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Introduction

Goal

If Y (n) = (Y (n)(t); t ≥ 0) are centered Gaussian, symmetric matrix-valued
processes of dimension n

and (µ(n)
t ; n ≥ 1) is the measure that assigns

mass 1
n to each eigenvalue of Y (n)(t).

Goal

For r ∈ N fixed and a given F : R→ Rr , what can we say about(∫
R

F (x)µ(n)
t (dx)− E

[∫
R

F (x)µ(n)
t (dx)

]
; t ≥ 0

)
?

My true intentions
Get you to solve some open problems.
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Introduction

Notation

Let Y (n) = (Y (n)(t); t ≥ 0) be a sequence of Rn×n-valued processes.

Assume that Y (n)(t) = [Y (n)
i ,j (t)]1≤i ,j≤n is real and symmetric, with

Y (n)
i ,j (t) =


1√
n Xi ,j(t) if i < j ,
√

2√
n Xi ,i (t) if i = j ,

(1)

where Xi ,j := (Xi ,j(t); t ≥ 0) are i.i.d. centered Gaussian with

R(s, t) := E[X1,1(s)X1,1(t)].
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Introduction

Notation

We will use the notation

σs :=
√

R(s, s) y ρs,t := R(s, t)
σsσt

,

Assume σ1 = 1 and for all T > 0 fixed...
(H1) There exists α > 1, such that

sup
0≤t≤T

∫ T

0

∣∣∣∣∂R
∂s (s, t)

∣∣∣∣α ds <∞.

(H2) The mapping s 7→ σ2
s is smooth in (0,∞) and continuous at zero.
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Introduction

Notation

Examples:
Brownian motion.

Fractional Brownian motion with Hurst parameter H ∈ (0, 1).
Ornestein-Uhlenbeck process.
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Introduction

Notation

We will denote by λ(n)
1 (t) ≥ · · · ≥ λ(n)

n (t) the ordered eigenvalues of
Y (n)(t) and by µ(n)

t the spectral empirical distribution

µ
(n)
t (dx) = 1

n

n∑
i=1

δ
λ

(n)
i (t)(dx).
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Introduction

Wigner theorem

Wigner theorem establishes that for all ε > 0 and a test function f ,

ĺım
n→∞

P
[∣∣∣∣∫

R
f (x)µ(n)

1 (dx)−
∫
R

f (x)µsc
1 (dx)

∣∣∣∣ > ε

]
= 0, (2)

where µsc
σ , for σ > 0, denotes the rescaled semicircle distribution

µsc
σ (dx) :=

1[−2σ,2σ](x)
2πσ2

√
4σ2 − x2dx .
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Introduction

Functional Wigner theorem

Many authors (Rogers, Shi, Cépa, Lepingale and Pérez-Abreu) have
studied dynamical versions of Wigner’s theorem

Theorem (Jaramillo, Pardo and Pérez)
Denote by C(R+, Pr(R)) the continuous functions with values in
probability measures. If µ(n)

0 converges in law to ν, then the random
process µ(n)

t converges functionally to a constant process µt , such that∫
R

f (x)µt(dx) =
∫
R

f (x)ν(dx)

+ 1
2

∫ t

0

∫
R2

f ′(x)− f ′(y)
x − y

d
ds (R(s, s))µs(dx)µs(dy)ds,
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Introduction

Fluctuations of Wigner’s theorem

The fluctuatinos are known to satisfy

Theorem (Lytova and Pastur)
If we fix a test function f ,

n
∫
R

f (x)µ(n)
1 (dx)− nE

[ ∫
R

f (x)µ(n)
1 (dx)

]
d→ N (0, σ2

f ), (3)

where

σ2
f := 1

4

∫
R2

( f (x)− f (y)
x − y

)2 4− xy
(4− x2)(4− y2)µ

sc
1 (dx)µsc

1 (dy).
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Introduction

Functional fluctuations of Wigner’s theorem

There are some results on the functional fluctuations of Wigner’s theorem
in the following particular cases:

The entries Xi ,j are Ornstein-Uhlenbeck processes. This problem was
studied by Israelson, Bender and Unterberger. We know that the limit
is Gaussian and the limiting covariance function can be explicitly
described.

The entries Xi ,j are complex Brownian motions and f : R→ R is a
polynomial. This problem has been studied by Pérez-Abreu and
Tudor. It is known that the limit is Gaussian, but the covariance of
the limit hasn’t been described in an explicit way.
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Introduction

Dynamical fluctuations (notation)

For a test function F = (f1, . . . , fr ) ∈ P r and z ∈ (0, 1), define the
processes

Z (n)
F (t) := n

∫
R

F (x)µ(n)
t (dx)− nE

[∫
R

F (x)µ(n)
t (dx)

]
,

and the kernel

Kz(x , y) := 1− z2

z2(x − y)2 − xyz(1− z)2 + (1− z2)2 .
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Introduction

Dynamical fluctuations (variance)

Theorem (D́ıaz, Jaramillo, Pardo, Pérez)

For all f , g ∈ P,

ĺım
n→∞

Cov
[
Z (n)

f (s),Z (n)
g (t)

]
= 2

∫
R2

f ′(x)g ′(y)νρs,t
σs ,σt (dx , dy),

where

νρs,t
σs ,σt (A,B) =

∫ 1

0

∫
A×B

Kzρs,t (x/σs , y/σt)µsc
σs (dx)µsc

σt (dy)dz .
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Introduction

Dynamical fluctuations (CLT)

Theorem (D́ıaz, Jaramillo, Pardo)

Let ΛF = ((Λf1(t), . . . ,Λfr (t)); t ≥ 0) be centered Gaussian, independent
of {Xi ,j ; j ≥ i ≥ 1}, with

E
[
Λfi (s)Λfj (t)

]
=
∫
R2

f ′i (x)f ′j (y)νρs,t
σs ,σt (dx ,dy).

Then,

(Z (n)
F (t) ; t ≥ 0) Stably−→ ΛF ,

uniformly over compact sets.

In addition, dTV (Z (n)
f (t),Λf (t)) ≤ C√

n .
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Introduction

Ingredient I: relations between D, δ y L

Mehler’s formula establishes that F ∈ L2(Ω) and ΨF is a measurable
mapping from RHd to R, such that F = ΨF (V ), then

PθF = Ẽ
[
ΨF (e−θV +

√
1− e−2θṼ )

]
,

where Ṽ is an independent copy of V and Ẽ.

Additionally,

LF = −δ(DF ),

and if F is centered,

−L−1F =
∫
R+

PθF dθ.
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Introduction

Simple application for computation of covariance

See the board, keeping in mind that if (θ, β)→ A(θ, β) is a n-symmetric
matrix,

Lemma (Hadamard variational formulas)

∂λi
∂θ

= U∗i
∂A
∂θ

Ui ,

∂2λi
∂θ∂β

(θ, β) = U∗i
∂2A
∂θ∂β

Ui

+ 2
n∑

j=1
1{j 6=i}

1
λi − λj

(
U∗j

∂A
∂β

Ui
)(

U∗i
∂A
∂θ

Uj
)
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Introduction

CLT via Malliavin calculus

Theorem (Nourdin, Peccati and Réveillac)

Consider centered smooth random vectors Zn = (Z1,n, . . . ,Zr ,n). Let C be
a covariance such that:

(i) E [Zi ,nZj,n]→ C(i , j);

(ii) supn≥1 E
[
‖DZi ,n‖4

H

]
<∞;

(iii) E
[∥∥D2Zi ,n ⊗1 D2Zi ,n

∥∥2
(Hd )⊗2

]
→ 0 when n→∞.

Then Zn
Law→ N (0,C) and

dTV (Z1,n,N (0,C1,1)) ≤ CE
[∥∥∥D2Zi ,n ⊗1 D2Zi ,n

∥∥∥2

(Hd )⊗2

] 1
4
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Introduction

Some interesting open problems:

Good news

Very long, but completely tractable computations, allow us to handle
(ii) supn≥1 E

[
‖DZi ,n‖4

H

]
<∞;

(iii) E
[∥∥D2Zi ,n ⊗1 D2Zi ,n

∥∥2
(Hd )⊗2

]
→ 0 when n→∞.

for matrices with dependent entries for many ensambles!

Example: entries
coming from a fractional Brownian sheet, Wishart shapes, symplectic,
Hermitian.

Bad news
E [Zi ,nZj,n] has not well understood yet.

Good news
Asymptotic covariances seems a tractable problem.
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Introduction

Second interesting problem:

Tecall that Y (n)(t) = [Y (n)
i ,j (t)]1≤i ,j≤n, with

Y (n)
i ,j (t) =


1√
n Xi ,j(t) if i < j ,
√

2√
n Xi ,i (t) if i = j ,

(4)

Why?

- Alternative I: Ỹ (n)(t) = [Y (tn)
i ,j (1)]1≤i ,j≤n

- Alternative II: Ỹ (n)(t1, t2) = [Y (t2n)
i ,j (t1)]1≤i ,j≤n.
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Introduction

Third interesting problem:

Everything we have said, but for heavy tails.

There are several results by Guionnet, Ben Arous, et. al.
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Introduction

Fourth interesting problem:

Eigenvalue collision in fixed dimension.

Very well understood (see Yimin Xiao, Nualart, Jaramillo): There is
collision of eigenvalues for fBm’s if and only if H ≥ 1/2. But...

- In the critical regime H = 1/2, how much time you spend near
colliding? (comparison with Bessel processes)

- In the regime H < 1/2, how much time you spend colliding?
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Fifth interesting problem:

Wigner-type chaos for matrices of fixed dimension

Wigner chaos is surprisingly well studied (see Biane, Speicher, Kemp,
Nourdin, Peccati): We can make sense of IW

q (f ), for W a free Brownian
motion and IW n

q (f ), for W n a Dyson Brownian motion
- There is criteria for asymptotic freeness for IW n

q (f ).
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An interesting conversation with Ronan:

Interacting particle system point of view

Same questions by for interacting particle systems
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Proving tightness

The main observation is that the random variable
∫

f (x)µ(n)
t (dx) satisfies

the following stochastic equation∫
f (x)µ(n)

t (dx)

= f (0) + 1
n 3

2

n∑
i=1

∑
k≤h

∫ t

0
f ′(Φi (Y (n)(s))) ∂Φi

∂yk,l
(Y (n)(s))δXk,h(s)

+ 1
2

∫ t

0

∫
R2
1{x 6=y}

f ′(x)− f ′(y)
x − y µ(n)

s (dx)µn
s (dy)v ′sds

+ 1
2n2

n∑
i=1

∫ t

0
f ′′(Φi (Y (n)(s)))v ′sds,

where vs := σ2
s .
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