Convergence of the empirical spectral distribution of Gaussian matrix processes

Arturo Jaramillo Gil (Joint work with J.C. Pardo and J.L Garmendia)

University of Kansas

September 15, 2017

Basic definitions

Consider a family of independent centered Gaussian processes $\{X_{i,j}\}_{i,j\in\mathbb{N}}$ with covariance function

$$R(s,t) = \mathbb{E}\left[X_{i,j}(s)X_{i,j}(t)\right],$$

defined in a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

3

(日) (周) (三) (三)

Basic definitions

Consider a family of independent centered Gaussian processes $\{X_{i,j}\}_{i,j\in\mathbb{N}}$ with covariance function

$$R(s,t) = \mathbb{E}\left[X_{i,j}(s)X_{i,j}(t)\right],$$

defined in a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Consider as well the renormalized symmetric Gaussian matrix process $\{Y^{(n)}\}_{n\geq 1}$, defined by $Y^{(n)}(t) := \{Y_{i,j}^{(n)}(t)\}_{1\leq i,j\leq n}$, with

$$Y_{i,j}^{(n)}(t) := \begin{cases} \frac{1}{\sqrt{n}} X_{i,j}(t) & \text{if } i < j \\ \frac{\sqrt{2}}{\sqrt{n}} X_{i,i}(t) & \text{if } i = j. \end{cases}$$

Goal

Let $A^{(n)} := \{A_{i,j}^{(n)}\}_{1 \le i,j \le n}$ be a random symmetric matrix independent of $Y^{(n)}$, and $\lambda_1^{(n)}(t) \ge \cdots \ge \lambda_n^{(n)}(t)$ denote the *n*-dimensional process of eigenvalues of

$$X^{(n)}(t) := A^{(n)} + Y^{(n)}(t).$$

Goal

Let $A^{(n)} := \{A_{i,j}^{(n)}\}_{1 \le i,j \le n}$ be a random symmetric matrix independent of $Y^{(n)}$, and $\lambda_1^{(n)}(t) \ge \cdots \ge \lambda_n^{(n)}(t)$ denote the *n*-dimensional process of eigenvalues of

$$X^{(n)}(t) := A^{(n)} + Y^{(n)}(t).$$

Denote by $Pr(\mathbb{R})$ the space of random probability distributions, endowed with the weak convergence of probability measures.

Goal

Let $A^{(n)} := \{A_{i,j}^{(n)}\}_{1 \le i,j \le n}$ be a random symmetric matrix independent of $Y^{(n)}$, and $\lambda_1^{(n)}(t) \ge \cdots \ge \lambda_n^{(n)}(t)$ denote the *n*-dimensional process of eigenvalues of

$$X^{(n)}(t) := A^{(n)} + Y^{(n)}(t).$$

Denote by $Pr(\mathbb{R})$ the space of random probability distributions, endowed with the weak convergence of probability measures. We are interested in the asymptotic behavior of the $Pr(\mathbb{R})$ -valued process of empirical distributions $\{\mu^{(n)}\}_{n\geq 1}$, defined by $\mu^{(n)} := \{\mu_t^{(n)}\}_{t\geq 0}$, with

$$\mu_t^{(n)} := \frac{1}{n} \sum_{j=1}^n \delta_{\lambda_j^{(n)}(t)}, \quad t \ge 0.$$

Let $d \ge 1$ and T > 0 be fixed. Consider a *d*-dimensional continuous centered Gaussian process $V = \{(V_t^1, \ldots, V_t^d)\}_{t \in [0, T]}$, defined in a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

(日) (周) (三) (三)

Let $d \ge 1$ and T > 0 be fixed. Consider a *d*-dimensional continuous centered Gaussian process $V = \{(V_t^1, \ldots, V_t^d)\}_{t \in [0, T]}$, defined in a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. We will assume that

$$\mathbb{E}\left[V_s^i V_t^j\right] = \delta_{i,j} R(s,t).$$

イロト イヨト イヨト イヨト

Let $d \ge 1$ and T > 0 be fixed. Consider a *d*-dimensional continuous centered Gaussian process $V = \{(V_t^1, \ldots, V_t^d)\}_{t \in [0, T]}$, defined in a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. We will assume that

$$\mathbb{E}\left[V_{s}^{i}V_{t}^{j}\right]=\delta_{i,j}R(s,t).$$

Denote by \mathscr{E} the space of step functions on [0, T]. We define in \mathscr{E} the scalar product

$$\left\langle \mathbbm{1}_{[0,s]}, \mathbbm{1}_{[0,t]}
ight
angle_{\mathfrak{H}} \coloneqq \mathbbm{E}\left[V^1_s V^1_t
ight], \quad ext{for} \quad s,t \in [0,\,T].$$

(日) (周) (三) (三)

Let $d \ge 1$ and T > 0 be fixed. Consider a *d*-dimensional continuous centered Gaussian process $V = \{(V_t^1, \ldots, V_t^d)\}_{t \in [0, T]}$, defined in a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. We will assume that

$$\mathbb{E}\left[V_{s}^{i}V_{t}^{j}\right]=\delta_{i,j}R(s,t).$$

Denote by \mathscr{E} the space of step functions on [0, T]. We define in \mathscr{E} the scalar product

$$ig\langle \mathbbm{1}_{[0,s]}, \mathbbm{1}_{[0,t]}ig
angle_{\mathfrak{H}} \coloneqq \mathbb{E}\left[V^1_{s}V^1_{t}
ight], \quad ext{for} \quad s,t\in[0,T].$$

Let \mathfrak{H} be the Hilbert space obtained by taking the completion of \mathscr{E} with respect to this product.

イロト 不得 トイヨト イヨト 二日

Smooth random variables

For every $1 \leq i \leq n$, the mapping $\mathbb{1}_{[0,t]} \mapsto V^i(\mathbb{1}_{[0,t]}) := V_t^i$ can be extended to linear isometry, which we denote by $V^i(h)$, for $h \in \mathfrak{H}$.

3

(日) (周) (三) (三)

Smooth random variables

For every $1 \leq i \leq n$, the mapping $\mathbb{1}_{[0,t]} \mapsto V^i(\mathbb{1}_{[0,t]}) := V^i_t$ can be extended to linear isometry, which we denote by $V^i(h)$, for $h \in \mathfrak{H}$. If $f \in \mathfrak{H}^d$ is of the form $f = (f_1, \ldots, f_d)$, we set

$$V(f) := \sum_{i=1}^d V^i(f_i)$$

イロト 不得下 イヨト イヨト 二日

Smooth random variables

For every $1 \leq i \leq n$, the mapping $\mathbb{1}_{[0,t]} \mapsto V^i(\mathbb{1}_{[0,t]}) := V^i_t$ can be extended to linear isometry, which we denote by $V^i(h)$, for $h \in \mathfrak{H}$. If $f \in \mathfrak{H}^d$ is of the form $f = (f_1, \ldots, f_d)$, we set

$$V(f) := \sum_{i=1}^d V^i(f_i).$$

Let ${\mathscr S}$ denote the set of random variables of the form

$$F = g(V(h_1), \ldots, V(h_m)),$$

where $g : \mathbb{R}^m \to \mathbb{R}$ is $\mathcal{C}^{\infty}(\mathbb{R})$, and $h_j \in \mathscr{E}^d$.

The Malliavin derivative

The Malliavin derivative of F with respect to V, is the element of $L^2(\Omega; \mathfrak{H}^d)$, defined by

$$DF = \sum_{i=1}^{m} \frac{\partial g}{\partial x_i}(V(h_1), \dots, V(h_m))h_i.$$

3

(日) (同) (三) (三)

The Malliavin derivative

The Malliavin derivative of F with respect to V, is the element of $L^2(\Omega; \mathfrak{H}^d)$, defined by

$$DF = \sum_{i=1}^{m} \frac{\partial g}{\partial x_i} (V(h_1), \dots, V(h_m))h_i.$$

For $p \ge 1$, the set $\mathbb{D}^{1,p}$ denotes the closure of \mathscr{S} with respect to the norm $\|\cdot\|_{\mathbb{D}^{1,p}}$, defined by

$$\left\|F\right\|_{\mathbb{D}^{1,p}} := \left(\mathbb{E}\left[|F|^{p}\right] + \mathbb{E}\left[\left\|DF\right\|_{\mathfrak{H}^{d}}^{p}\right]\right)^{\frac{1}{p}}.$$

The operator D can be consistently extended to the set $\mathbb{D}^{1,p}$.

イロト 不得下 イヨト イヨト 二日

We denote by δ the adjoint of the operator D, also called the divergence operator.

3

(日) (同) (三) (三)

We denote by δ the adjoint of the operator D, also called the divergence operator. A random element $u \in L^2(\Omega; \mathfrak{H}^d)$ belongs to the domain of δ , denoted by $\text{Dom } \delta$, if and only if satisfies

$$\left|\mathbb{E}\left[\langle DF, u\rangle_{\mathfrak{H}^d}\right]\right| \leq C_u \mathbb{E}\left[F^2\right]^{\frac{1}{2}}, \ \text{ for every } F \in \mathbb{D}^{1,2},$$

where C_u is a constant only depending on u.

We denote by δ the adjoint of the operator D, also called the divergence operator. A random element $u \in L^2(\Omega; \mathfrak{H}^d)$ belongs to the domain of δ , denoted by $\text{Dom } \delta$, if and only if satisfies

$$\left|\mathbb{E}\left[\left\langle DF,u
ight
angle_{\mathfrak{H}^{d}}
ight]
ight|\leq C_{u}\mathbb{E}\left[F^{2}
ight]^{rac{1}{2}}, ext{ for every }F\in\mathbb{D}^{1,2},$$

where C_u is a constant only depending on u. If $u \in \text{Dom } \delta$, then the random variable $\delta(u)$ is defined by the duality relationship

$$\mathbb{E}\left[F\delta(u)\right] = \mathbb{E}\left[\langle DF, u \rangle_{\mathfrak{H}^d}\right].$$

We denote by δ the adjoint of the operator D, also called the divergence operator. A random element $u \in L^2(\Omega; \mathfrak{H}^d)$ belongs to the domain of δ , denoted by $\text{Dom } \delta$, if and only if satisfies

$$\left|\mathbb{E}\left[\left\langle DF,u
ight
angle_{\mathfrak{H}^d}
ight]
ight|\leq C_u\mathbb{E}\left[F^2
ight]^{rac{1}{2}}, ext{ for every }F\in\mathbb{D}^{1,2},$$

where C_u is a constant only depending on u. If $u \in \text{Dom } \delta$, then the random variable $\delta(u)$ is defined by the duality relationship

$$\mathbb{E}\left[F\delta(u)\right] = \mathbb{E}\left[\langle DF, u \rangle_{\mathfrak{H}^d}\right].$$

We will make use of the notation

$$\sum_{i=1}^d \int_0^t u_s^i \delta V_s^i := \delta(u \mathbb{1}_{[0,t]}).$$

Some technical issues associated to δ

When V is a d-dimensional Brownian motion and \$\vec{N} = L^2[0, T]\$, the Skorohod integral is an extension of the Itô integral.

< ロ > < 同 > < 三 > < 三

Some technical issues associated to δ

- When V is a d-dimensional Brownian motion and \$\vec{y} = L^2[0, T]\$, the Skorohod integral is an extension of the Itô integral.
- 2 Can we interpret $\sum_{i=1}^{d} \int_{0}^{t} u_{s}^{i} \delta V_{s}^{i}$ as the stochastic integral of u?

Some technical issues associated to δ

- When V is a d-dimensional Brownian motion and \$\vec{N} = L^2[0, T]\$, the Skorohod integral is an extension of the Itô integral.
- 2 Can we interpret $\sum_{i=1}^{d} \int_{0}^{t} u_{s}^{i} \delta V_{s}^{i}$ as the stochastic integral of u?
- (a) In the case where V is a fractional Brownian motion with Hurst parameter $0 < H < \frac{1}{4}$, with covariance function

$$R(s,t) = \frac{1}{2}(t^{2H} + s^{2H} - |t-s|^{2H}),$$

the trajectories of V do not belong to the space \mathfrak{H} , and hence, do not belong to the domain of δ .

Extending the pairing $\langle \cdot, \cdot \rangle_{\mathfrak{H}}$

To extend the domain of δ , we impose the following condition

3

(日) (同) (三) (三)

Elements of Malliavin calculus

Extending the pairing $\langle \cdot, \cdot \rangle_{\mathfrak{H}}$

(

To extend the domain of δ , we impose the following condition **(H1)** There exists $\alpha > 1$, such that for all $t \in [0, T]$, $s \mapsto R(s, t)$ is absolutely continuous on [0, T], and

$$\sup_{0\leq t\leq T}\int_0^T \left|\frac{\partial R}{\partial s}(s,t)\right|^{\alpha}ds<\infty.$$

(日) (周) (三) (三)

Elements of Malliavin calculus

Extending the pairing $\langle \cdot, \cdot \rangle_{\mathfrak{H}}$

To extend the domain of δ , we impose the following condition **(H1)** There exists $\alpha > 1$, such that for all $t \in [0, T]$, $s \mapsto R(s, t)$ is absolutely continuous on [0, T], and

$$\sup_{|\leq t\leq T}\int_0^T \left|\frac{\partial R}{\partial s}(s,t)\right|^{\alpha}ds<\infty.$$

Let β be the conjugate of α , defined by $\beta := \frac{\alpha}{\alpha - 1}$.

C

イロト イヨト イヨト

Elements of Malliavin calculus

Extending the pairing $\langle \cdot, \cdot \rangle_{\mathfrak{H}}$

(

To extend the domain of δ , we impose the following condition **(H1)** There exists $\alpha > 1$, such that for all $t \in [0, T]$, $s \mapsto R(s, t)$ is absolutely continuous on [0, T], and

$$\sup_{0\leq t\leq T}\int_0^T \left|\frac{\partial R}{\partial s}(s,t)\right|^{\alpha}ds<\infty.$$

Let β be the conjugate of α , defined by $\beta := \frac{\alpha}{\alpha-1}$. For any pair of functions $\varphi \in L^{\beta}[0, T]$ and $\psi \in \mathscr{E}$ of the form $\psi = \sum_{j=1}^{m} c_{j} \mathbb{1}_{[0, t_{j}]}$, we define

$$\langle \psi, \varphi \rangle_{\mathfrak{H}} := \sum_{j=1}^{m} c_j \int_0^T \varphi(s) \frac{\partial R}{\partial s}(s, t_j) ds.$$
 (1)

イロト 不得下 イヨト イヨト 二日

Extended domain of divergence

We define the extended domain of the divergence in the following manner

< ロ > < 同 > < 三 > < 三

Extended domain of divergence

We define the extended domain of the divergence in the following manner Definition

We say that a stochastic process $u \in L^1(\Omega; L^\beta[0, T])$ belongs to the extended domain of the divergence $Dom^*\delta$ if there exists p > 1, such that

$$\left|\mathbb{E}\left[\left\langle DF,u\right\rangle_{\mathfrak{H}^{d}}\right]\right|\leq C_{u}\left\|F\right\|_{p},$$

for any smooth random variable $F \in \mathscr{S}$, where C_u is some constant depending on u.

Extended domain of divergence

We define the extended domain of the divergence in the following manner Definition

We say that a stochastic process $u \in L^1(\Omega; L^\beta[0, T])$ belongs to the extended domain of the divergence $Dom^*\delta$ if there exists p > 1, such that

$$\left|\mathbb{E}\left[\left\langle DF,u\right\rangle_{\mathfrak{H}^{d}}\right]\right|\leq C_{u}\left\|F\right\|_{p},$$

for any smooth random variable $F \in \mathscr{S}$, where C_u is some constant depending on u. In this case, $\delta(u)$ is defined by the duality relationship

$$\mathbb{E}\left[F\delta(u)\right] = \mathbb{E}\left[\langle DF, u \rangle_{\mathfrak{H}^d}\right].$$

A (10) A (10) A (10)

Theorem (Itô-type formula, conditions)

Assume that R satisfies (H1). Consider a function $F : \mathbb{R}^d \to \mathbb{R}$ such that:

3

(日) (同) (三) (三)

Theorem (Itô-type formula, conditions)

Assume that R satisfies (H1). Consider a function $F : \mathbb{R}^d \to \mathbb{R}$ such that:

Is twice continuously differentiable.

3

(日) (同) (三) (三)

Theorem (Itô-type formula, conditions)

Assume that R satisfies (H1). Consider a function $F : \mathbb{R}^d \to \mathbb{R}$ such that:

• *F* is twice continuously differentiable.

There exist constants C > 0 and M > 0, such that

$$|F(x)| + \left|\frac{\partial F}{\partial x_i}(x)\right| \le C(1+|x|^M), \quad \text{for } i=1,\ldots,d.$$
 (2)

3

→ Ξ →

Image: A math a math

Theorem (Itô-type formula, conditions)

Assume that R satisfies (H1). Consider a function $F : \mathbb{R}^d \to \mathbb{R}$ such that:

• F is twice continuously differentiable.

There exist constants C > 0 and M > 0, such that

$$|F(x)| + \left|\frac{\partial F}{\partial x_i}(x)\right| \le C(1+|x|^M), \quad \text{for } i=1,\ldots,d.$$
 (2)

3 There exists $0 < \delta < 1$, such that for every $p \ge 1$, and s > 0,

$$\mathbb{E}\left[\left|\frac{\partial^2 F}{\partial x_i^2}(V_s)\right|^p\right] \le C(1+R(s,s)^{-p(1-\delta)}), \quad \text{for} \quad i=1,\ldots,d. \tag{3}$$

3

(日) (同) (三) (三)

Theorem (Itô-type formula)

Then, the process $u_s = (u_s^1, \ldots, u_s^d)$, defined by $u'_s := \frac{\partial F}{\partial x_l}(V_s) \mathbb{1}_{[0,t]}(s)$, belongs to $Dom^*\delta$, and

$$F(V_t) = F(0) + \sum_{i=1}^d \int_0^t \frac{\partial F}{\partial x_i} (V_s) \delta V_s^i + \frac{1}{2} \sum_{i=1}^d \int_0^t \frac{\partial^2 F}{\partial x_i^2} (V_s) \frac{dR(s,s)}{ds} ds,$$
(4)
for every $t \in [0, T]$.

- 32

(日) (周) (三) (三)

Back to our problem

Recall that

$$X^{(n)}(t) := A^{(n)} + Y^{(n)}(t),$$

and

$$\mu_t^{(n)} := \frac{1}{n} \sum_{j=1}^n \delta_{\lambda_j^{(n)}(t)}, \quad t \ge 0.$$

For an element f in the space of continuously differentiable functions in \mathbb{R} , denoted by $\mathcal{C}_b^2(\mathbb{R})$, define

$$\langle \mu, f \rangle := \int f(x) \mu(dx).$$

3

(日) (同) (三) (三)

Eigenvalues of a matrix

Lemma

For every i = 1, ..., n, there exists a function $\Phi_i^n : \mathbb{R}^{\frac{n(n+1)}{2}} \to \mathbb{R}$, which is infinitely differentiable in an open subset $G \subset \mathbb{R}^{\frac{n(n+1)}{2}}$, with $|G^c| = 0$, such that $\lambda_i^{(n)}(t) = \Phi_i^n(Z^{(n)}(t))$.

Eigenvalues of a matrix

Lemma

For every i = 1, ..., n, there exists a function $\Phi_i^n : \mathbb{R}^{\frac{n(n+1)}{2}} \to \mathbb{R}$, which is infinitely differentiable in an open subset $G \subset \mathbb{R}^{\frac{n(n+1)}{2}}$, with $|G^c| = 0$, such that $\lambda_i^{(n)}(t) = \Phi_i^n(Z^{(n)}(t))$.

Moreover, every element $X \in G$, viewed as an $n \times n$ matrix, has a factorization of the form $X = UDU^*$, where D is a diagonal matrix with entries $D_{i,i} = \lambda_i^n$ such that $\lambda_1^n > \cdots > \lambda_n^n$, U^n is an orthogonal matrix with $U_{i,i}^n > 0$ for all i, $U_{i,j}^n \neq 0$, all the minors of U^n have non zero determinants.

イロト 不得下 イヨト イヨト 二日

Some properties of Φ_i

Lemma

If U and Φ_i are as before, then for any $k \leq h$, we have

$$\frac{\partial \Phi_{i}^{n}}{\partial y_{k,h}} = 2U_{i,k}^{n}U_{i,h}^{n}\mathbb{1}_{\{k\neq h\}} + \sqrt{2}(U_{i,k}^{n})^{2}\mathbb{1}_{\{k=h\}},$$

$$\frac{\partial^{2}\Phi_{i}^{n}}{\partial y_{k,h}^{2}} = 2\sum_{j\neq i} \frac{\left|U_{i,k}^{n}U_{j,h}^{n} + U_{i,h}^{n}U_{j,k}^{n}\right|^{2}}{\lambda_{i}^{n} - \lambda_{j}^{n}}\mathbb{1}_{\{k\neq h\}} + 4\sum_{j\neq i} \frac{\left|U_{i,k}^{n}U_{j,k}^{n}\right|^{2}}{\lambda_{i}^{n} - \lambda_{j}^{n}}\mathbb{1}_{\{k=h\}}.$$
(5)

3

(日) (同) (三) (三)

Stochastic evolution of $\mu^{(n)}$

Lemma

Assume that $t \mapsto R(t, t)$ is continuously differentiable. Then we have the following evolution in time for $\langle \mu_t^{(n)}, f \rangle$, for $f \in C_b^2(\mathbb{R})$ and $t \ge 0$

$$\langle \mu_t^{(n)}, f \rangle = \langle \mu_0^{(n)}, f \rangle$$

$$+ \frac{1}{n^{\frac{3}{2}}} \sum_{i=1}^n \sum_{k \le h} \int_0^t f'(\Phi_i^n(X^{(n)}(s))) \frac{\partial \Phi_i^n}{\partial y_{k,l}} (X^{(n)}(s)) \delta X_{k,h}(s)$$

$$+ \frac{1}{2} \int_0^t \int_{\mathbb{R}^2} \frac{f'(x) - f'(y)}{x - y} \frac{d}{ds} R(s, s) \mu_s^{(n)}(dx) \mu_s^{(n)}(dy) ds$$

$$+ \frac{1}{2n^2} \sum_{i=1}^n \int_0^t f''(\Phi_i^n(X^{(n)}(s))) \frac{d}{ds} R(s, s) ds.$$

$$(7)$$

Image: A matrix and a matrix

Tightness of $\mu^{(n)}$

Proposition

Assume that R(s, t) satisfies the condition (H2) There exist constants $\kappa, \gamma > 0$, such that for every s, t > 0,

$$R(s,s)-2R(s,t)+R(t,t)\leq \kappa \, |t-s|^\gamma$$
 .

Furthermore, assume that with probability one, the sequence of measures $\mu_0^{(n)}$ converges weakly to some measure ν . Then, almost surely, the family of measures $\{\mu^{(n)}\}_{n\geq 1}$ is tight in the space $C(\mathbb{R}_+, Pr(\mathbb{R}))$.

・ 何 ト ・ ヨ ト ・ ヨ ト

Tightness of $\mu^{(n)}$

Proof.

It suffices to show that for every $f \in C^1(\mathbb{R})$, the process $\{\langle \mu_t^{(n)}, f \rangle \mid n \geq 1, t \geq 0\}$ is tight. Since $\mu_0^{(n)}$ converges weakly, by the Billingsley criterion, it suffices to show that there exist constants C, p, q > 0, independent of n, such that for every $0 \leq t_1 \leq t_2$,

$$\mathbb{E}\left[\left|\langle \mu_{t_1}^{(n)}, f\rangle - \langle \mu_{t_2}^{(n)}, f\rangle\right|^p\right] \le C \left|t_2 - t_1\right|^q.$$
(8)

The left hand side can be estimated by using the inequality

$$egin{aligned} &\left(rac{1}{n}\sum_{i=1}^n |\lambda_i(t)-\lambda_j(s)|
ight)^2 \leq rac{1}{n}\sum_{i=1}^n \left(\lambda_i(t)-\lambda_j(s)
ight)^2 \ &\leq rac{1}{n}tr\left[\left(rac{1}{\sqrt{n}}(B_{i,j}(t)-B_{i,j}(s))
ight)^2
ight] \end{aligned}$$

Weak convergence of $\mu^{(n)}$

By the previous result $\mu^{(n)}$ has a subsequence $\mu^{(n_r)}$ converging in law to some random process μ . In addition, we have

Proposition

For every t > 0 fixed, the random variable

$$G_{r} := \frac{1}{n_{r}^{\frac{3}{2}}} \sum_{i=1}^{n_{r}} \sum_{k \le h} \int_{0}^{t} f'(\Phi_{i}^{n_{r}}(X^{(n_{r})}(s))) \frac{\partial \Phi_{i}^{n_{r}}}{\partial y_{k,l}}(X^{(n_{r})}(s)) \delta X_{k,h}(s), \qquad (9)$$

converges to zero in $L^2(\Omega)$.

Weak convergence of $\mu^{(n)}$

Proof.

From the evolution equation for $\mu^{(n)}$, we have that

$$G_{r} = \left\langle \mu_{t}^{(n_{r})}, f \right\rangle - \left\langle \mu_{0}^{(n_{r})}, f \right\rangle - \frac{1}{2} \int_{0}^{t} \int_{\mathbb{R}^{2}} \frac{f'(x) - f'(y)}{x - y} \frac{d}{ds} R(s, s) \mu_{s}^{(n_{r})}(dx) \mu_{s}^{(n_{r})}(dy) ds - \frac{1}{2n_{r}^{2}} \sum_{i=1}^{n_{r}} \int_{0}^{t} f''(\Phi_{i}^{n}(X^{(n_{r})}(s))) \frac{d}{ds} R(s, s) ds,$$
(10)

So we can make estimations of the variance of G_r by using the duality relation of δ and the fact that

$$\mathbb{E}\left[G_{r}^{2}
ight] = \mathbb{E}\left[\delta(\text{equation 9}) \times (\text{equation 10})
ight]$$

Weak convergence of $\mu^{(n)}$

Using once more the evolution equation for μ , as well as the convergence of $\mu^{(n_r)}$ and the previous proposition, we get

$$\langle \mu_t, f \rangle = \langle \nu, f \rangle + \frac{1}{2} \int_0^t \int_{\mathbb{R}^2} \frac{f'(x) - f'(y)}{x - y} \frac{d}{ds} R(s, s) \mu_s(dx) \mu_s(dy) ds.$$
(11)

Using $f_z(x) = \frac{1}{x-z}$, $z \in \mathbb{Q}^2 \cap \mathbb{C}^+$, and a continuity argument, we get that the Cauchy-Stieltjes transforms $G_t(z) := \int \frac{1}{x-z} \mu_t(dx)$, satisfy

$$\begin{split} G_t(z) &= \int_{\mathbb{R}} \frac{1}{x-z} \mu_0(dz) + \int_0^t \int_{\mathbb{R}^2} \frac{1}{(x-z)(y-z)^2} \frac{d}{ds} R(s,s) \mu_s(dx) \mu_s(dy) \\ &= G_0(z) + \int_0^t \frac{d}{ds} R(s,s) G_s(z) \frac{\partial}{\partial z} G_s(z) ds. \end{split}$$

Main result

Theorem

 $\mu^{(n)}$ converges weakly in $C(\mathbb{R}_+, Pr(\mathbb{R}))$ to μ , where μ satisfies

$$\langle \mu_t, f \rangle = \langle \nu, f \rangle + \frac{1}{2} \int_0^t \int_{\mathbb{R}^2} \frac{f'(x) - f'(y)}{x - y} \frac{d}{ds} R(s, s) \mu_s(dx) \mu_s(dy) ds, \quad (12)$$

for each $t \ge 0$ and $f \in C_b^2$. Moreover, the Cauchy transforms $G_t(z) := \int_{\mathbb{R}} \frac{1}{x-z} \mu_t(dz)$, satisfy $G_t(z) = F_{R(t,t)}(z)$, where $F_{\tau}(z)$ is the unique solution to the Burguers equation

$$\frac{\partial}{\partial \tau} F_{\tau}(z) = F_{\tau}(z) \frac{\partial}{\partial z} F_{\tau}(z),$$

$$F_{0}(z) = \int_{\mathbb{R}} \frac{1}{x - z} \nu(dx).$$
(13)

3

イロト イヨト イヨト イヨト

Thanks!

3

・ロト ・聞ト ・ヨト ・ヨト