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Objective

Let {Xt}t≥0 be a fractional Brownian motion of Hurst parameter
H ∈ (0, 1).

Namely, X is a centered Gaussian process with

E[XsXt ] = 1
2 (t2H + s2H − |s − t|2H).

X es self-similar: {Xs ; s ≥ 0} Ley= {c−HXcs ; s ≥ 0} for every c > 0.

Our starting point is the ergodic average

{
∫ nt

0
f (Xs)ds ; t ≥ 0} Law= {

∫ nt

0
f (nHX s

n
)ds ; t ≥ 0}

= {n
∫ t

0
f (nHXs)ds ; t ≥ 0},

where f is a test function.
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Objective

This statistic is a particular instance of the family of processes

{G (n)
t ; t ≥ 0} := {bn

∫ t

0
f (nH(Xs − λ))ds, ; t ≥ 0}, (1)

where bn > 0, f : R→ R is a test function and λ ∈ R.

Specific objective: Study the first and second order fluctuations for
such processes.

Later... The variables G (n)
t are closely related to the local time of X at

the level λ.

Fluctuations ←→
{

Derivatives of the local time of X
Mixed Gaussian limits.
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Preliminaries: local times

The local time of X at the level λ ∈ R is heuristically defined as
Lt(λ) :=

∫ t
0 δ0(Xs − λ)ds.

Rigurously,

Lt(λ) := lim
ε→0

∫ t

0
φε(Xs − λ)ds,

where the convergence holds in L2(Ω) and φε and

φε(x) := (2πε)− 1
2 exp{− 1

2ε |x |
2}
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Historical context (first order approximations)

A mollification procedure allow us to show

n−H
∫ t

0
f (nH(Xs − λ))ds

= n−H
∫
R

∫ t

0
δ0(Xs − y)f (nH(y − λ))dsdy

=
∫
R

∫ t

0
δ0(Xs − λ− n−Hy)f (y)dsdy

L2(Ω)−→ Lt(λ)
∫
R

f (y)dy . (2)

Observation: Relation (2) implies a trivial condition when∫
R f (x)dx = 0.
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Historical context (second order approximations)

A refinement of the previous result was proved by Papanicolau, Stroock y
Varadhan (H = 1

2 )

and generalized by Nualart, Hu y Xu, who showed that
1/3 < H < 1,

∫
R |f (y)||y | 1

H−1dy <∞ and
∫
R f (x)dx = 0, then if λ = 0,

n
H+1

2

∫ t

0
f (nH(Xs − λ))ds Law−→

√
b WLt (λ), (3)

where b > 0, W is a fractional Brownian motion independent of X and
the convergence holds in the uniform topology over compact sets.

Questions

- ¿What happens in the case H ≤ 1
3 ?

- ¿Can we say something about the non-zero energy case
(
∫
R f (y)dy 6= 0)?
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Handling the “rough case”, when H is small.

The main ingredient for handling the case H < 1
3 is the spatial

derivative of the local time.

Lemma

Suppose 0 < H < 1
3 . Then, for every t ≥ 0 and λ ∈ R, the variables

L(′)
t,ε(λ) =

∫ t

0
δ′0(Xs − λ)ds :=

∫ t

0
φ′ε(Xs − λ)ds, ε > 0, (4)

converge in L2(Ω) towards a limit L′t(λ), when ε→ 0 .
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Main result I

Theorem (Jaramillo, Nourdin, Nualart, Peccati)
Suppose that H < 1/3 and g : R→ R satisfies

∫
R |f (y)|(1 + |y |1+v )dy

for some v > 0.

Then,

nH
(∫ t

0
f (nH(Xs − λ))ds − n−HLt(λ)

∫
R

f (y)dy
)

L2(Ω)→ −
(∫

R
yf (y)dy

)
L′t(λ).
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Justification of the main result I

Recall that Lt(λ) =
∫ t

0 δ0(Xs − λ)ds y L′t(λ) =
∫ t

0 δ
′
0(Xs − λ)ds.

Then

2πLt(λ) =
∫
R

∫ t

0
e iξ(Xs−λ)dsdξ,

2πL′t(λ) =
∫
R

∫ t

0
iξe iξ(Xs−λ)dsdξ.

On the other hand,

n2H
∫ t

0
f (nH(Xs − λ))ds = nH

2π

∫
R2

∫ t

0
e iξ(Xs−λ− y

nH )f (y)dsdydξ.
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Justification of the main result I

From here it follows that

n2H
∫ t

0
f (nH(Xs − λ))ds − nH

∫
R

f (y)dyLt(λ)

= − 1
2π

∫
R2

∫ t

0
iξe iξ(Xs−λ)yf (y)dsdydξ

+ nH

2π

∫
R2

∫ t

0
e iξ(Xs−λ)(i y

nH + e−i yξ

nH − 1)f (y)dsdydξ.
(5)

The second term goes to zero and the first one is −
(∫

R yf (y)dy
)

L′t(λ).
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Main result II

Theorem (Jaramillo, Nourdin, Nualart, Peccati)
Define `n,H := 1{{H> 1

3}}
+ log(n)− 1

21{{H= 1
3}}

. Then, for H ≥ 1
3 and

f : R→ Rd of the form f = (f1 . . . , fd ) with fi : R→ R ’nice’,

there is a
non-negative definite CH [f ] ∈ Rd×d , such that

{n
H+1

2 `n,H

(∫ t

0
f (nH(Xs − λ))ds − n−HLt(λ)

∫
R

f (x)dx
)

; t ≥ 0}

f .d.d→ {CH [f ]W̃Lt (λ) ; t ≥ 0}, (6)

where W̃ = {W̃t ; t ≥ 0} is a d-dimensional Brownian motion
independent of X.
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Justification of main result II, Step 1

Inclusion in the Wiener space: We will use a representation of X as a
function of a Brownian motion W = {Wt ; t ≥ 0} via

Xt =
∫ t

0
KH(s, t)dWs ,

where KH : R× R is an explicit kernel.

Now we can use martingale
techniques.
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Justification of main result II, Step 2

Itô representation for the fluctuations: Malliavin calculus allows us to
express centered variables as stochastic integrals via the Clark-Ocone
formula.

n
H+1

2 `n,H

(∫ t

0
g(nH(Xs − λ))ds − n−HLt(λ)

∫
R

g(x)dx
)

=
∫ t

0
F (n)

t (s)dWs + µt ,

where F (n)
t (s) is explicit and µt denotes the expectation of the left-hand

side. One can show that µt does not contribute to the limit.
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Justification of main result II, Step 3

Application of Knight’s theorem:

Continuous martingales ←→ time changed Brownian motions

For analyzing
∫ t

0 F (n)
t (s)dWs , we compute the quadratic variation of

{Mu ; u ≤ t} = {
∫ u

0
F (n)

t (s)dWs ; u ≤ t}

Knight’s theorem guarantees the result when
(C1) For 0 ≤ u ≤ T , 〈M(n)〉u converges in probability and

〈M(n)〉T
P→ CH [f ]2Lt(λ).

(C2) For all u ∈ [0,T ],

〈M(n),W 〉u
P→ 0.
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Knight’s theorem guarantees the result when
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and
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P→ CH [f ]2Lt(λ).

(C2) For all u ∈ [0,T ],
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P→ 0.
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Justification of main result II, main ingredients

For proving (C1) and (C2) we need

- Fourier inversion ofrmula and representation of local times.
- Clark-Ocone formula.
- Local non-determinism for the fractional Brownian motion (namely,

estimations of Var[Xr | Xr1 , . . . ,Xrk ]).
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¡Gracias!
Arigato gozaimasu!
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