

Mediciones estadísticas de enteros suaves, y su relación con metodo de Stein

Arturo Jaramillo Gil

Centro de Investigación en Matemáticas (CIMAT)

Motivación

Sea $\mathcal P$ el conjunto de primos positivos y $[n]:=\{1,\ldots,n\}.$

Motivación

Sea $\mathcal P$ el conjunto de primos positivos y $[n]:=\{1,\dots,n\}$. Sea $\psi:\mathbb N\to\mathbb N$, la función definida por

$$\psi(k) := \max\{p \in \mathcal{P} ; p \text{ divide } k\}.$$

Motivación

Sea $\mathcal P$ el conjunto de primos positivos y $[n]:=\{1,\dots,n\}$. Sea $\psi:\mathbb N\to\mathbb N$, la función definida por

$$\psi(k) := \max\{p \in \mathcal{P} ; p \text{ divide } k\}.$$

Objetivo:

Estimar la magnitud/contenido de

$$\{k \in \mathbb{N} ; \psi(k) \leq m\}$$

Cantidades de interés

Definition

Decimos que un entero $k \in \mathbb{N}$ es m-suave si $\psi(k) \leq m$. En lo sucesivo, denotaremos por $\mathbb{Z}[n,m]$ a los enteros m-suaves acotados por n.

Cantidades de interés

Definition

Decimos que un entero $k \in \mathbb{N}$ es m-suave si $\psi(k) \leq m$. En lo sucesivo, denotaremos por $\mathcal{Z}[n,m]$ a los enteros m-suaves acotados por n.

La magnitud de $\mathcal{Z}[n, m]$,

$$\Psi(n,m) := |\mathcal{Z}[n,m]|,$$

tiene una importante relación con la hipótesis de Riemann

La aproximación de Dickman

Definition

Sea $ho:\mathbb{R}_+ o \mathbb{R}_+$ la solución a

$$u\rho'(u) = -\rho(u-1)$$

$$\rho(u) = 1$$
 para $u \in [0, 1]$.

La aproximación de Dickman

Definition

Sea $\rho:\mathbb{R}_+ \to \mathbb{R}_+$ la solución a

$$u
ho'(u)=-
ho(u-1)$$
 y $ho(u)=1$ para $u\in[0,1].$

Theorem

Dickman (1930) muestra que para todo $x \in \mathbb{R}_+$,

$$\lim_{n\to\infty}\frac{1}{n}\Psi(n,n^{1/x})=\rho(x).$$

4

La aproximación de Dickman

Definition

Sea $\rho: \mathbb{R}_+ \to \mathbb{R}_+$ la solución a

$$u
ho'(u)=-
ho(u-1)$$
 y $ho(u)=1$ para $u\in[0,1].$

Theorem

Dickman (1930) muestra que para todo $x \in \mathbb{R}_+$,

$$\lim_{n\to\infty}\frac{1}{n}\Psi(n,n^{1/x})=\rho(x).$$

Ramaswami (1949) prueba el refinamiento

$$\left|\frac{1}{n}\Psi(n,n^{1/x})-\rho(x)\right|\leq \frac{C_x}{\log(n)}.$$

4

Uniformidad en la aproximación de Dickman

Definimos, para un nivel de suavidad m, dado,

$$\Upsilon(n,m) := \frac{\log(n)}{\log(m)}.$$

Uniformidad en la aproximación de Dickman

Definimos, para un nivel de suavidad m, dado,

$$\Upsilon(n,m) := \frac{\log(n)}{\log(m)}.$$

Theorem (De Bruijn, 1951)

Para $\varepsilon > 0$, definitions

$$S_{\varepsilon} = \{(n,m) \in \mathbb{N}^2 \mid \Upsilon(n,m) \leq \log(m)^{3/5-\varepsilon}\}.$$

Existe $C_{\varepsilon} > 0$, tal que

$$\Psi(n,m) = n\rho \circ \Upsilon(n,m) \left(1 + O\left(\frac{\log(\Upsilon(n,m)+1)}{\log(m)}\right) \right)$$

Aproximaciones de Hildebrand

Para $\varepsilon > 0$, definimos

$$\begin{split} \tilde{\mathcal{S}}_{\varepsilon} &= \{ (n,m) \in \mathbb{N}^2 \mid m \neq 1 \text{ and } \Upsilon(n,m) \leq \exp\{\log(m)^{3/5 - \varepsilon} \} \} \\ \hat{\mathcal{S}}_{\varepsilon} &:= \{ (n,m) \in \mathbb{N}^2 \mid m \neq 1 \text{ and } \Upsilon(n,m) \leq m^{1/2 - \varepsilon} \}. \end{split}$$

Theorem

En 1986, Hildebrand demuestra que la aproximación de De Bruijn se cumple para $(n,m) \in \tilde{\mathcal{S}}_{\varepsilon}$.

Aproximaciones de Hildebrand

Para $\varepsilon > 0$, definimos

$$\begin{split} \tilde{\mathcal{S}}_{\varepsilon} &= \{ (n,m) \in \mathbb{N}^2 \mid m \neq 1 \text{ and } \Upsilon(n,m) \leq \exp\{\log(m)^{3/5 - \varepsilon} \} \} \\ \hat{\mathcal{S}}_{\varepsilon} &:= \{ (n,m) \in \mathbb{N}^2 \mid m \neq 1 \text{ and } \Upsilon(n,m) \leq m^{1/2 - \varepsilon} \}. \end{split}$$

Theorem

En 1986, Hildebrand demuestra que la aproximación de De Bruijn se cumple para $(n,m) \in \tilde{\mathcal{S}}_{\varepsilon}$. Más aún, si la aproximación se cumple para $(n,m) \in \hat{\mathcal{S}}_{\varepsilon}$, entonces la hipótesis de Riemann hypothesis es cierta.

Otras medidas de contenido para $\mathcal{Z}[n,m]$

La función $\Psi(n,m)$ puede escribirse como

$$\Psi(n,m)=n\mathbb{P}[J_n\in\mathcal{Z}[n,m]],$$

donde J_n son variables con ley uniforme en [n].

Otras medidas de contenido para $\mathcal{Z}[n, m]$

La función $\Psi(n, m)$ puede escribirse como

$$\Psi(n,m) = n\mathbb{P}[J_n \in \mathcal{Z}[n,m]],$$

donde J_n son variables con ley uniforme en [n]. Se puede considerar la modificación

$$\Psi_H(n,m) := n\mathbb{P}[H_n \in \mathcal{Z}[n,m]],$$

donde H_n es una variable tal que $\mathbb{P}[H_n=k]=k^{-1}/L_n$ y

$$L_n = \sum_{j=1}^n 1/j$$

7

Encontrar un principio de transferencia de estimaciones de Ψ_H a Ψ es un problema abierto.

Encontrar un principio de transferencia de estimaciones de Ψ_H a Ψ es un problema abierto.

Sea $\pi: \mathbb{R}_+ \to \mathbb{R}$ la función cuenta primos

$$\pi(x) := |\mathcal{P} \cap [1, x]|.$$

Encontrar un principio de transferencia de estimaciones de Ψ_H a Ψ es un problema abierto.

Sea $\pi:\mathbb{R}_+ \to \mathbb{R}$ la función cuenta primos

$$\pi(x) := |\mathcal{P} \cap [1, x]|.$$

Si Q_n es un elemento uniforme de $\mathcal{P} \cup \{1\}$ en $[0, n/H_n]$,

Encontrar un principio de transferencia de estimaciones de Ψ_H a Ψ es un problema abierto.

Sea $\pi: \mathbb{R}_+ \to \mathbb{R}$ la función cuenta primos

$$\pi(x) := |\mathcal{P} \cap [1, x]|.$$

Si Q_n es un elemento uniforme de $\mathcal{P} \cup \{1\}$ en $[0, n/H_n]$,

Lemma (Chen, Jaramillo, Yang (2021)) $Para n \ge 21$,

$$d_{TV}(H_nQ_n,J_n)\leq 61\frac{\log\log(n)}{\log(n)}.$$

Encontrar un principio de transferencia de estimaciones de Ψ_H a Ψ es un problema abierto.

Sea $\pi: \mathbb{R}_+ \to \mathbb{R}$ la función cuenta primos

$$\pi(x) := |\mathcal{P} \cap [1, x]|.$$

Si Q_n es un elemento uniforme de $\mathcal{P} \cup \{1\}$ en $[0, n/H_n]$,

Lemma (Chen, Jaramillo, Yang (2021)) $Para \ n > 21$,

$$d_{TV}(H_nQ_n,J_n)\leq 61\frac{\log\log(n)}{\log(n)}.$$

Moraleja Basta analizar H_nQ_n .

Recordemos que Q_n es un uniforme de $\mathcal{P} \cup \{1\}$ sobre $[0, n/H_n]$.

Recordemos que Q_n es un uniforme de $\mathcal{P} \cup \{1\}$ sobre $[0, n/H_n]$. Particionando sobre el evento $H_n \leq n/m$, y haciendo probabilidad total,

$$\begin{split} \mathbb{P}[\psi(H_nQ_n) \leq m] \\ &= \mathbb{P}[\psi(H_n) \leq m] \mathbb{P}[n/m < H_n \mid \psi(H_n) \leq m] \\ &+ \mathbb{P}[\psi(H_n) \leq m] \mathbb{E}\left[\frac{\pi(m) + 1}{\pi(n/H_n) + 1} \mathbb{1}_{\{\{H_n \leq n/m\}\}} \mid \psi(H_n) \leq m\right]. \end{split}$$

Problemas fundamentales en el principio de transferencia

El manejo de los términos en azul, requieren de la resolución de

Problema I

Estimar con precisión

$$\mathbb{P}[\psi(H_n) \leq m]$$

Problemas fundamentales en el principio de transferencia

El manejo de los términos en azul, requieren de la resolución de

Problema I

Estimar con precisión

$$\mathbb{P}[\psi(H_n) \leq m]$$

El manejo de los términos en rojo, requieren

Problema II

Mediante estimaciones clásicas de π , el manejo del término en rojo, requiere de estimaciones de

$$\mathbb{E}\left[g(H_n/n)\mid \psi(H_n)\leq \kappa(n,m)\right],$$

con $\kappa(n, m)$ escogida adecuadamente.

Estimación de $\mathbb{P}[\psi(H_n) \leq m]$: preliminares

Sean $\{\xi_p\}_{p\in\mathcal{P}}$ variables geométricas con éxito 1/p.

Estimación de $\mathbb{P}[\psi(H_n) \leq m]$: preliminares

Sean $\{\xi_p\}_{p\in\mathcal{P}}$ variables geométricas con éxito 1/p.

Proposition (Chen, Jaramillo, Yang, (2021)) La ley de H_n satisface

$$\mathcal{L}((\alpha_p(H_n) : p \in \mathcal{P}_n)) = \mathcal{L}((\xi_p : p \in \mathcal{P} \cap [n]) \mid A_n),$$

con

$$A_n := \{ \prod_{p \in \mathcal{P} \cap [n]} p^{\xi_p} \le n \}. \tag{1}$$

Moreover, if $m \ge 21$, then $\mathbb{P}[A_n] \ge 1/2$.

Observación

Introdujimos variables independientes!

Estimación de $\mathbb{P}[\psi(H_n) \leq m]$: simplificación clave

Podemos escribir

$$\mathbb{P}[\psi(H_n) \le m] = \left(\frac{1}{L_n} \prod_{p \in \mathcal{P}_m} (1 - 1/p)^{-1}\right) \mathbb{P}\left[S_m \le \frac{\log(n)}{\mathbb{E}[Z_m]}\right],$$

$$\text{donde } S_m := Z_m/\lambda_m, \text{ con } \lambda_m := \mathbb{E}[Z_m] \text{ y}$$

$$Z_m := \sum_{p \in \mathcal{P} \cap [m]} \log(p) \xi_p,$$

Estimación de $\mathbb{P}[\psi(H_n) \leq m]$: simplificación clave

Podemos escribir

$$\mathbb{P}[\psi(H_n) \leq m] = \left(\frac{1}{L_n} \prod_{p \in \mathcal{P}_m} (1 - 1/p)^{-1}\right) \mathbb{P}\left[S_m \leq \frac{\log(n)}{\mathbb{E}[Z_m]}\right],$$

donde $S_m := Z_m/\lambda_m$, con $\lambda_m := \mathbb{E}[Z_m]$ y

$$Z_m := \sum_{p \in \mathcal{P} \cap [m]} \log(p) \xi_p,$$

Estimar la parte azul es un problema bien conocido en teoría de números (fórmula de Mertens) y es aproximadamente e^{γ} , donde $\gamma =$ constante de Euler.

Estimación de $\mathbb{P}[\psi(H_n) \leq m]$: simplificación clave

Podemos escribir

$$\mathbb{P}[\psi(H_n) \leq m] = \left(\frac{1}{L_n} \prod_{p \in \mathcal{P}_m} (1 - 1/p)^{-1}\right) \mathbb{P}\left[S_m \leq \frac{\log(n)}{\mathbb{E}[Z_m]}\right],$$

donde $S_m := Z_m/\lambda_m$, con $\lambda_m := \mathbb{E}[Z_m]$ y

$$Z_m := \sum_{p \in \mathcal{P} \cap [m]} \log(p) \xi_p,$$

Estimar la parte azul es un problema bien conocido en teoría de números (fórmula de Mertens) y es aproximadamente e^{γ} , donde $\gamma =$ constante de Euler. La parte roja es completamente probabilista

Problema simplificado

Entender la ley asintótica de S_n .

Formulación probabilista de $\mathbb{P}[S_n \leq m] \approx e^{-\gamma} \rho \circ \Upsilon(n, m)$

Se sabe que $e^{-\gamma}\rho(u)=1$ es una densidad de probabilidad.

Formulación probabilista de $\mathbb{P}[S_n \leq m] \approx e^{-\gamma} \rho \circ \Upsilon(n,m)$

Se sabe que $e^{-\gamma}\rho(u)=1$ es una densidad de probabilidad.

Definition

Una variable D tiene ley Dickman si su densidad es $e^{-\gamma}\rho(x)$, para $x \ge 0$.

Formulación probabilista de $\mathbb{P}[S_n \leq m] \approx e^{-\gamma} \rho \circ \Upsilon(n,m)$

Se sabe que $e^{-\gamma}\rho(u)=1$ es una densidad de probabilidad.

Definition

Una variable D tiene ley Dickman si su densidad es $e^{-\gamma}\rho(x)$, para $x \ge 0$.

Lemma (Pinsky (2016))

D tiene lèy Dickman si para toda función de prueba $f: \mathbb{R}_+ \to \mathbb{R}$,

$$\mathbb{E}[Dg(D)] - \int_0^1 \mathbb{E}[g(D+t)]dt = 0.$$
 (2)

Formulación probabilista de $\mathbb{P}[S_n \leq m] \approx e^{-\gamma} \rho \circ \Upsilon(n,m)$

Se sabe que $e^{-\gamma}\rho(u)=1$ es una densidad de probabilidad.

Definition

Una variable D tiene ley Dickman si su densidad es $e^{-\gamma}\rho(x)$, para $x \ge 0$.

Lemma (Pinsky (2016))

D tiene lèy Dickman si para toda función de prueba $f: \mathbb{R}_+ \to \mathbb{R}$,

$$\mathbb{E}[Dg(D)] - \int_0^1 \mathbb{E}[g(D+t)]dt = 0.$$
 (2)

Alternativamente, si f = g',

$$\mathbb{E}[Df'(D)] + f(D) - f(D+1) = 0. \tag{3}$$

Heurística de Stein

Si la izquierda de (2) es approximadamente cero, D es aproximadamente Dickman

Método de Stein para leyes Dickman

La heurística se formaliza considerando la ecuación de Stein

$$xf_z'(x) + f_z(x) - f_z(x+1) = h_z(x) - \mathbb{E}[h_z(D)],$$
 (4)

donde $h_z(x) := 1_{[0,z]}(x)$.

Método de Stein para leyes Dickman

La heurística se formaliza considerando la ecuación de Stein

$$xf_z'(x) + f_z(x) - f_z(x+1) = h_z(x) - \mathbb{E}[h_z(D)],$$
 (4)

donde $h_z(x) := 1_{[0,z]}(x)$. Por cálculos elementales, para toda variable X con valores en \mathbb{R}_+ ,

$$\mathbb{P}[X \le u] - \mathbb{P}[D \le u] = \mathbb{E}[Xf_z'(X) + f_z(X) - f_z(X+1)],$$

Moraleja

Estimar proximidad entre X y D se reduce a estimar

$$\mathbb{E}[Xf_z'(X)+f_z(X)-f_z(X+1)].$$

Sean $\{\tilde{\xi}_p\}_{p\in\mathcal{P}}$ copias independientes de las ξ_p .

Sean $\{\tilde{\xi}_p\}_{p\in\mathcal{P}}$ copias independientes de las ξ_p . Cálculos explícitos dan

$$\begin{split} & \mathbb{P}[S_m \leq z] - \mathbb{P}[D \leq z] \\ &= \frac{1}{\lambda_m} \sum_{q \in \mathcal{P} \cap [m]} \frac{\log(q)}{q} (1 - 1/q)^{-1} \mathbb{E}[f'(S_m + \frac{\log(q)}{\lambda_m} \tilde{\xi}_q + \frac{\log(q)}{\lambda_m})] - \mathbb{E}[f'(S_m + U)]. \end{split}$$

Sean $\{\tilde{\xi}_p\}_{p\in\mathcal{P}}$ copias independientes de las ξ_p . Cálculos explícitos dan

$$\begin{split} & \mathbb{P}[S_m \leq z] - \mathbb{P}[D \leq z] \\ &= \frac{1}{\lambda_m} \sum_{q \in \mathcal{P} \cap [m]} \frac{\log(q)}{q} (1 - 1/q)^{-1} \mathbb{E}[f'(S_m + \frac{\log(q)}{\lambda_m} \tilde{\xi}_q + \frac{\log(q)}{\lambda_m})] - \mathbb{E}[f'(S_m + U)]. \end{split}$$

La izquierda se escribe como suma de

$$\begin{split} T_1 &:= \frac{1}{\lambda_m} \sum_{q \in \mathcal{P} \cap [m]} \frac{\log(q)}{q} \mathbb{E}[f'(S_m + \frac{\log(q)}{\lambda_m})] - \mathbb{E}[f'(S_m + U)] \\ T_2 &:= \frac{1}{\lambda_m} \sum_{q \in \mathcal{P} \cap [m]} \frac{\log(q)}{q^2} (1 - 1/q)^{-1} \mathbb{E}[f'(S_m + \frac{\log(q)}{\lambda_m} \tilde{\xi}_q + \frac{\log(q)}{\lambda_m}) \mid \tilde{\xi}_q \geq 1]. \end{split}$$

Para manejar el término T_1 , tomamos V_m independiente de las ξ_p 's, con

$$\mathbb{P}[V_m = \log(q)/\lambda_m] = \frac{\log(q)}{q\lambda_m},$$

Para manejar el término T_1 , tomamos V_m independiente de las ξ_p 's, con

$$\mathbb{P}[V_m = \log(q)/\lambda_m] = \frac{\log(q)}{q\lambda_m},$$

Podemos escribir

$$T_1 = \mathbb{E}[f'(S_m + V_m)] - \mathbb{E}[f'(S_m + U)].$$

Para manejar el término T_1 , tomamos V_m independiente de las ξ_p 's, con

$$\mathbb{P}[V_m = \log(q)/\lambda_m] = \frac{\log(q)}{q\lambda_m},$$

Podemos escribir

$$T_1 = \mathbb{E}[f'(S_m + V_m)] - \mathbb{E}[f'(S_m + U)].$$

El resto de la prueba se reduce a implementar la aproximación en ley $V_n \approx U$.

Para manejar el término T_1 , tomamos V_m independiente de las ξ_p 's, con

$$\mathbb{P}[V_m = \log(q)/\lambda_m] = \frac{\log(q)}{q\lambda_m},$$

Podemos escribir

$$T_1 = \mathbb{E}[f'(S_m + V_m)] - \mathbb{E}[f'(S_m + U)].$$

El resto de la prueba se reduce a implementar la aproximación en ley $V_n \approx U$. La tarea requiere conocimiento muy fino de las propiedades de f.

Resultado principal

Theorem (Jaramillo, Yang (2024)) Se tiene que

$$\Psi_H(n,m) = n \Upsilon(n,m) \left(\mathcal{I}[
ho] \circ \Upsilon(n,m) + O(\Upsilon(n,m) \log \log(m)/\log(m)) \right),$$
 uniformemente sobre $16 \leq m \leq n$, donde
$$\mathcal{I}[
ho](x) = \int_0^x \rho(t) dt.$$

Preguntas abiertas

Algunas preguntas abiertas

- Se puede decir algo sobre el comportamiento de H_n condicional a $\psi(H_n) \le \kappa_{m,n}$, para alguna barrera $\kappa_{m,n}$ dada?
- Se puede decir algo sobre la convergencia hacia la función ρ , al estilo de 'convergencia de densidades'?
- Se puede hacer una formulación del problema en extensiones de Q?

Invitación al Posgrado en Probabilidad y Estadística

Te invitamos al Posgrado en Probabilidad y Estadística del CIMAT!

El examen de ingreso serán a principios de mayo de 2026.

Consulta el plan de estudios y más información en:

https://ppe.cimat.mx/

Si te interesa, no dudes en contactarme directamente en jagil@cimat.mx

Gracias!!!

References

Jaramillo Yang (Arxiv). Approximation of smooth numbers for Harmonic samples.