

Free Breuer-Major theorem

Arturo Jaramillo Gil (work in progress with Sefika Kuzgun)

Centro de Investigación en Matemáticas (CIMAT)

$$Z_n := \frac{1}{\sqrt{n}} \sum_{k=1}^n Y_k$$

satisfies $Z_n \stackrel{Law}{\approx} \mathcal{N}$, where \mathcal{N} is a standard Gaussian variable.

$$Z_n := \frac{1}{\sqrt{n}} \sum_{k=1}^n Y_k$$

satisfies $Z_n \stackrel{Law}{\approx} \mathcal{N}$, where \mathcal{N} is a standard Gaussian variable.

Theme of the talk

$$Z_n := \frac{1}{\sqrt{n}} \sum_{k=1}^n Y_k$$

satisfies $Z_n \stackrel{Law}{\approx} \mathcal{N}$, where \mathcal{N} is a standard Gaussian variable.

Theme of the talk

Can we allow the variables Y_k to be dependent?

$$Z_n := \frac{1}{\sqrt{n}} \sum_{k=1}^n Y_k$$

satisfies $Z_n \stackrel{Law}{\approx} \mathcal{N}$, where \mathcal{N} is a standard Gaussian variable.

Theme of the talk

Can we allow the variables Y_k to be dependent? How fast is this convergence?

$$Z_n := \frac{1}{\sqrt{n}} \sum_{k=1}^n Y_k$$

satisfies $Z_n \stackrel{Law}{\approx} \mathcal{N}$, where \mathcal{N} is a standard Gaussian variable.

Theme of the talk

Can we allow the variables Y_k to be dependent? How fast is this convergence? Is there an analogue in free probability?

Let $\{\xi_k\}_{k\geq 1}$ be a stationary standardized Gaussian process.

Let $\{\xi_k\}_{k\geq 1}$ be a stationary standardized Gaussian process. Take $Y_k := g(\xi_k)$, where g is a real test function.

Theorem (Breuer-Major (1983)) Assumptions

• Expansion
$$g = \sum_{q \ge Q} a_q H_q$$
.

Theorem (Breuer-Major (1983)) Assumptions

• Expansion $g = \sum_{q \ge Q} a_q H_q$. Q is called Hermite rank.

Theorem (Breuer-Major (1983)) Assumptions

- Expansion $g = \sum_{q \ge Q} a_q H_q$. Q is called Hermite rank.
- The function $\rho(k) := \mathbb{E}[X_1 X_{k+1}]$ satisfies $\sum_k |\rho(k)|^Q < \infty$.

Theorem (Breuer-Major (1983)) Assumptions

- Expansion $g = \sum_{q \ge Q} a_q H_q$. Q is called Hermite rank.
- The function $\rho(k) := \mathbb{E}[X_1 X_{k+1}]$ satisfies $\sum_k |\rho(k)|^Q < \infty$.

Theorem (Breuer-Major (1983)) Assumptions

- Expansion $g = \sum_{q \ge Q} a_q H_q$. Q is called Hermite rank.
- The function $\rho(k) := \mathbb{E}[X_1 X_{k+1}]$ satisfies $\sum_k |\rho(k)|^Q < \infty$.

Then $S_n \stackrel{Law}{\rightarrow} \mathcal{N}(0, \sigma^2)$, for some $\sigma > 0$.

Direct computation of $\mathbb{E}[H_{q_1}(\xi_{q_1})\cdots H_{q_m}(\xi_{q_m})]$ (diagram formula).

Direct computation of $\mathbb{E}[H_{q_1}(\xi_{q_1})\cdots H_{q_m}(\xi_{q_m})]$ (diagram formula).

The Malliavin-Stein approach

Understand very well $\mathbb{E}[Z_n f(Z_n)]$ and use Stein's method.

Direct computation of $\mathbb{E}[H_{q_1}(\xi_{q_1})\cdots H_{q_m}(\xi_{q_m})]$ (diagram formula).

The Malliavin-Stein approach

Understand very well $\mathbb{E}[Z_n f(Z_n)]$ and use Stein's method. Nourdin, Peccati and Podolskij construct $\Gamma_1[Z_n]$ satisfying

$$\mathbb{E}[\Gamma_1[Z_n]f'(Z_n)-Z_nf(Z_n)]=0.$$

Direct computation of $\mathbb{E}[H_{q_1}(\xi_{q_1})\cdots H_{q_m}(\xi_{q_m})]$ (diagram formula).

The Malliavin-Stein approach

Understand very well $\mathbb{E}[Z_n f(Z_n)]$ and use Stein's method. Nourdin, Peccati and Podolskij construct $\Gamma_1[Z_n]$ satisfying

$$\mathbb{E}[\Gamma_1[Z_n]f'(Z_n)-Z_nf(Z_n)]=0.$$

This allows to obtain bounds for

$$\mathbb{E}[f'(Z_n)-Z_nf(Z_n)],$$

in terms of $\mathbb{E}[|\Gamma_1[Z_n] - 1|]$,

Direct computation of $\mathbb{E}[H_{q_1}(\xi_{q_1})\cdots H_{q_m}(\xi_{q_m})]$ (diagram formula).

The Malliavin-Stein approach

Understand very well $\mathbb{E}[Z_n f(Z_n)]$ and use Stein's method. Nourdin, Peccati and Podolskij construct $\Gamma_1[Z_n]$ satisfying

$$\mathbb{E}[\Gamma_1[Z_n]f'(Z_n)-Z_nf(Z_n)]=0.$$

This allows to obtain bounds for

$$\mathbb{E}[f'(Z_n)-Z_nf(Z_n)],$$

in terms of $\mathbb{E}[|\Gamma_1[Z_n] - 1|]$, which is combined with Stein's method.

Suppose $N \sim \mathcal{N}(0,1)$ and we want to understand $\mathbb{E}[Yf(Y)]$ for Y measurable with respect to N.

Suppose $N \sim \mathcal{N}(0,1)$ and we want to understand $\mathbb{E}[Yf(Y)]$ for Y measurable with respect to N.

Further simplifications

- If f(x) = x, we need to deal with $\mathbb{E}[Y^2]$.

Suppose $N \sim \mathcal{N}(0, 1)$ and we want to understand $\mathbb{E}[Yf(Y)]$ for Y measurable with respect to N.

Further simplifications

- If f(x) = x, we need to deal with $\mathbb{E}[Y^2]$.
- Since $\mathbb{E}[Y^2] = \langle Y, Y \rangle_{L^2(\Omega)}$, we could try orthogonality arguments.

Suppose $N \sim \mathcal{N}(0, 1)$ and we want to understand $\mathbb{E}[Yf(Y)]$ for Y measurable with respect to N.

Further simplifications

- If f(x) = x, we need to deal with $\mathbb{E}[Y^2]$.
- Since $\mathbb{E}[Y^2] = \langle Y, Y \rangle_{L^2(\Omega)}$, we could try orthogonality arguments.
- Since $Y = \psi(N)$ for some ψ , we could try to expand ψ in Hermite.

Suppose $N \sim \mathcal{N}(0,1)$ and we want to understand $\mathbb{E}[Yf(Y)]$ for Y measurable with respect to N.

Further simplifications

- If f(x) = x, we need to deal with $\mathbb{E}[Y^2]$.
- Since $\mathbb{E}[Y^2] = \langle Y, Y \rangle_{L^2(\Omega)}$, we could try orthogonality arguments.
- Since $Y = \psi(N)$ for some ψ , we could try to expand ψ in Hermite.
- The variable f(Y) can also be expanded in a Hermite basis.

Theorem If $F = \varphi(N)$, for very smooth and integrable φ , then

$${\cal F}=\sum_{q=0}^\infty a_q H_q(N), \qquad {
m or} \qquad arphi=\sum_{q=0}^\infty a_q H_q$$

where $a_q = \mathbb{E}[D^q \varphi(N)]/q!$.

Theorem If $F = \varphi(N)$, for very smooth and integrable φ , then

$$\mathcal{F} = \sum_{q=0}^{\infty} a_q H_q(N), \qquad or \qquad arphi = \sum_{q=0}^{\infty} a_q H_q$$

where $a_q = \mathbb{E}[D^q \varphi(N)]/q!$.

Corollary If $F = \varphi(N)$, for smooth and integrable enough φ ,

 $\mathbb{E}[H_q(N)\varphi(N)] = \mathbb{E}[D^q\varphi(N)].$

Theorem If $Y = H_q(N)$, and $\Gamma_1[Y] = (\frac{1}{q}H_{q-1}(N)) \cdot (\frac{1}{q}H_{q-1}(N))$, then

 $\mathbb{E}[\Gamma_1[Y]f'(Y)] - \mathbb{E}[Yf(Y)] = 0.$

Theorem If $Y = H_q(N)$, and $\Gamma_1[Y] = (\frac{1}{q}H_{q-1}(N)) \cdot (\frac{1}{q}H_{q-1}(N))$, then

 $\mathbb{E}[\Gamma_1[Y]f'(Y)] - \mathbb{E}[Yf(Y)] = 0.$

Proof.

Theorem If $Y = H_q(N)$, and $\Gamma_1[Y] = (\frac{1}{q}H_{q-1}(N)) \cdot (\frac{1}{q}H_{q-1}(N))$, then

 $\mathbb{E}[\Gamma_1[Y]f'(Y)] - \mathbb{E}[Yf(Y)] = 0.$

Proof.

Keep in mind that for adequate φ , we have $\mathbb{E}[H_q(N)\varphi(N)] = \mathbb{E}[D^q\varphi(N)].$

- Show that $\mathbb{E}[H_q(N)\varphi(N)] = \mathbb{E}[H_{q-1}(N)\varphi'(N)]$

Theorem If $Y = H_q(N)$, and $\Gamma_1[Y] = (\frac{1}{q}H_{q-1}(N)) \cdot (\frac{1}{q}H_{q-1}(N))$, then

 $\mathbb{E}[\Gamma_1[Y]f'(Y)] - \mathbb{E}[Yf(Y)] = 0.$

Proof.

Keep in mind that for adequate φ , we have $\mathbb{E}[H_q(N)\varphi(N)] = \mathbb{E}[D^q\varphi(N)].$

- Show that $\mathbb{E}[H_q(N)\varphi(N)] = \mathbb{E}[H_{q-1}(N)\varphi'(N)]$
- Take $\varphi = f \circ H_q$ and use the fact that $H'_q = qH_{q-1}$.

Theorem If $Y = H_q(N)$, and $\Gamma_1[Y] = (\frac{1}{q}H_{q-1}(N)) \cdot (\frac{1}{q}H_{q-1}(N))$, then

 $\mathbb{E}[\Gamma_1[Y]f'(Y)] - \mathbb{E}[Yf(Y)] = 0.$

Proof.

Keep in mind that for adequate φ , we have $\mathbb{E}[H_q(N)\varphi(N)] = \mathbb{E}[D^q\varphi(N)].$

- Show that $\mathbb{E}[H_q(N)\varphi(N)] = \mathbb{E}[H_{q-1}(N)\varphi'(N)]$
- Take $\varphi = f \circ H_q$ and use the fact that $H'_q = qH_{q-1}$.

Theorem If $Y = H_q(N)$, and $\Gamma_1[Y] = (\frac{1}{q}H_{q-1}(N)) \cdot (\frac{1}{q}H_{q-1}(N))$, then

 $\mathbb{E}[\Gamma_1[Y]f'(Y)] - \mathbb{E}[Yf(Y)] = 0.$

Proof.

Keep in mind that for adequate φ , we have $\mathbb{E}[H_q(N)\varphi(N)] = \mathbb{E}[D^q\varphi(N)].$

- Show that $\mathbb{E}[H_q(N)\varphi(N)] = \mathbb{E}[H_{q-1}(N)\varphi'(N)]$
- Take $\varphi = f \circ H_q$ and use the fact that $H'_q = qH_{q-1}$.

Same ideas can be carried to more general functions and settings.

The Malliavin-Stein approach

If we can construct $\Gamma_1[Z_n]$ such that

$$\mathbb{E}[\Gamma_1[Z_n]f'(Z_n)-Z_nf(Z_n)]=0,$$

The Malliavin-Stein approach

If we can construct $\Gamma_1[Z_n]$ such that

$$\mathbb{E}[\Gamma_1[Z_n]f'(Z_n)-Z_nf(Z_n)]=0,$$

we can obtain bounds for

$$\mathbb{E}[f'(Z_n)-Z_nf(Z_n)],$$

in terms of $\mathbb{E}[|\Gamma_1[Z_n] - 1|]$

Theorem (Sefika Kuzgun, David Nualart (2019)) Define $\sigma_n^2 := Var[Z_n]$. Suppose g is twice Malliavin differentiable and integrable enough and $Q \ge 3$. Then

$$d_{TV}(Z_n/\sigma_n, \mathcal{N}(0, 1)) \le Cn^{-1/2} \sum_{|k| \le n} |\rho(k)|^{Q-1} \left(\sum_{|k| \le n} |\rho(k)|^2 \right)^{1/2} + Cn^{-1/2} \left(\sum_{|k| \le n} |\rho(k)|^2 \right)^{1/2} \left(\sum_{|k| \le n} |\rho(k)|^2 \right)^{1/2}$$

Results for Q = 2 are also available.

Theorem (Sefika Kuzgun, David Nualart (2019)) Define $\sigma_n^2 := Var[Z_n]$. Suppose g is twice Malliavin differentiable and integrable enough and $Q \ge 3$. Then

$$d_{TV}(Z_n/\sigma_n, \mathcal{N}(0, 1)) \le Cn^{-1/2} \sum_{|k| \le n} |\rho(k)|^{Q-1} \left(\sum_{|k| \le n} |\rho(k)|^2 \right)^{1/2} + Cn^{-1/2} \left(\sum_{|k| \le n} |\rho(k)|^2 \right)^{1/2} \left(\sum_{|k| \le n} |\rho(k)|^2 \right)^{1/2}$$

Results for Q = 2 are also available.

Test generality taking $\rho(k) = O(k^{-\alpha})$.

Theorem (Sefika Kuzgun, David Nualart (2019)) Define $\sigma_n^2 := Var[Z_n]$. Suppose g is twice Malliavin differentiable and integrable enough and $Q \ge 3$. Then

$$d_{TV}(Z_n/\sigma_n, \mathcal{N}(0, 1)) \le Cn^{-1/2} \sum_{|k| \le n} |\rho(k)|^{Q-1} \left(\sum_{|k| \le n} |\rho(k)|^2 \right)^{1/2} + Cn^{-1/2} \left(\sum_{|k| \le n} |\rho(k)|^2 \right)^{1/2} \left(\sum_{|k| \le n} |\rho(k)|^2 \right)^{1/2}$$

Results for Q = 2 are also available.

Test generality taking $\rho(k) = O(k^{-\alpha})$. Worst case: $\alpha \approx -1/Q$.

- David Nualart and Hongjuan Zhou (2018). Optimal bounds, but only for the cases Q = 1 and Q = 2.

- David Nualart and Hongjuan Zhou (2018). Optimal bounds, but only for the cases Q = 1 and Q = 2.
- Ivan Nourdin, Giovanni Peccati, Xiaochuan Yang (2019). Optimal bounds, minimal smoothness in g, but only Q = 1.

- David Nualart and Hongjuan Zhou (2018). Optimal bounds, but only for the cases Q = 1 and Q = 2.
- Ivan Nourdin, Giovanni Peccati, Xiaochuan Yang (2019). Optimal bounds, minimal smoothness in g, but only Q = 1.
- Nourdin, Nualart, Peccati (2019). Optimal bounds, minimal smoothness on g, but only Q = 2.

- David Nualart and Hongjuan Zhou (2018). Optimal bounds, but only for the cases Q = 1 and Q = 2.
- Ivan Nourdin, Giovanni Peccati, Xiaochuan Yang (2019). Optimal bounds, minimal smoothness in g, but only Q = 1.
- Nourdin, Nualart, Peccati (2019). Optimal bounds, minimal smoothness on g, but only Q = 2.
- Guillaume Poly (2023). Optimal bounds, minimal smoothnes and minimal integrability on g, but only Q = 2.

- David Nualart and Hongjuan Zhou (2018). Optimal bounds, but only for the cases Q = 1 and Q = 2.
- Ivan Nourdin, Giovanni Peccati, Xiaochuan Yang (2019). Optimal bounds, minimal smoothness in g, but only Q = 1.
- Nourdin, Nualart, Peccati (2019). Optimal bounds, minimal smoothness on g, but only Q = 2.
- Guillaume Poly (2023). Optimal bounds, minimal smoothnes and minimal integrability on g, but only Q = 2.
- A general sharp statement for $Q \ge 3$ seems to not be stated in detail.

Free Breuer Major theorem

Let U_q denote the q-th Chebyshev polynomial of the second kind.

Let U_q denote the q-th Chebyshev polynomial of the second kind.

Theorem (Kemp, Nourdin, Peccati, Speicher (2012)) Let $\{\xi_k\}_{k\geq 1}$ be a stationary standardized semicircular process. Suppose that $g = U_q$ and let Z_n be given by

$$Z_n := \frac{1}{\sqrt{n}} \sum_{k=0}^n g(\xi_k).$$

Then $Z_n \xrightarrow{\text{Law}} S(0, \sigma^2)$, where $S(\mu, \sigma)$ denotes the semicircle law and $\sigma > 0$.

Let U_q denote the q-th Chebyshev polynomial of the second kind.

Theorem (Kemp, Nourdin, Peccati, Speicher (2012)) Let $\{\xi_k\}_{k\geq 1}$ be a stationary standardized semicircular process. Suppose that $g = U_q$ and let Z_n be given by

$$Z_n := \frac{1}{\sqrt{n}} \sum_{k=0}^n g(\xi_k).$$

Then $Z_n \xrightarrow{Law} S(0, \sigma^2)$, where $S(\mu, \sigma)$ denotes the semicircle law and $\sigma > 0$.

A sharp quantitative version using Malliavin calculus was proved by Bourgin, Campese (2017).

Let U_q denote the q-th Chebyshev polynomial of the second kind.

Theorem (Kemp, Nourdin, Peccati, Speicher (2012)) Let $\{\xi_k\}_{k\geq 1}$ be a stationary standardized semicircular process. Suppose that $g = U_q$ and let Z_n be given by

$$Z_n := \frac{1}{\sqrt{n}} \sum_{k=0}^n g(\xi_k).$$

Then $Z_n \xrightarrow{Law} S(0, \sigma^2)$, where $S(\mu, \sigma)$ denotes the semicircle law and $\sigma > 0$.

A sharp quantitative version using Malliavin calculus was proved by Bourgin, Campese (2017).

Ongoing research: consider a general *g*.

For convenience, we will assume that $\xi_k = \int_{\mathbb{R}_+} h_k(s) dW_s$, where W is a free Brownian motion and $h_k \in L^2(\mathbb{R}_+; \mathbb{R})$.

For convenience, we will assume that $\xi_k = \int_{\mathbb{R}_+} h_k(s) dW_s$, where W is a free Brownian motion and $h_k \in L^2(\mathbb{R}_+; \mathbb{R})$.

Definition

The Malliavin derivative of an element $A \in A$ is the process $\nabla = \{\nabla_t[A] ; t \ge 0\}$, taking values in $A \otimes A$, satisfying

- For all $h \in \mathfrak{H}$, $\nabla_t [\int_{\mathbb{R}_+} h_k(s) dW_s] = h(t) \cdot (1 \otimes 1).$
- For all $a,b\in\mathcal{A}$, it holds that

$$\nabla[ab] = \nabla[a] \cdot b + a \cdot \nabla[b],$$

where \cdot denotes the action of \mathcal{A} on $\mathcal{A} \otimes \mathcal{A}$ over the right leg when the multiplication is of the form $F \cdot a$, with $F \in \mathcal{A} \otimes \mathcal{A}$ and $a \in \mathcal{A}$. For convenience, we will assume that $\xi_k = \int_{\mathbb{R}_+} h_k(s) dW_s$, where W is a free Brownian motion and $h_k \in L^2(\mathbb{R}_+; \mathbb{R})$.

Definition

The Malliavin derivative of an element $A \in A$ is the process $\nabla = \{\nabla_t[A] ; t \ge 0\}$, taking values in $A \otimes A$, satisfying

- For all $h \in \mathfrak{H}$, $abla_t [\int_{\mathbb{R}_+} h_k(s) dW_s] = h(t) \cdot (1 \otimes 1).$
- For all $a,b\in\mathcal{A}$, it holds that

$$\nabla[ab] = \nabla[a] \cdot b + a \cdot \nabla[b],$$

where \cdot denotes the action of \mathcal{A} on $\mathcal{A} \otimes \mathcal{A}$ over the right leg when the multiplication is of the form $F \cdot a$, with $F \in \mathcal{A} \otimes \mathcal{A}$ and $a \in \mathcal{A}$. The action of \mathcal{A} on $\mathcal{A} \otimes \mathcal{A}$ over the left leg when the multiplication is of the form $a \cdot F$

Free Stein kernel

For $a \in \mathcal{A}$, define

$$\Gamma_1[a] := \int_{\mathbb{R}_+} (\iota \otimes \tau) [\nabla_t[a]] \cdot (\nabla_t[a])^* dt.$$

with $\iota \otimes \tau$ given as the functional $(\iota \otimes \tau)[a \otimes b] = \tau[b]a$.

Free Stein kernel

For $a \in \mathcal{A}$, define

$$\Gamma_1[a] := \int_{\mathbb{R}_+} (\iota \otimes \tau) [\nabla_t[a]] \cdot (\nabla_t[a])^* dt.$$

with $\iota \otimes \tau$ given as the functional $(\iota \otimes \tau)[a \otimes b] = \tau[b]a$.

Theorem (Cebron 2018)

If $a \in \mathcal{A}$ is in the domain of ∇ and f is a polynomial,

$$(\tau \otimes \tau)[\Gamma_1[a]\partial f(a)] - \tau[af(a)] = 0$$

where $\partial f : \mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$ denotes the non-commutative derivative.

Free Stein kernel

For $a \in \mathcal{A}$, define

$$\Gamma_1[a] := \int_{\mathbb{R}_+} (\iota \otimes \tau) [\nabla_t[a]] \cdot (\nabla_t[a])^* dt.$$

with $\iota \otimes \tau$ given as the functional $(\iota \otimes \tau)[a \otimes b] = \tau[b]a$.

Theorem (Cebron 2018)

If $a \in \mathcal{A}$ is in the domain of ∇ and f is a polynomial,

$$(\tau \otimes \tau)[\Gamma_1[a]\partial f(a)] - \tau[af(a)] = 0$$

where $\partial f : A \to A \otimes A$ denotes the non-commutative derivative. Recall that *a* is semicircular if

$$(\tau \otimes \tau)[\partial f(a)] - \tau[af(a)] = 0$$

If S is a semicircular random variable and $F \in A$ is sufficiently smooth and integrable, the 2-Wasserstein distance d_{W_2} satisfies

$$d_{W_2}(F,S) \le \|\Gamma_1[F] - \mathbf{1}_{\mathcal{A}} \otimes \mathbf{1}_{\mathcal{A}}\|_{L^2(\mathcal{A},\tau)}.$$
 (1)

If S is a semicircular random variable and $F \in A$ is sufficiently smooth and integrable, the 2-Wasserstein distance d_{W_2} satisfies

$$d_{W_2}(F,S) \le \|\Gamma_1[F] - \mathbf{1}_{\mathcal{A}} \otimes \mathbf{1}_{\mathcal{A}}\|_{L^2(\mathcal{A},\tau)}.$$
 (1)

Fundamental applications:

If S is a semicircular random variable and $F \in A$ is sufficiently smooth and integrable, the 2-Wasserstein distance d_{W_2} satisfies

$$d_{W_2}(F,S) \le \|\Gamma_1[F] - \mathbf{1}_{\mathcal{A}} \otimes \mathbf{1}_{\mathcal{A}}\|_{L^2(\mathcal{A},\tau)}.$$
 (1)

Fundamental applications:

- The case where F is a Wigner integral.

If S is a semicircular random variable and $F \in A$ is sufficiently smooth and integrable, the 2-Wasserstein distance d_{W_2} satisfies

$$d_{W_2}(F,S) \leq \|\Gamma_1[F] - 1_{\mathcal{A}} \otimes 1_{\mathcal{A}}\|_{L^2(\mathcal{A},\tau)}.$$
 (1)

Fundamental applications:

- The case where F is a Wigner integral.
- The case where $F = Z_n$, where

$$Z_n := \frac{1}{\sqrt{n}} \sum_{k=0}^n g(\xi_k).$$

$$\Gamma_1[Z_n] := \int_{\mathbb{R}_+} (\iota \otimes \tau) [\nabla_t[Z_n]] \cdot (\nabla_t[Z_n])^* dt$$

$$\Gamma_1[Z_n] := \int_{\mathbb{R}_+} (\iota \otimes \tau) [\nabla_t[Z_n]] \cdot (\nabla_t[Z_n])^* dt.$$

We have that

$$abla_t[Z_n] = rac{1}{\sigma_n} \sum_{k=1}^n h_k(t) \partial g(\xi_k).$$

$$\Gamma_1[Z_n] := \int_{\mathbb{R}_+} (\iota \otimes \tau) [\nabla_t[Z_n]] \cdot (\nabla_t[Z_n])^* dt.$$

We have that

$$abla_t[Z_n] = rac{1}{\sigma_n} \sum_{k=1}^n h_k(t) \partial g(\xi_k).$$

From here it follows that

$$\Gamma_1[Z_n] = \frac{1}{\sigma_n^2} \sum_{1 \le k_1, k_2 \le n} (\iota \otimes \tau) [\partial g(\xi_{k_1})] \cdot \partial g(\xi_{k_2}) \rho(k_2 - k_1),$$

Some calculations later...

If
$$g = \sum_{q \ge Q} a_q U_q$$
, then

$$\|\Gamma_1[Z_n] - (\tau \otimes \tau)[\Gamma_1[Z_n]]\|_{L^2(\mathcal{A} \otimes \mathcal{A}, \tau \otimes \tau)}^2$$

$$= \frac{1}{n^2} \sum_{1 \le k_1, k_2, \kappa_1, \kappa_2 \le n} \sum_{q_1, q_2, p_1, p_2 \ge Q} \sum_{1 \le \ell_1 \le q_2} \sum_{1 \le \ell_2 \le p_2} \sum_{j_1 = 0}^{(q_1 - 1) \land (\ell_1 - 1)} \sum_{j_2 = 0}^{(p_1 - 1) \land (\ell_1 - 1)} \sum_{j_2$$

Theorem (Conjecture: Jaramillo, Kuzgun) *Define*

 $\mathfrak{p}(r) := \sup_{|k| \ge |r|} |
ho(r)|.$

Theorem (Conjecture: Jaramillo, Kuzgun) Define

$$\mathfrak{p}(r) := \sup_{|k| \ge |r|} |\rho(r)|.$$

Then we can guarantee the existence of a universal constant $C_Q > 0$ only depending on Q, such that if $Q \ge 2$,

$$d_{W_2}(Z_n,S) \leq C_Q \|g\|_{\mathbb{D}^{2,2}} n^{-1/2} \left(\sum_{r=1}^n \mathfrak{p}(r)^{Q-1}\right)^{1/2} \left(\sum_{r=1}^n \mathfrak{p}(r)\right)^{1/2}.$$

Theorem (Conjecture: Jaramillo, Kuzgun) Define

$$\mathfrak{p}(r) := \sup_{|k| \ge |r|} |\rho(r)|.$$

Then we can guarantee the existence of a universal constant $C_Q > 0$ only depending on Q, such that if $Q \ge 2$,

$$d_{W_2}(Z_n, S) \leq C_Q \|g\|_{\mathbb{D}^{2,2}} n^{-1/2} \left(\sum_{r=1}^n \mathfrak{p}(r)^{Q-1}\right)^{1/2} \left(\sum_{r=1}^n \mathfrak{p}(r)\right)^{1/2}$$

and if Q = 1,

$$d_{W_2}(Z_n,S) \leq C_Q \|g\|_{\mathbb{D}^{2,2}} \frac{1}{\sqrt{n}}.$$

- The result is not yet proved with this level of generality in the classical version.

- The result is not yet proved with this level of generality in the classical version.
- Expansions (Edgeworth-type expansions, but with smoother distances) seem to be reasonable to study, both in classical and free versions.

- The result is not yet proved with this level of generality in the classical version.
- Expansions (Edgeworth-type expansions, but with smoother distances) seem to be reasonable to study, both in classical and free versions.
- Uniform convergence of densities are available in the classical case. Is there an analog in the free version?

- The result is not yet proved with this level of generality in the classical version.
- Expansions (Edgeworth-type expansions, but with smoother distances) seem to be reasonable to study, both in classical and free versions.
- Uniform convergence of densities are available in the classical case. Is there an analog in the free version?
- What happens if $\sum_{k} |\rho(k)|^{Q} = \infty$? Free version of Rosenblatt variable? functional versions of Breuer Major.

Gracias!

Contacto Arturo Jaramillo jagil@cimat.mx

References classical BM

- Kuzgun, Nualart (2019). Rate of convergence in the Breuer-Major theorem via chaos expansions. Stochastic Analysis and Applications.
- Nualart and H. Zhou. Total variation estimates in the Breuer-Major theorem (2018). Annals of the Institut Henri Poincare.
- Nourdnin, Peccati, Yang (2019). Berry-Esseen bounds in the Breuer-Major CLT and Gebelein's inequality. Electron. Commun. Probab.
- Nourdin, Nualart and Peccati (2021). The Breuer-Major theorem in total variation: improved rates of convergence under minimal regularity. Stochastic Processes and Their Applications.
- Angst, Dalmao, Poly (2023). A total variation version of Breuer-Major Central Limit Theorem under D^{1,2}-assumption. Arxiv

- Cebron (2018). Quantitative fourth moment theorem in free probability. Advances in mathematics
- Biane, Speicher (1998). Stochastic calculus with respect to free Brownian motion and analysis on Wigner space. Probability Theory and Related Fields
- Bourguin, Campese (2018). Free quantitative fourth moment theorems on Wigner space. International Mathematics Research Notices.
- Kemp, Nourdin, Peccati, Speicher (2010). Wigner chaos and the fourth moment. Annals of Probability.