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Introduction

Basic definitions

Consider a family of independent centered Gaussian processes {Xi ,j}i ,j∈N
with covariance function

R(s, t) = E [Xi ,j(s)Xi ,j(t)] ,

defined in a probability space (Ω,F ,P).

Consider as well the renormalized
symmetric Gaussian matrix process {Y (n)}n≥1, defined by

Y (n)(t) := {Y (n)
i ,j (t)}1≤i ,j≤n, with

Y
(n)
i ,j (t) :=

{
1√
n
Xi ,j(t) if i < j

√
2√
n
Xi ,i (t) if i = j .
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Introduction

Goal

Let A(n) := {A(n)
i ,j }1≤i ,j≤n be a random symmetric matrix independent of

Y (n), and λ
(n)
1 (t) ≥ · · · ≥ λ(n)n (t) denote the n-dimensional process of

eigenvalues of
X (n)(t) := A(n) + Y (n)(t).

Denote by Pr(R) the space of random probability distributions, endowed
with the weak convergence of probability measures. We are interested in
the asymptotic behavior of the Pr(R)-valued process of empirical

distributions {µ(n)}n≥1, defined by µ(n) := {µ(n)t }t≥0, with

µ
(n)
t :=

1

n

n∑
j=1

δ
λ
(n)
j (t)

, t ≥ 0.
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Skorohod integral Elements of Malliavin calculus

Framework

Let d ≥ 1 and T > 0 be fixed. Consider a d-dimensional continuous
centered Gaussian process V = {(V 1

t , . . . ,V
d
t )}t∈[0,T ], defined in a

probability space (Ω,F ,P).

We will assume that

E
[
V i
sV

j
t

]
= δi ,jR(s, t).

Denote by E the space of step functions on [0,T ]. We define in E the
scalar product〈

1[0,s],1[0,t]
〉
H

:= E
[
V 1
s V

1
t

]
, for s, t ∈ [0,T ].

Let H be the Hilbert space obtained by taking the completion of E with
respect to this product.
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Skorohod integral Elements of Malliavin calculus

Smooth random variables

For every 1 ≤ i ≤ n, the mapping 1[0,t] 7→ V i (1[0,t]) := V i
t can be

extended to linear isometry, which we denote by V i (h), for h ∈ H.

If
f ∈ Hd is of the form f = (f1, . . . , fd), we set

V (f ) :=
d∑

i=1

V i (fi ).

Let S denote the set of random variables of the form

F = g(V (h1), . . . ,V (hm)),

where g : Rm → R is C∞(R), and hj ∈ E d .
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Skorohod integral Elements of Malliavin calculus

The Malliavin derivative

The Malliavin derivative of F with respect to V , is the element of
L2(Ω;Hd), defined by

DF =
m∑
i=1

∂g

∂xi
(V (h1), . . . ,V (hm))hi .

For p ≥ 1, the set D1,p denotes the closure of S with respect to the norm
‖·‖D1,p , defined by

‖F‖D1,p :=
(
E [|F |p] + E

[
‖DF‖p

Hd

]) 1
p
.

The operator D can be consistently extended to the set D1,p.
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Skorohod integral Elements of Malliavin calculus

The Skorohod integral

We denote by δ the adjoint of the operator D, also called the divergence
operator.

A random element u ∈ L2(Ω;Hd) belongs to the domain of δ,
denoted by Dom δ, if and only if satisfies∣∣E [〈DF , u〉Hd

]∣∣ ≤ CuE
[
F 2
] 1
2 , for every F ∈ D1,2,

where Cu is a constant only depending on u.If u ∈ Dom δ, then the
random variable δ(u) is defined by the duality relationship

E [F δ(u)] = E
[
〈DF , u〉Hd

]
.

We will make use of the notation

d∑
i=1

∫ t

0
uisδV

i
s := δ(u1[0,t]).
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Skorohod integral Elements of Malliavin calculus

Some technical issues associated to δ

1 When V is a d-dimensional Brownian motion and H = L2[0,T ], the
Skorohod integral is an extension of the Itô integral.

2 Can we interpret
∑d

i=1

∫ t
0 uisδV

i
s as the stochastic integral of u?

3 In the case where V is a fractional Brownian motion with Hurst
parameter 0 < H < 1

4 , with covariance function

R(s, t) =
1

2
(t2H + s2H − |t − s|2H),

the trajectories of V do not belong to the space H, and hence, do not
belong to the domain of δ.
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Skorohod integral Elements of Malliavin calculus

Extending the pairing 〈·, ·〉H

To extend the domain of δ, we impose the following condition

(H1) There exists α > 1, such that for all t ∈ [0,T ], s 7→ R(s, t) is
absolutely continuous on [0,T ], and

sup
0≤t≤T

∫ T

0

∣∣∣∣∂R∂s (s, t)

∣∣∣∣α ds <∞.
Let β be the conjugate of α, defined by β := α

α−1 . For any pair of

functions ϕ ∈ Lβ[0,T ] and ψ ∈ E of the form ψ =
∑m

j=1 cj1[0,tj ], we
define

〈ψ,ϕ〉H :=
m∑
j=1

cj

∫ T

0
ϕ(s)

∂R

∂s
(s, tj)ds. (1)
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Skorohod integral Elements of Malliavin calculus

Extended domain of divergence

We define the extended domain of the divergence in the following manner

Definition

We say that a stochastic process u ∈ L1(Ω; Lβ[0,T ]) belongs to the
extended domain of the divergence Dom∗δ if there exists p > 1, such that∣∣E [〈DF , u〉Hd

]∣∣ ≤ Cu ‖F‖p ,

for any smooth random variable F ∈ S , where Cu is some constant
depending on u. In this case, δ(u) is defined by the duality relationship

E [F δ(u)] = E
[
〈DF , u〉Hd

]
.
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Skorohod integral Elements of Malliavin calculus

An Itô-type formula

Theorem (Itô-type formula, conditions)

Assume that R satisfies (H1). Consider a function F : Rd → R such that:

1 F is twice continuously differentiable.

2 There exist constants C > 0 and M > 0, such that

|F (x)|+
∣∣∣∣∂F∂xi (x)

∣∣∣∣ ≤ C (1 + |x |M), for i = 1, . . . , d . (2)

3 There exists 0 < δ < 1, such that for every p ≥ 1, and s > 0,

E
[∣∣∣∣∂2F∂x2i

(Vs)

∣∣∣∣p] ≤ C (1 + R(s, s)−p(1−δ)), for i = 1, . . . , d . (3)
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∣∣∣∣∂F∂xi (x)

∣∣∣∣ ≤ C (1 + |x |M), for i = 1, . . . , d . (2)

3 There exists 0 < δ < 1, such that for every p ≥ 1, and s > 0,

E
[∣∣∣∣∂2F∂x2i

(Vs)

∣∣∣∣p] ≤ C (1 + R(s, s)−p(1−δ)), for i = 1, . . . , d . (3)
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An Itô-type formula

Theorem (Itô-type formula)

Then, the process us = (u1s , . . . , u
d
s ), defined by uls := ∂F

∂xl
(Vs)1[0,t](s),

belongs to Dom∗δ, and

F (Vt) = F (0) +
d∑

i=1

∫ t

0

∂F

∂xi
(Vs)δV i

s +
1

2

d∑
i=1

∫ t

0

∂2F

∂x2i
(Vs)

dR(s, s)

ds
ds,

(4)

for every t ∈ [0,T ].
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Back to our problem

Recall that
X (n)(t) := A(n) + Y (n)(t),

and

µ
(n)
t :=

1

n

n∑
j=1

δ
λ
(n)
j (t)

, t ≥ 0.

For an element f in the space of continuously differentiable functions in R,
denoted by C2b(R), define

〈µ, f 〉 :=

∫
f (x)µ(dx).
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Eigenvalues of a matrix

Lemma

For every i = 1, . . . , n, there exists a function Φn
i : R

n(n+1)
2 → R, which is

infinitely differentiable in an open subset G ⊂ R
n(n+1)

2 , with |G c | = 0, such

that λ
(n)
i (t) = Φn

i (Z (n)(t)).

Moreover, every element X ∈ G , viewed as an n × n matrix, has a
factorization of the form X = UDU∗, where D is a diagonal matrix with
entries Di ,i = λni such that λn1 > · · · > λnn, Un is an orthogonal matrix
with Un

i ,i > 0 for all i , Un
i ,j 6= 0, all the minors of Un have non zero

determinants.
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Some properties of Φi

Lemma

If U and Φi are as before, then for any k ≤ h, we have

∂Φn
i

∂yk,h
= 2Un

i ,kU
n
i ,h1{k 6=h} +

√
2(Un

i ,k)21{k=h}, (5)

∂2Φn
i

∂y2k,h
, = 2

∑
j 6=i

∣∣∣Un
i ,kU

n
j ,h + Un

i ,hU
n
j ,k

∣∣∣2
λni − λnj

1{k 6=h} + 4
∑
j 6=i

∣∣∣Un
i ,kU

n
j ,k

∣∣∣2
λni − λnj

1{k=h}.

(6)
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Stochastic evolution of µ(n)

Lemma

Assume that t 7→ R(t, t) is continuously differentiable. Then we have the

following evolution in time for
〈
µ
(n)
t , f

〉
, for f ∈ C2b(R) and t ≥ 0

〈
µ
(n)
t , f

〉
=
〈
µ
(n)
0 , f

〉
(7)

+
1

n
3
2

n∑
i=1

∑
k≤h

∫ t

0
f ′(Φn

i (X (n)(s)))
∂Φn

i

∂yk,l
(X (n)(s))δXk,h(s)

+
1

2

∫ t

0

∫
R2

f ′(x)− f ′(y)

x − y

d

ds
R(s, s)µ

(n)
s (dx)µ

(n)
s (dy)ds

+
1

2n2

n∑
i=1

∫ t

0
f ′′(Φn

i (X (n)(s)))
d

ds
R(s, s)ds.
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Tightness of µ(n)

Proposition

Assume that R(s, t) satisfies the condition
(H2) There exist constants κ, γ > 0, such that for every s, t > 0,

R(s, s)− 2R(s, t) + R(t, t) ≤ κ |t − s|γ .

Furthermore, assume that with probability one, the sequence of measures

µ
(n)
0 converges weakly to some measure ν. Then, almost surely, the family

of measures {µ(n)}n≥1 is tight in the space C (R+,Pr(R)).
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Tightness of µ(n)

Proof.

It suffices to show that for every f ∈ C1(R), the process

{〈µ(n)t , f 〉 | n ≥ 1, t ≥ 0} is tight. Since µ
(n)
0 converges weakly, by the

Billingsley criterion, it suffices to show that there exist constants
C , p, q > 0, independent of n, such that for every 0 ≤ t1 ≤ t2,

E
[∣∣∣〈µ(n)t1 , f 〉 − 〈µ

(n)
t2 , f 〉

∣∣∣p] ≤ C |t2 − t1|q . (8)

The left hand side can be estimated by using the inequality(
1

n

n∑
i=1

|λi (t)− λj(s)|

)2

≤ 1

n

n∑
i=1

(λi (t)− λj(s))2

≤ 1

n
tr

[(
1√
n

(Bi ,j(t)− Bi ,j(s))

)2
]
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Weak convergence of µ(n)

By the previous result µ(n) has a subsequence µ(nr ) converging in law to
some random process µ. In addition, we have

Proposition

For every t > 0 fixed, the random variable

Gr :=
1

n
3
2
r

nr∑
i=1

∑
k≤h

∫ t

0
f ′(Φnr

i (X (nr )(s)))
∂Φnr

i

∂yk,l
(X (nr )(s))δXk,h(s), (9)

converges to zero in L2(Ω).
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Weak convergence of µ(n)

Proof.

From the evolution equation for µ(n), we have that

Gr =
〈
µ
(nr )
t , f

〉
−
〈
µ
(nr )
0 , f

〉
− 1

2

∫ t

0

∫
R2

f ′(x)− f ′(y)

x − y

d

ds
R(s, s)µ

(nr )
s (dx)µ

(nr )
s (dy)ds

− 1

2n2r

nr∑
i=1

∫ t

0
f ′′(Φn

i (X (nr )(s)))
d

ds
R(s, s)ds, (10)

So we can make estimations of the variance of Gr by using the duality
relation of δ and the fact that

E
[
G 2
r

]
= E [δ(equation 9)× (equation 10)]
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Weak convergence of µ(n)

Using once more the evolution equation for µ, as well as the convergence
of µ(nr ) and the previous proposition, we get

〈µt , f 〉 = 〈ν, f 〉+
1

2

∫ t

0

∫
R2

f ′(x)− f ′(y)

x − y

d

ds
R(s, s)µs(dx)µs(dy)ds. (11)

Using fz(x) = 1
x−z , z ∈ Q2 ∩ C+, and a continuity argument, we get

that the Cauchy-Stieltjes transforms Gt(z) :=
∫

1
x−zµt(dx), satisfy

Gt(z) =

∫
R

1

x − z
µ0(dz) +

∫ t

0

∫
R2

1

(x − z)(y − z)2
d

ds
R(s, s)µs(dx)µs(dy)

= G0(z) +

∫ t

0

d

ds
R(s, s)Gs(z)

∂

∂z
Gs(z)ds.
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Main result

Theorem

µ(n) converges weakly in C (R+,Pr(R)) to µ, where µ satisfies

〈µt , f 〉 = 〈ν, f 〉+
1

2

∫ t

0

∫
R2

f ′(x)− f ′(y)

x − y

d

ds
R(s, s)µs(dx)µs(dy)ds, (12)

for each t ≥ 0 and f ∈ C2b . Moreover, the Cauchy transforms
Gt(z) :=

∫
R

1
x−zµt(dz), satisfy Gt(z) = FR(t,t)(z), where Fτ (z) is the

unique solution to the Burguers equation

∂

∂τ
Fτ (z) = Fτ (z)

∂

∂z
Fτ (z),

F0(z) =

∫
R

1

x − z
ν(dx). (13)
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Thanks!
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