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Motivation

Let Yk be standardized i.i.d. The central limit theorem establishes that
the normalized sum

Zn := 1√
n

n∑
k=1

Yk

satisfies Zn
Law
≈ N , where N is a standard Gaussian variable.

Theme of the talk
Can we allow the variables Yk to be dependent?

How fast is this convergence?
Is there an analogue in free probability?
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Classical Breuer-Major theorem

Let {ξk}k≥1 be a stationary standardized Gaussian process.

Take
Yk := g(ξk), where g is a real test function. Let Hq denote the q-th
Hermite polynomial.

Theorem (Breuer-Major (1983))
Assumptions

• Expansion g =
∑

q≥Q aqHq. Q is called Hermite rank.
• The function ρ(k) := E[X1Xk+1] satisfies

∑
k |ρ(k)|Q <∞.

Then Sn
Law→ N (0, σ2), for some σ > 0.
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Proof by two different approaches

Classical methodology
Direct computation of E[Hq1 (ξq1 ) · · ·Hqm (ξqm )] (diagram formula).

The Malliavin-Stein approach
Understand very well E[Znf (Zn)] and use Stein’s method. Nourdin,
Peccati and Podolskij construct Γ1[Zn] satisfying

E[Γ1[Zn]f ′(Zn)− Znf (Zn)] = 0.

This allows to obtain bounds for

E[f ′(Zn)− Znf (Zn)],

in terms of E[|Γ1[Zn]− 1|], which is combined with Stein’s method.
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Constructing Γ1 in a simple case

Simplified problem
Suppose N ∼ N (0, 1) and we want to understand E[Yf (Y )] for Y

measurable with respect to N.

Further simplifications

- If f (x) = x , we need to deal with E[Y 2].
- Since E[Y 2] = 〈Y ,Y 〉L2(Ω), we could try orthogonality arguments.
- Since Y = ψ(N) for some ψ, we could try to expand ψ in Hermite.
- The variable f (Y ) can also be expanded in a Hermite basis.
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Constructing Γ1 in a simple case

Theorem
If F = ϕ(N), for very smooth and integrable ϕ, then

F =
∞∑

q=0
aqHq(N), or ϕ =

∞∑
q=0

aqHq

where aq = E[Dqϕ(N)]/q!.

Corollary
If F = ϕ(N), for smooth and integrable enough ϕ,

E[Hq(N)ϕ(N)] = E[Dqϕ(N)].
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Constructing Γ1 in a simple case

Theorem
If Y = Hq(N), and Γ1[Y ] = ( 1

q Hq−1(N)) · ( 1
q Hq−1(N)), then

E[Γ1[Y ]f ′(Y )]− E[Yf (Y )] = 0.

Proof.
Keep in mind that for adequate ϕ, we have
E[Hq(N)ϕ(N)] = E[Dqϕ(N)].

- Show that E[Hq(N)ϕ(N)] = E[Hq−1(N)ϕ′(N)]
- Take ϕ = f ◦ Hq and use the fact that H ′q = qHq−1.

Same ideas can be carried to more general functions and settings.
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Recalling Malliavin-Stein method in BM

The Malliavin-Stein approach
If we can construct Γ1[Zn] such that

E[Γ1[Zn]f ′(Zn)− Znf (Zn)] = 0,

we can obtain bounds for

E[f ′(Zn)− Znf (Zn)],

in terms of E[|Γ1[Zn]− 1|]
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Rates of convergence

Theorem (Sefika Kuzgun, David Nualart (2019))
Define σ2

n := Var [Zn]. Suppose g is twice Malliavin differentiable and
integrable enough and Q ≥ 3. Then

dTV (Zn/σn,N (0, 1)) ≤ Cn−1/2
∑
|k|≤n

|ρ(k)|Q−1

∑
|k|≤n

|ρ(k)|2
1/2

+ Cn−1/2

∑
|k|≤n

|ρ(k)|2
1/2∑

|k|≤n

|ρ(k)|

1/2

Results for Q = 2 are also available.

Test generality taking ρ(k) = O(k−α). Worst case: α ≈ −1/Q.
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Rates of convergence pt. II

Many related results are available!

- David Nualart and Hongjuan Zhou (2018). Optimal bounds, but
only for the cases Q = 1 and Q = 2.

- Ivan Nourdin, Giovanni Peccati, Xiaochuan Yang (2019). Optimal
bounds, minimal smoothness in g , but only Q = 1.

- Nourdin, Nualart, Peccati (2019). Optimal bounds, minimal
smoothness on g , but only Q = 2.

- Guillaume Poly (2023). Optimal bounds, minimal smoothnes and
minimal integrability on g , but only Q = 2.

- A general sharp statement for Q ≥ 3 seems to not be stated in
detail.
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Free Breuer Major theorem

Let Uq denote the q-th Chebyshev polynomial of the second kind.

Theorem (Kemp, Nourdin, Peccati, Speicher (2012))
Let {ξk}k≥1 be a stationary standardized semicircular process. Suppose
that g = Uq and let Zn be given by

Zn := 1√
n

n∑
k=0

g(ξk).

Then Zn
Law→ S(0, σ2), where S(µ, σ) denotes the semicircle law and

σ > 0.

A sharp quantitative version using Malliavin calculus was proved by
Bourgin, Campese (2017).

Ongoing research: consider a general g .
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The basic tools: Free Malliavin derivative

For convenience, we will assume that ξk =
∫
R+

hk(s)dWs , where W is a
free Brownian motion and hk ∈ L2(R+;R).

Definition
The Malliavin derivative of an element A ∈ A is the process
∇ = {∇t [A] ; t ≥ 0}, taking values in A⊗A, satisfying

- For all h ∈ H, ∇t [
∫
R+

hk(s)dWs ] = h(t) · (1⊗ 1).
- For all a, b ∈ A, it holds that

∇[ab] = ∇[a] · b + a · ∇[b],

where · denotes the action of A on A⊗A over the right leg when
the multiplication is of the form F · a, with F ∈ A⊗A and a ∈ A.
The action of A on A⊗A over the left leg when the multiplication
is of the form a · F

11
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∫
R+

hk(s)dWs , where W is a
free Brownian motion and hk ∈ L2(R+;R).

Definition
The Malliavin derivative of an element A ∈ A is the process
∇ = {∇t [A] ; t ≥ 0}, taking values in A⊗A, satisfying

- For all h ∈ H, ∇t [
∫
R+

hk(s)dWs ] = h(t) · (1⊗ 1).
- For all a, b ∈ A, it holds that

∇[ab] = ∇[a] · b + a · ∇[b],
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Free Stein kernel

For a ∈ A, define

Γ1[a] :=
∫
R+

(ι⊗ τ)[∇t [a]] · (∇t [a])∗dt.

with ι⊗ τ given as the functional (ι⊗ τ)[a ⊗ b] = τ [b]a.

Theorem (Cebron 2018)

If a ∈ A is in the domain of ∇ and f is a polynomial,

(τ ⊗ τ)[Γ1[a]∂f (a)]− τ [af (a)] = 0

where ∂f : A → A⊗A denotes the non-commutative derivative. Recall
that a is semicircular if

(τ ⊗ τ)[∂f (a)]− τ [af (a)] = 0
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Free Malliavin-Stein

Theorem (Cebron 2018)

If S is a semicircular random variable and F ∈ A is sufficiently smooth
and integrable, the 2-Wasserstein distance dW2 satisfies

dW2 (F ,S) ≤ ‖Γ1[F ]− 1A ⊗ 1A‖L2(A,τ). (1)

Fundamental applications:

- The case where F is a Wigner integral

.

- The case where F = Zn, where

Zn := 1√
n

n∑
k=0

g(ξk).
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Free Malliavin-Stein applied to free Breuer-Major

Let Zn be as before,

Γ1[Zn] :=
∫
R+

(ι⊗ τ)[∇t [Zn]] · (∇t [Zn])∗dt.

We have that

∇t [Zn] = 1
σn

n∑
k=1

hk(t)∂g(ξk).

From here it follows that

Γ1[Zn] = 1
σ2

n

∑
1≤k1,k2≤n

(ι⊗ τ)[∂g(ξk1 )] · ∂g(ξk2 )ρ(k2 − k1),
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Some calculations later...

If g =
∑

q≥Q aqUq, then

‖Γ1[Zn]− (τ ⊗ τ)[Γ1[Zn]]‖2
L2(A⊗A,τ⊗τ)

= 1
n2

∑
1≤k1,k2,κ1,κ2≤n

∑
q1,q2,p1,p2≥Q

∑
1≤`1≤q2

∑
1≤`2≤p2

(q1−1)∧(`1−1)∑
j1=0

(p1−1)∧(`2−1)∑
j2=0

× 1{{q1+`1−2j1=p1+`2−2j2}}1{{q2−`1=p2−`2}}

× 1{{(q1,`1,j1+1)6=(q2,q2,q2)}}1{{(p1,`2,j2+1)6=(p2,p2,p2)}}

× aq1 aq2 ap1 ap2ρ(k2 − k1)j1+1ρ(κ2 − κ1)j2+1

× 〈f ⊗(q1−1−j1)
k1

⊗ f ⊗(`1−1−j1)
k2

, f ⊗(p1−1−j2)
κ1

⊗ f ⊗(`2−1−j2)
κ2

〉H⊗(q1+`1−2−2j1)

× ρ(k2 − κ2)q2−`1 .
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Main result?

Theorem (Conjecture: Jaramillo, Kuzgun)
Define

p(r) := sup
|k|≥|r |

|ρ(r)|.

Then we can guarantee the existence of a universal constant CQ > 0 only
depending on Q, such that if Q ≥ 2,

dW2 (Zn,S) ≤ CQ‖g‖D2,2 n−1/2

( n∑
r=1

p(r)Q−1

)1/2( n∑
r=1

p(r)
)1/2

.

and if Q = 1,

dW2 (Zn,S) ≤ CQ‖g‖D2,2
1√
n
.
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Related lines of research

- The result is not yet proved with this level of generality in the
classical version.

- Expansions (Edgeworth-type expansions, but with smoother
distances) seem to be reasonable to study, both in classical and free
versions.

- Uniform convergence of densities are available in the classical case.
Is there an analog in the free version?

- What happens if
∑

k |ρ(k)|Q =∞? Free version of Rosenblatt
variable? functional versions of Breuer Major.
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Gracias!
Contacto

Arturo Jaramillo
jagil@cimat.mx
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