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Goal

Denote by P the set of prime numbers.

Let ω : N→ N ∪ {0} be the
function

ω(n) := |{p ∈ P; p divides n}|.

For example, ω(54) = ω(2× 32) = 2. Let Jn be a random variable with
uniform distribution over {1, . . . , n}.

Objectives

- Study the asymptotic law of ω(Jn), when n is large.
- Generalize to the case where ω is replaced by a general function
ψ : N→ R only satisfying ψ(ab) = ψ(a) + ψ(b) for a, b ∈ N coprime.
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Historical context



Classical Erdös-Kac theorem (1940)

Starting point: Paul Erdös and Mark Kac proved that

Zn := ω(Jn)− log log(n)√
log log(n)

(1)

converges towards a standard Gaussian random variable N .

Intuition: Define Pn := P ∩ [1, n]. The convergence in (1) can be
heuristically justified by the decomposition

ω(Jn) =
∑

p∈Pn

1{p divide Jn}. (2)
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Question

Can we estimate the approximating error of the Gaussian approximation
with respect to a suitable probability metric? Such as that defined by

dK(X ,Y ) = sup
z∈R
|P[X ≤ z ]− P[Y ≤ z ]|

o

d1(X ,Y ) = sup
h∈Lip1

|E[h(X )]− E[h(Y )]|,

where Lip1 is the family of Lipschitz functions with Lipschitz constant
less than or equal to one. We define additionally,

dTV (X ,Y ) = sup
A∈B(R)

|P[X ∈ A]− P[Y ∈ A]|.
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LeVeque’s conjecture (1949)

LeVeque showed that

dK(Zn,N ) ≤ C log log log(n)
log log(n) 1

4
,

for a constant C > 0 independent of n.

He also conjectured that

dK(Zn,N ) ≤ C log log(n)− 1
2 .

This was later proved by Rényi and Turán (1958). The main idea
consisted in approximating E[e iλω(Jn)].

Main ingredients: Perron’s formula, Dirichlet series and some estimations
of the Riemann ζ function around the band {z ∈ C ; <(z) = 1}.
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A probabilistic approach

For p ∈ P given, we define αp : N→ N0 as

k =
∏
p∈P

pαp(k).

Example: if k = 54 = 2 ∗ 32, then...

- α2(54) = 1,
- α3(54) = 2,
- α5(54) = 0.

What is the behavior of αp(Jn)?
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Approximations for αp(Jn)

Let {ξp}p∈P be a family of independent geometric random variables with
law

P[ξp = k] = p−k(1− p−1),

for k ∈ N0 := N ∪ {0}.

Our heuristic is based on the well-known
approximation

(αp1 (Jn), . . . , αpm (Jn))
Ley
≈ (ξp1 , . . . , ξpm ),

valid for m ∈ N and p1, . . . , pm different.
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Main results



Central limit theorem for additive functions

Let ψ : N→ R be such that ψ(ab) = ψ(a) + ψ(b) for a, b co-prime. We
will assume that

sup
p∈P
|ψ(p)| <∞ y

∑
p∈P

∑
k≥2

ψ(pk)2

pk <∞.

Define

µn =
∑

p∈Pn

ψ(p)p−1(1− p−1)−1

σ2
n =

∑
p∈Pn

ψ(p)2p−1(1− p−1)−2.
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Main result for the Kolmogorov distance

Theorem (Chen, Jaramillo, Yang)

Under the above conditions,

dK

(
ψ(Jn)− µn

σn
,N
)
≤ κ1
σn

+ κ2
σ2

n
+ κ3 log log(n)

log(n)

d1

(
ψ(Jn)− µn

σn
,N
)
≤ κ4
σn

+ κ5
σ2

n
+ κ6

log log(n) 1
2

log(n) 1
2
,

where κ1, . . . , κ6 are explicit functions of ψ.
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Ideas of the proofs



Simplified model: the harmonic distribution Hn

Let Hn be a random variable with P[Hn = k] = 1
Lnk for k ≤ n, where

Ln :=
∑n

k=1
1
k .

Notice that
Hn =

∏
p∈Pn

pαp(Hn).

Proposition

Suppose that n ≥ 21. We define the event

An :=
{ ∏

p∈Pn

pξp ≤ n
}
. (3)

We have

L(ψ(Hn)) = L(
∑

p∈Pn

ψ(pαp(Hn))) = L(
∑

p∈Pn

ψ(pξp )|An). (4)
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Relation with the harmonic distribution

Let {Q(k)}k≥1 be a sequence of independent random variables and
independent of (Jn,Hn), where Q(k) is uniformly distributed over the set

P∗k := {1} ∪ Pk .

Lemma (Chen, Jaramillo y Yang)

For n ≥ 21,

dTV(Jn,HnQ(n/Hn)) ≤ 61 log log n
log n

P[Q(n/Hn) divides Hn] ≤ 6.4 log log n
log n .
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Relation between ψ(Jn) and ψ(Hn)

Since Hn and Q(n/Hn) are relatively prime with high probability,

ψ(Jn)
σn

d1≈ ψ(HnQ(n/Hn))
σn

d1≈ ψ(Hn) + ψ(Q(n/Hn))
σn

d1≈ ψ(Hn)
σn

Recall that conditionally over An :=
{∏

p∈Pn
pξp ≤ n

}
,

ψ(Hn) Law=
∑

p∈Pn

ψ(pξp ).
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Linearization for ∑p∈Pn ψ(pξp )

Finally, we observe that ψ(pξp ) satisfies that

- Takes the value zero with probability 1− p−1

- Takes the value ψ(p) with probability p−1(1− p−1)
- Takes a value different from zero or ψ(p) with probability at most

p−2

Observation: ψ(p)ξp satisfies the same conditions. One can show that
conditionally to An,

∑
p∈Pn

ψ(pξp )
d1≈
∑

p∈Pn
ψ(p)ξp.

The problem reduces to estimate

d1

(
Law

(∑
p∈Pn

ψ(p)ξp − µn

σn
| An

)
,N
)
.

We will use Stein’ s method.
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Stein’s method

Lemma (Stein’s lemma)
For every smooth f : R→ R,

E[f ′(N )] = E[N f (N )]

Stein’s heuristic: If X is an R-valued random variable such that

E[f ′(X )] ≈ E[Xf (X )],

for a sufficiently large class of functions f , then Z approximates N .
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Stein’s method

Lemma
Let h : R→ R be 1-Lipchitz. Then the equation

f ′(x)− xf (x) = h(x)− E[h(N )]

has a unique solution f = fh,

which satisfies

sup
w∈R
|fh(w)| ≤ 2 sup

w∈R
|f ′h (w)| ≤

√
2/π sup

w∈R
|f ′h (w)| ≤ 2. (5)

Thereofore, if X is a random variable,

dK (X ,N ) ≤ sup
f
|E[f ′(X )− Xf (X )]|

where f belongs to the family of functions satisfying (5).

15



Stein’s method

Lemma
Let h : R→ R be 1-Lipchitz. Then the equation

f ′(x)− xf (x) = h(x)− E[h(N )]

has a unique solution f = fh, which satisfies

sup
w∈R
|fh(w)| ≤ 2 sup

w∈R
|f ′h (w)| ≤

√
2/π sup

w∈R
|f ′h (w)| ≤ 2. (5)

Thereofore, if X is a random variable,

dK (X ,N ) ≤ sup
f
|E[f ′(X )− Xf (X )]|

where f belongs to the family of functions satisfying (5).

15



Stein’s method

Lemma
Let h : R→ R be 1-Lipchitz. Then the equation

f ′(x)− xf (x) = h(x)− E[h(N )]

has a unique solution f = fh, which satisfies

sup
w∈R
|fh(w)| ≤ 2 sup

w∈R
|f ′h (w)| ≤

√
2/π sup

w∈R
|f ′h (w)| ≤ 2. (5)

Thereofore, if X is a random variable,

dK (X ,N ) ≤ sup
f
|E[f ′(X )− Xf (X )]|

where f belongs to the family of functions satisfying (5).

15



Poisson space representation

Define

Wn :=
∑

p∈Pn
ψ(p)ξp − µn

σn

y In := 1An .

One can verify that

|E[Znf (Wn)− f ′(Wn)|An]| = P[An]−1|E[f (Wn)WnIn]− E[f ′(Wn)In]|

≤ 2|E[f (Wn)WnIn]− E[f ′(Wn)In]|

.

To estimate the right hand side, we represent Wn as a functional of a
Poisson process. Consider the space

X := {(p, k) : p ∈ P, k ∈ N0}.

Let η be a Poisson point process over X, with intensity λ : X→ R+ given
by

λ(p, k) = 1
kpk , para p ∈ P, k ∈ N.
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Stein’s method

Using characteristic functions, one can show that

Wn
Law= η̃(ρn), (6)

where η̃ = η(p, k)− E[η(p, k)] is the compensation of η(p, k) and

ρn(k, p) := σ−1
n kψ(p)1{p∈Pn}. (7)

We will suppose that the identity holds pointwise. As a consequence, if
Gn(η) for some function Gn,

E[η̃(ρn)Gn(η)] =
∫
X
ρn(x)E[Dx Gn(η)]λ(dx), (8)

where Dx Gn(η) := Gn(η + δx )− Gn(η).
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Stein’ s formula

For the case where Gn = f (Wn)In, by the previous formula,

E[Wnf (Wn)] =
∫
X
ρn(x)E[Dx Gn(η)]λ(dx).

One can verify the approximation Dx (f (Wn)In) ≈ f ′(Wn)ρn(x)In, so that

E[Wnf (Wn)In] ≈
∫
X
ρn(x)2E[f ′(Wn)In]λ(dx) = E[f ′(Wn)In].
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Stein’s method

From the above analysis we get

d1(Zn,N )

≈ d1(Law(Wn | An),N )
≤ |E[Wnf (Wn)− f ′(Wn)|An]|
≤ 2|E[f (Wn)WnIn]− E[f ′(Wn)In]| ≈ 0

The result follows from a suitable measurement of the error of the
approximations.
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Poisson case

Theorem (Chen, Jaramillo y Yang)

Suppose that

λn :=
∑

p∈Pn

ψ(p)
p − 1 > 0, n ∈ N. (9)

Let Mn be a Poisson random variable with intensity λn. Then,

dTV (ψ(Jn),Mn) ≤ γ1√
λn

+ γ2
λn

+ 2γ3
λn

∑
p∈Pn

|ψ(p)− 1|
p . (10)

for γ1, . . . , γ3 explicit in terms of ψ.
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