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function

w(n) := |{p € P; p divides n}|.
For example, w(54) = w(2 x 3%) = 2. Let J, be a random variable with
uniform distribution over {1,..., n}.

Objectives

- Study the asymptotic law of w(J,), when n is large.
- Generalize to the case where w is replaced by a general function
1 : N — R only satisfying ©(ab) = ¥ (a) + ¥(b) for a, b € N coprime.
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Classical Erdds-Kac theorem (1940)

Starting point: Paul Erdés and Mark Kac proved that

z - w(Jn) — loglog(n) (1)
log log(n)

converges towards a standard Gaussian random variable .

Intuition: Define P, := P N[1, n]. The convergence in (1) can be
heuristically justified by the decomposition

w(Jn) = Z 1¢p divide Jy}- (2)

PEPn
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Can we estimate the approximating error of the Gaussian approximation
with respect to a suitable probability metric? Such as that defined by

dg (X, Y)=sup|P[X < z] - P[Y < Zz]|
zeR

d (X, Y) = sup [E[A(X)] —E[h(Y)]l,

heLip,

where Lip, is the family of Lipschitz functions with Lipschitz constant
less than or equal to one. We define additionally,

drv(X,Y) = sup [P[X € Al—P[Y € Al
AeB(R)
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LeVeque’s conjecture (1949)

LeVeque showed that

(Zo N) < Clogloglog(n)
nes log log(n)#

)
for a constant C > 0 independent of n. He also conjectured that
1

dic(Zn, N') < Cloglog(n)~*.

This was later proved by Rényi and Turan (1958). The main idea

consisted in approximating E[e**(n)].

Main ingredients: Perron's formula, Dirichlet series and some estimations
of the Riemann ¢ function around the band {z € C ; R(z) = 1}.
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What is the behavior of a,(J,)?
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Approximations for a,(J,)

Let {{,}pep be a family of independent geometric random variables with

law
Plé, =kl =pK1-p71),

for k € No := NU{0}. Our heuristic is based on the well-known
approximation

(o (n) -+ @ (In)) = (Eprr- - ),

valid for m € N and py, ..., p,, different.
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Central limit theorem for additive functions

Let ¢ : N = R be such that ¢(ab) = ¢(a) + ¢ (b) for a, b co-prime. We
will assume that

sup [h(p)| <00y YN l/}

pEP pEP k>2

Define

=Y dppta-p )

PEPn

Z w 2 —1 1)—2.

pPEP,



Main result for the Kolmogorov distance

Theorem (Chen, Jaramillo, Yang)

Under the above conditions,
e U(Jn) “Hn ) <Py F% x3 log log(n)
on 02 log(n)

& <¢(Jn) —un7N> L ha ks _'_I%loglog(n)i’

On

n

where K1, ..., Kg are explicit functions of 1.
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Simplified model: the harmonic distribution H,

Let H, be a random variable with P[H, = k] = ﬁ for k < n, where

L,:= ZZ:l %
Notice that
Hn = H pO‘p(Hn).
pPEP,
Proposition

Suppose that n > 21. We define the event

A, = { H pt < n}. (3)

PEPn

We have

L(Hn) = LY w(p™M)) = L0 4(p%)IAn). (4)

pEP, pEP,
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Relation with the harmonic distribution

Let {Q(k)}k>1 be a sequence of independent random variables and
independent of (J,, H,), where Q(k) is uniformly distributed over the set

Pr:={1} UPx.

Lemma (Chen, Jaramillo y Yang)
Forn> 21,

log log n
log n

log log n
logn

drv(Jn, HoQ(n/H,)) < 61

P[Q(n/H,) divides H,] < 6.4———

11
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Relation between )(J,) and ¢(H,)

Since H, and Q(n/H,) are relatively prime with high probability,
V() & V(HRQn/Hp)) & B(Ho) +H(Qn/Hn)) g 1(Hn)

On On On On

Recall that conditionally over A, := {HpePn pée < n},

Y(Ha) 23T w(p).

PEPn
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Finally, we observe that 1(p%°) satisfies that

- Takes the value zero with probability 1 — p~1
- Takes the value 1(p) with probability p~1(1 — p~1)
- Takes a value different from zero or 1)(p) with probability at most

p2

Observation: 1(p)&, satisfies the same conditions. One can show that
. d

conditionally to A, > cp (p*) ~ > pep, Y(P)Ep.

The problem reduces to estimate

" (Law (Zpepn (P)sp — tin | An) 7 N)_

On

We will use Stein’ s method.
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Lemma (Stein’s lemma)
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Lemma (Stein’s lemma)
For every smooth f : R — R,

E[f'(N)] = EWF(V)]

Stein’s heuristic: If X is an R-valued random variable such that
E[f'(X)] = E[Xf(X)],

for a sufficiently large class of functions f, then Z approximates \.
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Lemma
Let h: R — R be 1-Lipchitz. Then the equation
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has a unique solution f = fy,
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Lemma
Let h: R — R be 1-Lipchitz. Then the equation

f'(x) — xf(x) = h(x) — E[h(N)]
has a unique solution f = f,, which satisfies

sup [fr(w)| <2 sup [fi(w)| < /277 sup [fi(w)| <2.  (5)
weR weR weR

Thereofore, if X is a random variable,

di (X, N) < sup [E[f'(X) — XF(X)]|
f
where f belongs to the family of functions satisfying (5).
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Poisson space representation

Define
Zpepn Y(P)Ep — tin

On

W, =
y In :=14,. One can verify that
[E[Z,f(Wa) — F'(Wo)|Ad]| = P[AL] " E[f(Wa) Waln] — E[f' (W) ]|
< 2‘E[f( Wn) Wnln] - IE[fl(VVn)/n]l'

To estimate the right hand side, we represent W, as a functional of a
Poisson process. Consider the space

X:={(p,k) : p € P,k € No}.

Let 7 be a Poisson point process over X, with intensity A : X — R given
by

1
A(p, k) = P parap € P,k e N.

16



Using characteristic functions, one can show that
Law .
W, =" ii(pn), (6)

where 7j = n(p, k) — E[n(p, k)] is the compensation of n(p, k) and

pn(k, p) = o, ko(p)Lipep,}- (7)
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Using characteristic functions, one can show that
W "2 ii(p). (6)
where 7j = n(p, k) — E[n(p, k)] is the compensation of n(p, k) and
pn(k, p) = o, kp(p) L ipep,}- (7)

We will suppose that the identity holds pointwise. As a consequence, if
G(n) for some function G,

Elfi(p) Ga(m)] = / p()E[Ds Ga(m)]A(dk), (8)

where D, G,(n) := G,(n + dx) — Gu(n).
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Stein’ s formula

For the case where G, = f(W,)l,, by the previous formula,

E[W,f(W,)] = / () E[Ds Ga(m)A(dk).
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Stein’ s formula

For the case where G, = f(W,)l,, by the previous formula,
BIW,f (W0)] = [ pa(x)EIDLGo(n)]A(0R).
X
One can verify the approximation D, (f(W,)l,) = f'(W,)pa(x)1,, so that

MWAMMwAmwwwmmwwzmmmm.
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From the above analysis we get
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The result follows from a suitable measurement of the error of the
approximations.
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From the above analysis we get

dl(Zn,N) ~ dl(LaW(W,, ‘ An)7N)
< |E[an(Wn) - f/(Wn)‘An:”
< 2[E[f(W,)) Walo] — E[f'(W,)1o]| ~ 0

The result follows from a suitable measurement of the error of the
approximations.
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Suppose that
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Poisson case

Theorem (Chen, Jaramillo y Yang)

Suppose that

Let M, be a Poisson random variable with intensity \,. Then,

oL, 28 v ) -1
drv ((Jn) Ma) < i ) -1
V) M) < =t D (10)
PEPs
for 1, ...,v3 explicit in terms of 1.
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