Convergence of the empirical spectral distribution of Gaussian matrix processes

Arturo Jaramillo Gil
(Joint work with J.C. Pardo and J.L Garmendia)
University of Kansas

September 15, 2017

Basic definitions

Consider a family of independent centered Gaussian processes $\left\{X_{i, j}\right\}_{i, j \in \mathbb{N}}$ with covariance function

$$
R(s, t)=\mathbb{E}\left[X_{i, j}(s) X_{i, j}(t)\right],
$$

defined in a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

Basic definitions

Consider a family of independent centered Gaussian processes $\left\{X_{i, j}\right\}_{i, j \in \mathbb{N}}$ with covariance function

$$
R(s, t)=\mathbb{E}\left[X_{i, j}(s) X_{i, j}(t)\right],
$$

defined in a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Consider as well the renormalized symmetric Gaussian matrix process $\left\{Y^{(n)}\right\}_{n \geq 1}$, defined by $Y^{(n)}(t):=\left\{Y_{i, j}^{(n)}(t)\right\}_{1 \leq i, j \leq n}$, with

$$
Y_{i, j}^{(n)}(t):=\left\{\begin{array}{lr}
\frac{1}{\sqrt{n}} X_{i, j}(t) & \text { if } i<j \\
\frac{\sqrt{2}}{\sqrt{n}} X_{i, i}(t) & \text { if } i=j
\end{array}\right.
$$

Goal

Let $A^{(n)}:=\left\{A_{i, j}^{(n)}\right\}_{1 \leq i, j \leq n}$ be a random symmetric matrix independent of $Y^{(n)}$, and $\lambda_{1}^{(n)}(t) \geq \cdots \geq \lambda_{n}^{(n)}(t)$ denote the n-dimensional process of eigenvalues of

$$
X^{(n)}(t):=A^{(n)}+Y^{(n)}(t)
$$

Goal

Let $A^{(n)}:=\left\{A_{i, j}^{(n)}\right\}_{1 \leq i, j \leq n}$ be a random symmetric matrix independent of $Y^{(n)}$, and $\lambda_{1}^{(n)}(t) \geq \cdots \geq \lambda_{n}^{(n)}(t)$ denote the n-dimensional process of eigenvalues of

$$
X^{(n)}(t):=A^{(n)}+Y^{(n)}(t)
$$

Denote by $\operatorname{Pr}(\mathbb{R})$ the space of random probability distributions, endowed with the weak convergence of probability measures.

Goal

Let $A^{(n)}:=\left\{A_{i, j}^{(n)}\right\}_{1 \leq i, j \leq n}$ be a random symmetric matrix independent of $Y^{(n)}$, and $\lambda_{1}^{(n)}(t) \geq \cdots \geq \lambda_{n}^{(n)}(t)$ denote the n-dimensional process of eigenvalues of

$$
X^{(n)}(t):=A^{(n)}+Y^{(n)}(t)
$$

Denote by $\operatorname{Pr}(\mathbb{R})$ the space of random probability distributions, endowed with the weak convergence of probability measures. We are interested in the asymptotic behavior of the $\operatorname{Pr}(\mathbb{R})$-valued process of empirical distributions $\left\{\mu^{(n)}\right\}_{n \geq 1}$, defined by $\mu^{(n)}:=\left\{\mu_{t}^{(n)}\right\}_{t \geq 0}$, with

$$
\mu_{t}^{(n)}:=\frac{1}{n} \sum_{j=1}^{n} \delta_{\lambda_{j}^{(n)}(t)}, \quad t \geq 0
$$

Framework

Let $d \geq 1$ and $T>0$ be fixed. Consider a d-dimensional continuous centered Gaussian process $V=\left\{\left(V_{t}^{1}, \ldots, V_{t}^{d}\right)\right\}_{t \in[0, T]}$, defined in a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

Framework

Let $d \geq 1$ and $T>0$ be fixed. Consider a d-dimensional continuous centered Gaussian process $V=\left\{\left(V_{t}^{1}, \ldots, V_{t}^{d}\right)\right\}_{t \in[0, T]}$, defined in a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. We will assume that

$$
\mathbb{E}\left[V_{s}^{i} V_{t}^{j}\right]=\delta_{i, j} R(s, t)
$$

Framework

Let $d \geq 1$ and $T>0$ be fixed. Consider a d-dimensional continuous centered Gaussian process $V=\left\{\left(V_{t}^{1}, \ldots, V_{t}^{d}\right)\right\}_{t \in[0, T]}$, defined in a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. We will assume that

$$
\mathbb{E}\left[V_{s}^{i} V_{t}^{j}\right]=\delta_{i, j} R(s, t)
$$

Denote by \mathscr{E} the space of step functions on $[0, T]$. We define in \mathscr{E} the scalar product

$$
\left\langle\mathbb{1}_{[0, s]}, \mathbb{1}_{[0, t]}\right\rangle_{\mathfrak{H}}:=\mathbb{E}\left[V_{s}^{1} V_{t}^{1}\right], \quad \text { for } \quad s, t \in[0, T]
$$

Framework

Let $d \geq 1$ and $T>0$ be fixed. Consider a d-dimensional continuous centered Gaussian process $V=\left\{\left(V_{t}^{1}, \ldots, V_{t}^{d}\right)\right\}_{t \in[0, T]}$, defined in a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. We will assume that

$$
\mathbb{E}\left[V_{s}^{i} V_{t}^{j}\right]=\delta_{i, j} R(s, t)
$$

Denote by \mathscr{E} the space of step functions on $[0, T]$. We define in \mathscr{E} the scalar product

$$
\left\langle\mathbb{1}_{[0, s]}, \mathbb{1}_{[0, t]}\right\rangle_{\mathfrak{H}}:=\mathbb{E}\left[V_{s}^{1} V_{t}^{1}\right], \quad \text { for } \quad s, t \in[0, T]
$$

Let \mathfrak{H} be the Hilbert space obtained by taking the completion of \mathscr{E} with respect to this product.

Smooth random variables

For every $1 \leq i \leq n$, the mapping $\mathbb{1}_{[0, t]} \mapsto V^{i}\left(\mathbb{1}_{[0, t]}\right):=V_{t}^{i}$ can be extended to linear isometry, which we denote by $V^{i}(h)$, for $h \in \mathfrak{H}$.

Smooth random variables

For every $1 \leq i \leq n$, the mapping $\mathbb{1}_{[0, t]} \mapsto V^{i}\left(\mathbb{1}_{[0, t]}\right):=V_{t}^{i}$ can be extended to linear isometry, which we denote by $V^{i}(h)$, for $h \in \mathfrak{H}$. If $f \in \mathfrak{H}^{d}$ is of the form $f=\left(f_{1}, \ldots, f_{d}\right)$, we set

$$
V(f):=\sum_{i=1}^{d} V^{i}\left(f_{i}\right)
$$

Smooth random variables

For every $1 \leq i \leq n$, the mapping $\mathbb{1}_{[0, t]} \mapsto V^{i}\left(\mathbb{1}_{[0, t]}\right):=V_{t}^{i}$ can be extended to linear isometry, which we denote by $V^{i}(h)$, for $h \in \mathfrak{H}$. If $f \in \mathfrak{H}^{d}$ is of the form $f=\left(f_{1}, \ldots, f_{d}\right)$, we set

$$
V(f):=\sum_{i=1}^{d} V^{i}\left(f_{i}\right) .
$$

Let \mathscr{S} denote the set of random variables of the form

$$
F=g\left(V\left(h_{1}\right), \ldots, V\left(h_{m}\right)\right),
$$

where $g: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is $\mathcal{C}^{\infty}(\mathbb{R})$, and $h_{j} \in \mathscr{E}^{d}$.

The Malliavin derivative

The Malliavin derivative of F with respect to V, is the element of $L^{2}\left(\Omega ; \mathfrak{H}^{d}\right)$, defined by

$$
D F=\sum_{i=1}^{m} \frac{\partial g}{\partial x_{i}}\left(V\left(h_{1}\right), \ldots, V\left(h_{m}\right)\right) h_{i}
$$

The Malliavin derivative

The Malliavin derivative of F with respect to V, is the element of $L^{2}\left(\Omega ; \mathfrak{H}^{d}\right)$, defined by

$$
D F=\sum_{i=1}^{m} \frac{\partial g}{\partial x_{i}}\left(V\left(h_{1}\right), \ldots, V\left(h_{m}\right)\right) h_{i}
$$

For $p \geq 1$, the set $\mathbb{D}^{1, p}$ denotes the closure of \mathscr{S} with respect to the norm $\|\cdot\|_{\mathbb{D}^{1, p}}$, defined by

$$
\|F\|_{\mathbb{D}^{1, p}}:=\left(\mathbb{E}\left[|F|^{p}\right]+\mathbb{E}\left[\|D F\|_{\mathfrak{H}^{d}}^{p}\right]\right)^{\frac{1}{p}}
$$

The operator D can be consistently extended to the set $\mathbb{D}^{1, p}$.

The Skorohod integral

We denote by δ the adjoint of the operator D, also called the divergence operator.

The Skorohod integral

We denote by δ the adjoint of the operator D, also called the divergence operator. A random element $u \in L^{2}\left(\Omega ; \mathfrak{H}^{d}\right)$ belongs to the domain of δ, denoted by $\operatorname{Dom} \delta$, if and only if satisfies

$$
\left|\mathbb{E}\left[\langle D F, u\rangle_{\mathfrak{H}^{d}}\right]\right| \leq C_{u} \mathbb{E}\left[F^{2}\right]^{\frac{1}{2}}, \quad \text { for every } F \in \mathbb{D}^{1,2}
$$

where C_{u} is a constant only depending on u.

The Skorohod integral

We denote by δ the adjoint of the operator D, also called the divergence operator. A random element $u \in L^{2}\left(\Omega ; \mathfrak{H}^{d}\right)$ belongs to the domain of δ, denoted by $\operatorname{Dom} \delta$, if and only if satisfies

$$
\left|\mathbb{E}\left[\langle D F, u\rangle_{\mathfrak{H}^{d}}\right]\right| \leq C_{u} \mathbb{E}\left[F^{2}\right]^{\frac{1}{2}}, \quad \text { for every } F \in \mathbb{D}^{1,2}
$$

where C_{u} is a constant only depending on u. If $u \in \operatorname{Dom} \delta$, then the random variable $\delta(u)$ is defined by the duality relationship

$$
\mathbb{E}[F \delta(u)]=\mathbb{E}\left[\langle D F, u\rangle_{\mathfrak{H}^{d}}\right] .
$$

The Skorohod integral

We denote by δ the adjoint of the operator D, also called the divergence operator. A random element $u \in L^{2}\left(\Omega ; \mathfrak{H}^{d}\right)$ belongs to the domain of δ, denoted by $\operatorname{Dom} \delta$, if and only if satisfies

$$
\left|\mathbb{E}\left[\langle D F, u\rangle_{\mathfrak{H}^{d}}\right]\right| \leq C_{u} \mathbb{E}\left[F^{2}\right]^{\frac{1}{2}}, \quad \text { for every } F \in \mathbb{D}^{1,2}
$$

where C_{u} is a constant only depending on u. If $u \in \operatorname{Dom} \delta$, then the random variable $\delta(u)$ is defined by the duality relationship

$$
\mathbb{E}[F \delta(u)]=\mathbb{E}\left[\langle D F, u\rangle_{\mathfrak{H}^{d}}\right]
$$

We will make use of the notation

$$
\sum_{i=1}^{d} \int_{0}^{t} u_{s}^{i} \delta V_{s}^{i}:=\delta\left(u \mathbb{1}_{[0, t]}\right)
$$

Some technical issues associated to δ

(1) When V is a d-dimensional Brownian motion and $\mathfrak{H}=L^{2}[0, T]$, the Skorohod integral is an extension of the Itô integral.

Some technical issues associated to δ

(1) When V is a d-dimensional Brownian motion and $\mathfrak{H}=L^{2}[0, T]$, the Skorohod integral is an extension of the Itô integral.
(2) Can we interpret $\sum_{i=1}^{d} \int_{0}^{t} u_{s}^{i} \delta V_{s}^{i}$ as the stochastic integral of u ?

Some technical issues associated to δ

(1) When V is a d-dimensional Brownian motion and $\mathfrak{H}=L^{2}[0, T]$, the Skorohod integral is an extension of the Itô integral.
(2) Can we interpret $\sum_{i=1}^{d} \int_{0}^{t} u_{s}^{i} \delta V_{s}^{i}$ as the stochastic integral of u ?
(3) In the case where V is a fractional Brownian motion with Hurst parameter $0<H<\frac{1}{4}$, with covariance function

$$
R(s, t)=\frac{1}{2}\left(t^{2 H}+s^{2 H}-|t-s|^{2 H}\right),
$$

the trajectories of V do not belong to the space \mathfrak{H}, and hence, do not belong to the domain of δ.

Extending the pairing $\langle\cdot, \cdot\rangle_{\mathfrak{H}}$

To extend the domain of δ, we impose the following condition

Extending the pairing $\langle\cdot, \cdot\rangle_{\mathfrak{H}}$

To extend the domain of δ, we impose the following condition (H1) There exists $\alpha>1$, such that for all $t \in[0, T], s \mapsto R(s, t)$ is absolutely continuous on $[0, T]$, and

$$
\sup _{0 \leq t \leq T} \int_{0}^{T}\left|\frac{\partial R}{\partial s}(s, t)\right|^{\alpha} d s<\infty
$$

Extending the pairing $\langle\cdot, \cdot\rangle_{\mathfrak{H}}$

To extend the domain of δ, we impose the following condition (H1) There exists $\alpha>1$, such that for all $t \in[0, T], s \mapsto R(s, t)$ is absolutely continuous on $[0, T]$, and

$$
\sup _{0 \leq t \leq T} \int_{0}^{T}\left|\frac{\partial R}{\partial s}(s, t)\right|^{\alpha} d s<\infty
$$

Let β be the conjugate of α, defined by $\beta:=\frac{\alpha}{\alpha-1}$.

Extending the pairing $\langle\cdot, \cdot\rangle_{55}$

To extend the domain of δ, we impose the following condition (H1) There exists $\alpha>1$, such that for all $t \in[0, T], s \mapsto R(s, t)$ is absolutely continuous on $[0, T]$, and

$$
\sup _{0 \leq t \leq T} \int_{0}^{T}\left|\frac{\partial R}{\partial s}(s, t)\right|^{\alpha} d s<\infty
$$

Let β be the conjugate of α, defined by $\beta:=\frac{\alpha}{\alpha-1}$. For any pair of functions $\varphi \in L^{\beta}[0, T]$ and $\psi \in \mathscr{E}$ of the form $\psi=\sum_{j=1}^{m} c_{j} \mathbb{1}_{\left[0, t_{j}\right]}$, we define

$$
\begin{equation*}
\langle\psi, \varphi\rangle_{\mathfrak{H}}:=\sum_{j=1}^{m} c_{j} \int_{0}^{T} \varphi(s) \frac{\partial R}{\partial s}\left(s, t_{j}\right) d s \tag{1}
\end{equation*}
$$

Extended domain of divergence

We define the extended domain of the divergence in the following manner

Extended domain of divergence

We define the extended domain of the divergence in the following manner Definition

We say that a stochastic process $u \in L^{1}\left(\Omega ; L^{\beta}[0, T]\right)$ belongs to the extended domain of the divergence $\operatorname{Dom}^{*} \delta$ if there exists $p>1$, such that

$$
\left|\mathbb{E}\left[\langle D F, u\rangle_{\mathfrak{H}^{d}}\right]\right| \leq C_{u}\|F\|_{p}
$$

for any smooth random variable $F \in \mathscr{S}$, where C_{u} is some constant depending on u.

Extended domain of divergence

We define the extended domain of the divergence in the following manner

Definition

We say that a stochastic process $u \in L^{1}\left(\Omega ; L^{\beta}[0, T]\right)$ belongs to the extended domain of the divergence $\operatorname{Dom}^{*} \delta$ if there exists $p>1$, such that

$$
\left|\mathbb{E}\left[\langle D F, u\rangle_{\mathfrak{H}^{d}}\right]\right| \leq C_{u}\|F\|_{p}
$$

for any smooth random variable $F \in \mathscr{S}$, where C_{u} is some constant depending on u. In this case, $\delta(u)$ is defined by the duality relationship

$$
\mathbb{E}[F \delta(u)]=\mathbb{E}\left[\langle D F, u\rangle_{\mathfrak{H}^{d}}\right] .
$$

An Itô-type formula

Theorem (Itô-type formula, conditions)
Assume that R satisfies (H1). Consider a function $F: \mathbb{R}^{d} \rightarrow \mathbb{R}$ such that:

An Itô-type formula

Theorem (Itô-type formula, conditions)
Assume that R satisfies (H1). Consider a function $F: \mathbb{R}^{d} \rightarrow \mathbb{R}$ such that:
(1) F is twice continuously differentiable.

An Itô-type formula

Theorem (Itô-type formula, conditions)
Assume that R satisfies (H1). Consider a function $F: \mathbb{R}^{d} \rightarrow \mathbb{R}$ such that:
(1) F is twice continuously differentiable.
(2) There exist constants $C>0$ and $M>0$, such that

$$
\begin{equation*}
|F(x)|+\left|\frac{\partial F}{\partial x_{i}}(x)\right| \leq C\left(1+|x|^{M}\right), \quad \text { for } i=1, \ldots, d \tag{2}
\end{equation*}
$$

An Itô-type formula

Theorem (Itô-type formula, conditions)
Assume that R satisfies (H1). Consider a function $F: \mathbb{R}^{d} \rightarrow \mathbb{R}$ such that:
(1) F is twice continuously differentiable.
(2) There exist constants $C>0$ and $M>0$, such that

$$
\begin{equation*}
|F(x)|+\left|\frac{\partial F}{\partial x_{i}}(x)\right| \leq C\left(1+|x|^{M}\right), \quad \text { for } i=1, \ldots, d \tag{2}
\end{equation*}
$$

(3) There exists $0<\delta<1$, such that for every $p \geq 1$, and $s>0$,

$$
\begin{equation*}
\mathbb{E}\left[\left|\frac{\partial^{2} F}{\partial x_{i}^{2}}\left(V_{s}\right)\right|^{p}\right] \leq C\left(1+R(s, s)^{-p(1-\delta)}\right), \quad \text { for } \quad i=1, \ldots, d \tag{3}
\end{equation*}
$$

An Itô-type formula

Theorem (Itô-type formula)
Then, the process $u_{s}=\left(u_{s}^{1}, \ldots, u_{s}^{d}\right)$, defined by $u_{s}^{\prime}:=\frac{\partial F}{\partial x_{l}}\left(V_{s}\right) \mathbb{1}_{[0, t]}(s)$, belongs to $\mathrm{Dom}^{*} \delta$, and

$$
\begin{equation*}
F\left(V_{t}\right)=F(0)+\sum_{i=1}^{d} \int_{0}^{t} \frac{\partial F}{\partial x_{i}}\left(V_{s}\right) \delta V_{s}^{i}+\frac{1}{2} \sum_{i=1}^{d} \int_{0}^{t} \frac{\partial^{2} F}{\partial x_{i}^{2}}\left(V_{s}\right) \frac{d R(s, s)}{d s} d s \tag{4}
\end{equation*}
$$

for every $t \in[0, T]$.

Back to our problem

Recall that

$$
X^{(n)}(t):=A^{(n)}+Y^{(n)}(t)
$$

and

$$
\mu_{t}^{(n)}:=\frac{1}{n} \sum_{j=1}^{n} \delta_{\lambda_{j}^{(n)}(t)}, \quad t \geq 0
$$

For an element f in the space of continuously differentiable functions in \mathbb{R}, denoted by $\mathcal{C}_{b}^{2}(\mathbb{R})$, define

$$
\langle\mu, f\rangle:=\int f(x) \mu(d x)
$$

Eigenvalues of a matrix

Lemma

For every $i=1, \ldots, n$, there exists a function $\Phi_{i}^{n}: \mathbb{R}^{\frac{n(n+1)}{2}} \rightarrow \mathbb{R}$, which is infinitely differentiable in an open subset $G \subset \mathbb{R}^{\frac{n(n+1)}{2}}$, with $\left|G^{c}\right|=0$, such that $\lambda_{i}^{(n)}(t)=\Phi_{i}^{n}\left(Z^{(n)}(t)\right)$.

Eigenvalues of a matrix

Lemma

For every $i=1, \ldots, n$, there exists a function $\Phi_{i}^{n}: \mathbb{R}^{\frac{n(n+1)}{2}} \rightarrow \mathbb{R}$, which is infinitely differentiable in an open subset $G \subset \mathbb{R}^{\frac{n(n+1)}{2}}$, with $\left|G^{c}\right|=0$, such that $\lambda_{i}^{(n)}(t)=\Phi_{i}^{n}\left(Z^{(n)}(t)\right)$.

Moreover, every element $X \in G$, viewed as an $n \times n$ matrix, has a factorization of the form $X=U D U^{*}$, where D is a diagonal matrix with entries $D_{i, i}=\lambda_{i}^{n}$ such that $\lambda_{1}^{n}>\cdots>\lambda_{n}^{n}, U^{n}$ is an orthogonal matrix with $U_{i, i}^{n}>0$ for all $i, U_{i, j}^{n} \neq 0$, all the minors of U^{n} have non zero determinants.

Some properties of Φ_{i}

Lemma

If U and Φ_{i} are as before, then for any $k \leq h$, we have

$$
\begin{align*}
\frac{\partial \Phi_{i}^{n}}{\partial y_{k, h}} & =2 U_{i, k}^{n} U_{i, h}^{n} \mathbb{1}_{\{k \neq h\}}+\sqrt{2}\left(U_{i, k}^{n}\right)^{2} \mathbb{1}_{\{k=h\}} \tag{5}\\
\frac{\partial^{2} \Phi_{i}^{n}}{\partial y_{k, h}^{2}} & =2 \sum_{j \neq i} \frac{\left|U_{i, k}^{n} U_{j, h}^{n}+U_{i, h}^{n} U_{j, k}^{n}\right|^{2}}{\lambda_{i}^{n}-\lambda_{j}^{n}} \mathbb{1}_{\{k \neq h\}}+4 \sum_{j \neq i} \frac{\left|U_{i, k}^{n} U_{j, k}^{n}\right|^{2}}{\lambda_{i}^{n}-\lambda_{j}^{n}} \mathbb{1}_{\{k=h\}} \tag{6}
\end{align*}
$$

Stochastic evolution of $\mu^{(n)}$

Lemma

Assume that $t \mapsto R(t, t)$ is continuously differentiable. Then we have the following evolution in time for $\left\langle\mu_{t}^{(n)}, f\right\rangle$, for $f \in \mathcal{C}_{b}^{2}(\mathbb{R})$ and $t \geq 0$

$$
\begin{align*}
\left\langle\mu_{t}^{(n)}, f\right\rangle & =\left\langle\mu_{0}^{(n)}, f\right\rangle \tag{7}\\
& +\frac{1}{n^{3}} \sum_{i=1}^{n} \sum_{k \leq h} \int_{0}^{t} f^{\prime}\left(\Phi_{i}^{n}\left(X^{(n)}(s)\right)\right) \frac{\partial \Phi_{i}^{n}}{\partial y_{k, l}}\left(X^{(n)}(s)\right) \delta X_{k, h}(s) \\
& +\frac{1}{2} \int_{0}^{t} \int_{\mathbb{R}^{2}} \frac{f^{\prime}(x)-f^{\prime}(y)}{x-y} \frac{d}{d s} R(s, s) \mu_{s}^{(n)}(d x) \mu_{s}^{(n)}(d y) d s \\
& +\frac{1}{2 n^{2}} \sum_{i=1}^{n} \int_{0}^{t} f^{\prime \prime}\left(\Phi_{i}^{n}\left(X^{(n)}(s)\right)\right) \frac{d}{d s} R(s, s) d s .
\end{align*}
$$

Tightness of $\mu^{(n)}$

Proposition

Assume that $R(s, t)$ satisfies the condition
(H2) There exist constants $\kappa, \gamma>0$, such that for every $s, t>0$,

$$
R(s, s)-2 R(s, t)+R(t, t) \leq \kappa|t-s|^{\gamma} .
$$

Furthermore, assume that with probability one, the sequence of measures $\mu_{0}^{(n)}$ converges weakly to some measure ν. Then, almost surely, the family of measures $\left\{\mu^{(n)}\right\}_{n \geq 1}$ is tight in the space $C\left(\mathbb{R}_{+}, \operatorname{Pr}(\mathbb{R})\right)$.

Tightness of $\mu^{(n)}$

Proof.

It suffices to show that for every $f \in \mathcal{C}^{1}(\mathbb{R})$, the process
$\left\{\left\langle\mu_{t}^{(n)}, f\right\rangle \mid n \geq 1, t \geq 0\right\}$ is tight. Since $\mu_{0}^{(n)}$ converges weakly, by the Billingsley criterion, it suffices to show that there exist constants $C, p, q>0$, independent of n, such that for every $0 \leq t_{1} \leq t_{2}$,

$$
\begin{equation*}
\mathbb{E}\left[\left|\left\langle\mu_{t_{1}}^{(n)}, f\right\rangle-\left\langle\mu_{t_{2}}^{(n)}, f\right\rangle\right|^{p}\right] \leq C\left|t_{2}-t_{1}\right|^{q} . \tag{8}
\end{equation*}
$$

The left hand side can be estimated by using the inequality

$$
\begin{aligned}
\left(\frac{1}{n} \sum_{i=1}^{n}\left|\lambda_{i}(t)-\lambda_{j}(s)\right|\right)^{2} & \leq \frac{1}{n} \sum_{i=1}^{n}\left(\lambda_{i}(t)-\lambda_{j}(s)\right)^{2} \\
& \leq \frac{1}{n} \operatorname{tr}\left[\left(\frac{1}{\sqrt{n}}\left(B_{i, j}(t)-B_{i, j}(s)\right)\right)^{2}\right]
\end{aligned}
$$

Weak convergence of $\mu^{(n)}$

By the previous result $\mu^{(n)}$ has a subsequence $\mu^{\left(n_{r}\right)}$ converging in law to some random process μ. In addition, we have

Proposition
For every $t>0$ fixed, the random variable

$$
\begin{equation*}
G_{r}:=\frac{1}{n_{r}^{\frac{3}{2}}} \sum_{i=1}^{n_{r}} \sum_{k \leq h} \int_{0}^{t} f^{\prime}\left(\Phi_{i}^{n_{r}}\left(X^{\left(n_{r}\right)}(s)\right)\right) \frac{\partial \Phi_{i}^{n_{r}}}{\partial y_{k, l}}\left(X^{\left(n_{r}\right)}(s)\right) \delta X_{k, h}(s) \tag{9}
\end{equation*}
$$

converges to zero in $L^{2}(\Omega)$.

Weak convergence of $\mu^{(n)}$

Proof.

From the evolution equation for $\mu^{(n)}$, we have that

$$
\begin{align*}
G_{r} & =\left\langle\mu_{t}^{\left(n_{r}\right)}, f\right\rangle-\left\langle\mu_{0}^{\left(n_{r}\right)}, f\right\rangle \\
& -\frac{1}{2} \int_{0}^{t} \int_{\mathbb{R}^{2}} \frac{f^{\prime}(x)-f^{\prime}(y)}{x-y} \frac{d}{d s} R(s, s) \mu_{s}^{\left(n_{r}\right)}(d x) \mu_{s}^{\left(n_{r}\right)}(d y) d s \\
& -\frac{1}{2 n_{r}^{2}} \sum_{i=1}^{n_{r}} \int_{0}^{t} f^{\prime \prime}\left(\Phi_{i}^{n}\left(X^{\left(n_{r}\right)}(s)\right)\right) \frac{d}{d s} R(s, s) d s, \tag{10}
\end{align*}
$$

So we can make estimations of the variance of G_{r} by using the duality relation of δ and the fact that

$$
\mathbb{E}\left[G_{r}^{2}\right]=\mathbb{E}[\delta(\text { equation } 9) \times(\text { equation } 10)]
$$

Weak convergence of $\mu^{(n)}$

Using once more the evolution equation for μ, as well as the convergence of $\mu^{\left(n_{r}\right)}$ and the previous proposition, we get

$$
\begin{equation*}
\left\langle\mu_{t}, f\right\rangle=\langle\nu, f\rangle+\frac{1}{2} \int_{0}^{t} \int_{\mathbb{R}^{2}} \frac{f^{\prime}(x)-f^{\prime}(y)}{x-y} \frac{d}{d s} R(s, s) \mu_{s}(d x) \mu_{s}(d y) d s \tag{11}
\end{equation*}
$$

Using $f_{z}(x)=\frac{1}{x-z}, \quad z \in \mathbb{Q}^{2} \cap \mathbb{C}^{+}$, and a continuity argument, we get that the Cauchy-Stieltjes transforms $G_{t}(z):=\int \frac{1}{x-z} \mu_{t}(d x)$, satisfy

$$
\begin{aligned}
G_{t}(z) & =\int_{\mathbb{R}} \frac{1}{x-z} \mu_{0}(d z)+\int_{0}^{t} \int_{\mathbb{R}^{2}} \frac{1}{(x-z)(y-z)^{2}} \frac{d}{d s} R(s, s) \mu_{s}(d x) \mu_{s}(d y) \\
& =G_{0}(z)+\int_{0}^{t} \frac{d}{d s} R(s, s) G_{s}(z) \frac{\partial}{\partial z} G_{s}(z) d s
\end{aligned}
$$

Main result

Theorem
$\mu^{(n)}$ converges weakly in $C\left(\mathbb{R}_{+}, \operatorname{Pr}(\mathbb{R})\right)$ to μ, where μ satisfies

$$
\begin{equation*}
\left\langle\mu_{t}, f\right\rangle=\langle\nu, f\rangle+\frac{1}{2} \int_{0}^{t} \int_{\mathbb{R}^{2}} \frac{f^{\prime}(x)-f^{\prime}(y)}{x-y} \frac{d}{d s} R(s, s) \mu_{s}(d x) \mu_{s}(d y) d s \tag{12}
\end{equation*}
$$

for each $t \geq 0$ and $f \in \mathcal{C}_{b}^{2}$. Moreover, the Cauchy transforms $G_{t}(z):=\int_{\mathbb{R}} \frac{1}{x-z} \mu_{t}(d z)$, satisfy $G_{t}(z)=F_{R(t, t)}(z)$, where $F_{\tau}(z)$ is the unique solution to the Burguers equation

$$
\begin{align*}
\frac{\partial}{\partial \tau} F_{\tau}(z) & =F_{\tau}(z) \frac{\partial}{\partial z} F_{\tau}(z) \\
F_{0}(z) & =\int_{\mathbb{R}} \frac{1}{x-z} \nu(d x) \tag{13}
\end{align*}
$$

Thanks!

