strictly containing [—5,5] and g,(x) := (z — x)~2.

warning: we only need h must be only bounded, not holomorphic.



Moral of the story

For h holomorphic and bounded by one over [—5, 5], there is a constant
only depending on R, such that

(s, h) — (v, )| < C Sgng[Sngz(Sn)] — (S@lvnl, Ogz)|-
By an approximation argument,

drv(s,v,) < C sug |7[Sngz(Sn)] — (SElval, 082)-
ze

10



Non-commutative Lindeberg trick?

Define sﬁk) as the part of S, that does not involve £, ,. Observe that

n n

71Snge(Sn)] = > 7l6kng2(Sn)] = 3 7lEkn(g:(Sn) — £:(S))]

k=1 k=1

11



Non-commutative Lindeberg trick?

Define sﬁk) as the part of S, that does not involve £, ,. Observe that

n n

71Snge(Sn)] = > 7l6kng2(Sn)] = 3 7lEkn(g:(Sn) — £:(S))]

k=1 k=1

Idea: use a bit of non-commutative Taylor
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The only non-commutative calculus we need

Lemma

For non-commutative variables a, r, define
A(a,r) = 2s[(z — a)r] — r?,

where s denotes the symmetrization operator. Then, for all ¢ > 1,

-1

glatr=g(a)(A(an)gla)" + ) g(a)(A(a r)g(a)y,

Q

-
Il
o
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Consequence

For g = 2, the boundedness of the g, then yields

n

7—[Sngz(sn)] = O(Z T[|§k,n‘3])

k=1

: (%) (k) (k)
+2;T[£k,ngz (559) s [(2 = 58)kn] & (S19)1-
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Consequence

Using freeness,

7[Sng2(Sn)] = 0(2 T[Ifk,n|3]> +2)  7llknl*] 7l82(Sn)(z — Sn)g=(Sn)] -

k=1 k=1

The unit variance condition then implies

sup |7[Sngz(Sn)] — (Sglval. Og2)| < CZTH&(,"P]'
ZER k=1
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Wrapping things up

Theorem (Diaz-Jaramillo)
Under the above considerations,

drv (s, va) < CZ/ %2 k.n(dx).
k=1YR

Some improvements:

1. Neighborhoods of dependency.
2. Uniform convergence of the density.

3. Including sharper approximations under more conditions.
Some unsolved improvements:

1. Uniform convergence of the derivatives of the density.
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Some questions th t could be interestin

- Free law of rare events

- For Boolean or monotone convolutions, can we still say something in
Wasserstein distance?

- Can we change B by H,, and still say something?
- Extended to Edgeworth expansions

- Implementations in large matrix problems

- Multidimensional versions

- Free stable limits

16



Thanks!
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