Quantitative Erdös-Kac theorem for additive functions

joint work with X. Yang y L. Chen

Arturo Jaramillo Gil

Centro de Investigación en Matemáticas (CIMAT)

Goal

Denote by \mathcal{P} the set of prime numbers.

Goal

Denote by \mathcal{P} the set of prime numbers. Let $\omega: \mathbb{N} \rightarrow \mathbb{N} \cup\{0\}$ be the function

$$
\omega(n):=\mid\{p \in \mathcal{P} ; p \text { divides } n\} \mid .
$$

Goal

Denote by \mathcal{P} the set of prime numbers. Let $\omega: \mathbb{N} \rightarrow \mathbb{N} \cup\{0\}$ be the function

$$
\omega(n):=\mid\{p \in \mathcal{P} ; p \text { divides } n\} \mid .
$$

For example, $\omega(54)=\omega\left(2 \times 3^{2}\right)=2$.

Goal

Denote by \mathcal{P} the set of prime numbers. Let $\omega: \mathbb{N} \rightarrow \mathbb{N} \cup\{0\}$ be the function

$$
\omega(n):=\mid\{p \in \mathcal{P} ; p \text { divides } n\} \mid .
$$

For example, $\omega(54)=\omega\left(2 \times 3^{2}\right)=2$. Let J_{n} be a random variable with uniform distribution over $\{1, \ldots, n\}$.

Goal

Denote by \mathcal{P} the set of prime numbers. Let $\omega: \mathbb{N} \rightarrow \mathbb{N} \cup\{0\}$ be the function

$$
\omega(n):=\mid\{p \in \mathcal{P} ; p \text { divides } n\} \mid .
$$

For example, $\omega(54)=\omega\left(2 \times 3^{2}\right)=2$. Let J_{n} be a random variable with uniform distribution over $\{1, \ldots, n\}$.

Objectives

- Study the asymptotic law of $\omega\left(J_{n}\right)$, when n is large.

Goal

Denote by \mathcal{P} the set of prime numbers. Let $\omega: \mathbb{N} \rightarrow \mathbb{N} \cup\{0\}$ be the function

$$
\omega(n):=\mid\{p \in \mathcal{P} ; p \text { divides } n\} \mid .
$$

For example, $\omega(54)=\omega\left(2 \times 3^{2}\right)=2$. Let J_{n} be a random variable with uniform distribution over $\{1, \ldots, n\}$.

Objectives

- Study the asymptotic law of $\omega\left(J_{n}\right)$, when n is large.
- Generalize to the case where ω is replaced by a general function $\psi: \mathbb{N} \rightarrow \mathbb{R}$ only satisfying $\psi(a b)=\psi(a)+\psi(b)$ for $a, b \in \mathbb{N}$ coprime.

Plan

1. Historical context
2. Main results
3. Ideas of the proofs

Simplification of the model
Stein's method

Historical context

Classical Erdös-Kac theorem (1940)

Starting point: Paul Erdös and Mark Kac proved that

$$
\begin{equation*}
Z_{n}:=\frac{\omega\left(J_{n}\right)-\log \log (n)}{\sqrt{\log \log (n)}} \tag{1}
\end{equation*}
$$

converges towards a standard Gaussian random variable \mathcal{N}.

Classical Erdös-Kac theorem (1940)

Starting point: Paul Erdös and Mark Kac proved that

$$
\begin{equation*}
Z_{n}:=\frac{\omega\left(J_{n}\right)-\log \log (n)}{\sqrt{\log \log (n)}} \tag{1}
\end{equation*}
$$

converges towards a standard Gaussian random variable \mathcal{N}.

Intuition: Define $\mathcal{P}_{n}:=\mathcal{P} \cap[1, n]$.

Classical Erdös-Kac theorem (1940)

Starting point: Paul Erdös and Mark Kac proved that

$$
\begin{equation*}
Z_{n}:=\frac{\omega\left(J_{n}\right)-\log \log (n)}{\sqrt{\log \log (n)}} \tag{1}
\end{equation*}
$$

converges towards a standard Gaussian random variable \mathcal{N}.

Intuition: Define $\mathcal{P}_{n}:=\mathcal{P} \cap[1, n]$. The convergence in (1) can be heuristically justified by the decomposition

$$
\begin{equation*}
\omega\left(J_{n}\right)=\sum_{p \in \mathcal{P}_{n}} \mathbb{1}_{\left\{p \text { divide } J_{n}\right\}} . \tag{2}
\end{equation*}
$$

Question

Can we estimate the approximating error of the Gaussian approximation with respect to a suitable probability metric? Such as that defined by

$$
d_{\mathrm{K}}(X, Y)=\sup _{z \in \mathbb{R}}|\mathbb{P}[X \leq z]-\mathbb{P}[Y \leq z]|
$$

Question

Can we estimate the approximating error of the Gaussian approximation with respect to a suitable probability metric? Such as that defined by

$$
d_{\mathrm{K}}(X, Y)=\sup _{z \in \mathbb{R}}|\mathbb{P}[X \leq z]-\mathbb{P}[Y \leq z]|
$$

0

$$
d_{1}(X, Y)=\sup _{h \in \operatorname{Lip}_{1}}|\mathbb{E}[h(X)]-\mathbb{E}[h(Y)]|,
$$

where Lip_{1} is the family of Lipschitz functions with Lipschitz constant less than or equal to one.

Question

Can we estimate the approximating error of the Gaussian approximation with respect to a suitable probability metric? Such as that defined by

$$
d_{\mathrm{K}}(X, Y)=\sup _{z \in \mathbb{R}}|\mathbb{P}[X \leq z]-\mathbb{P}[Y \leq z]|
$$

0

$$
d_{1}(X, Y)=\sup _{h \in \operatorname{Lip}_{1}}|\mathbb{E}[h(X)]-\mathbb{E}[h(Y)]|,
$$

where Lip_{1} is the family of Lipschitz functions with Lipschitz constant less than or equal to one. We define additionally,

$$
d_{T V}(X, Y)=\sup _{A \in \mathcal{B}(\mathbb{R})}|\mathbb{P}[X \in A]-\mathbb{P}[Y \in A]| .
$$

LeVeque's conjecture (1949)

LeVeque showed that

$$
d_{\mathrm{K}}\left(Z_{n}, \mathcal{N}\right) \leq C \frac{\log \log \log (n)}{\log \log (n)^{\frac{1}{4}}},
$$

for a constant $C>0$ independent of n.

LeVeque's conjecture (1949)

LeVeque showed that

$$
d_{\mathrm{K}}\left(Z_{n}, \mathcal{N}\right) \leq C \frac{\log \log \log (n)}{\log \log (n)^{\frac{1}{4}}},
$$

for a constant $C>0$ independent of n. He also conjectured that

$$
d_{\mathrm{K}}\left(Z_{n}, \mathcal{N}\right) \leq C \log \log (n)^{-\frac{1}{2}} .
$$

LeVeque's conjecture (1949)

LeVeque showed that

$$
d_{\mathrm{K}}\left(Z_{n}, \mathcal{N}\right) \leq C \frac{\log \log \log (n)}{\log \log (n)^{\frac{1}{4}}},
$$

for a constant $C>0$ independent of n. He also conjectured that

$$
d_{\mathrm{K}}\left(Z_{n}, \mathcal{N}\right) \leq C \log \log (n)^{-\frac{1}{2}} .
$$

This was later proved by Rényi and Turán (1958).

LeVeque's conjecture (1949)

LeVeque showed that

$$
d_{\mathrm{K}}\left(Z_{n}, \mathcal{N}\right) \leq C \frac{\log \log \log (n)}{\log \log (n)^{\frac{1}{4}}}
$$

for a constant $C>0$ independent of n. He also conjectured that

$$
d_{\mathrm{K}}\left(Z_{n}, \mathcal{N}\right) \leq C \log \log (n)^{-\frac{1}{2}} .
$$

This was later proved by Rényi and Turán (1958). The main idea consisted in approximating $\mathbb{E}\left[e^{\mathrm{i} \lambda \omega\left(J_{n}\right)}\right]$.

LeVeque's conjecture (1949)

LeVeque showed that

$$
d_{\mathrm{K}}\left(Z_{n}, \mathcal{N}\right) \leq C \frac{\log \log \log (n)}{\log \log (n)^{\frac{1}{4}}}
$$

for a constant $C>0$ independent of n. He also conjectured that

$$
d_{\mathrm{K}}\left(Z_{n}, \mathcal{N}\right) \leq C \log \log (n)^{-\frac{1}{2}}
$$

This was later proved by Rényi and Turán (1958). The main idea consisted in approximating $\mathbb{E}\left[e^{\mathrm{i} \lambda \omega\left(J_{n}\right)}\right]$.

Main ingredients: Perron's formula, Dirichlet series and some estimations of the Riemann ζ function around the band $\{z \in \mathbb{C} ; \Re(z)=1\}$.

A probabilistic approach

For $p \in \mathcal{P}$ given, we define $\alpha_{p}: \mathbb{N} \rightarrow \mathbb{N}_{0}$ as

$$
k=\prod_{p \in \mathcal{P}} p^{\alpha_{p}(k)} .
$$

A probabilistic approach

For $p \in \mathcal{P}$ given, we define $\alpha_{p}: \mathbb{N} \rightarrow \mathbb{N}_{0}$ as

$$
k=\prod_{p \in \mathcal{P}} p^{\alpha_{p}(k)}
$$

Example: if $k=54=2 * 3^{2}$, then...

A probabilistic approach

For $p \in \mathcal{P}$ given, we define $\alpha_{p}: \mathbb{N} \rightarrow \mathbb{N}_{0}$ as

$$
k=\prod_{p \in \mathcal{P}} p^{\alpha_{p}(k)} .
$$

Example: if $k=54=2 * 3^{2}$, then...

- $\alpha_{2}(54)=$

A probabilistic approach

For $p \in \mathcal{P}$ given, we define $\alpha_{p}: \mathbb{N} \rightarrow \mathbb{N}_{0}$ as

$$
k=\prod_{p \in \mathcal{P}} p^{\alpha_{p}(k)} .
$$

Example: if $k=54=2 * 3^{2}$, then...

- $\alpha_{2}(54)=1$,

A probabilistic approach

For $p \in \mathcal{P}$ given, we define $\alpha_{p}: \mathbb{N} \rightarrow \mathbb{N}_{0}$ as

$$
k=\prod_{p \in \mathcal{P}} p^{\alpha_{p}(k)}
$$

Example: if $k=54=2 * 3^{2}$, then...

- $\alpha_{2}(54)=1$,
- $\alpha_{3}(54)=2$,

A probabilistic approach

For $p \in \mathcal{P}$ given, we define $\alpha_{p}: \mathbb{N} \rightarrow \mathbb{N}_{0}$ as

$$
k=\prod_{p \in \mathcal{P}} p^{\alpha_{p}(k)}
$$

Example: if $k=54=2 * 3^{2}$, then...

- $\alpha_{2}(54)=1$,
- $\alpha_{3}(54)=2$,
- $\alpha_{5}(54)=0$.

A probabilistic approach

For $p \in \mathcal{P}$ given, we define $\alpha_{p}: \mathbb{N} \rightarrow \mathbb{N}_{0}$ as

$$
k=\prod_{p \in \mathcal{P}} p^{\alpha_{p}(k)}
$$

Example: if $k=54=2 * 3^{2}$, then...

- $\alpha_{2}(54)=1$,
- $\alpha_{3}(54)=2$,
- $\alpha_{5}(54)=0$.

What is the behavior of $\alpha_{p}\left(J_{n}\right)$?

Approximations for $\alpha_{p}\left(J_{n}\right)$

Let $\left\{\xi_{p}\right\}_{p \in \mathcal{P}}$ be a family of independent geometric random variables with law

$$
\mathbb{P}\left[\xi_{p}=k\right]=p^{-k}\left(1-p^{-1}\right),
$$

for $k \in \mathbb{N}_{0}:=\mathbb{N} \cup\{0\}$.

Approximations for $\alpha_{p}\left(J_{n}\right)$

Let $\left\{\xi_{p}\right\}_{p \in \mathcal{P}}$ be a family of independent geometric random variables with law

$$
\mathbb{P}\left[\xi_{p}=k\right]=p^{-k}\left(1-p^{-1}\right),
$$

for $k \in \mathbb{N}_{0}:=\mathbb{N} \cup\{0\}$. Our heuristic is based on the well-known approximation

$$
\left(\alpha_{p_{1}}\left(J_{n}\right), \ldots, \alpha_{p_{m}}\left(J_{n}\right)\right) \stackrel{\text { Ley }}{\approx}\left(\xi_{p_{1}}, \ldots, \xi_{p_{m}}\right),
$$

valid for $m \in \mathbb{N}$ and p_{1}, \ldots, p_{m} different.

Main results

Central limit theorem for additive functions

Let $\psi: \mathbb{N} \rightarrow \mathbb{R}$ be such that $\psi(a b)=\psi(a)+\psi(b)$ for a, b co-prime. We will assume that

$$
\sup _{p \in \mathcal{P}}|\psi(p)|<\infty \quad \text { y } \quad \sum_{p \in \mathcal{P}} \sum_{k \geq 2} \frac{\psi\left(p^{k}\right)^{2}}{p^{k}}<\infty .
$$

Central limit theorem for additive functions

Let $\psi: \mathbb{N} \rightarrow \mathbb{R}$ be such that $\psi(a b)=\psi(a)+\psi(b)$ for a, b co-prime. We will assume that

$$
\sup _{p \in \mathcal{P}}|\psi(p)|<\infty \quad \text { y } \quad \sum_{p \in \mathcal{P}} \sum_{k \geq 2} \frac{\psi\left(p^{k}\right)^{2}}{p^{k}}<\infty .
$$

Define

$$
\begin{aligned}
\mu_{n} & =\sum_{p \in \mathcal{P}_{n}} \psi(p) p^{-1}\left(1-p^{-1}\right)^{-1} \\
\sigma_{n}^{2} & =\sum_{p \in \mathcal{P}_{n}} \psi(p)^{2} p^{-1}\left(1-p^{-1}\right)^{-2} .
\end{aligned}
$$

Main result for the Kolmogorov distance

Theorem (Chen, Jaramillo, Yang)
Under the above conditions,

$$
\begin{aligned}
& d_{\mathrm{K}}\left(\frac{\psi\left(J_{n}\right)-\mu_{n}}{\sigma_{n}}, \mathcal{N}\right) \leq \frac{\kappa_{1}}{\sigma_{n}}+\frac{\kappa_{2}}{\sigma_{n}^{2}}+\frac{\kappa_{3} \log \log (n)}{\log (n)} \\
& d_{1}\left(\frac{\psi\left(J_{n}\right)-\mu_{n}}{\sigma_{n}}, \mathcal{N}\right) \leq \frac{\kappa_{4}}{\sigma_{n}}+\frac{\kappa_{5}}{\sigma_{n}^{2}}+\kappa_{6} \frac{\log \log (n)^{\frac{1}{2}}}{\log (n)^{\frac{1}{2}}}
\end{aligned}
$$

where $\kappa_{1}, \ldots, \kappa_{6}$ are explicit functions of ψ.

Ideas of the proofs

Simplified model: the harmonic distribution H_{n}

Let H_{n} be a random variable with $\mathbb{P}\left[H_{n}=k\right]=\frac{1}{L_{n} k}$ for $k \leq n$, where $L_{n}:=\sum_{k=1}^{n} \frac{1}{k}$.

Simplified model: the harmonic distribution H_{n}

Let H_{n} be a random variable with $\mathbb{P}\left[H_{n}=k\right]=\frac{1}{L_{n} k}$ for $k \leq n$, where $L_{n}:=\sum_{k=1}^{n} \frac{1}{k}$.
Notice that

$$
H_{n}=\prod_{p \in \mathcal{P}_{n}} p^{\alpha_{p}\left(H_{n}\right)}
$$

Simplified model: the harmonic distribution H_{n}

Let H_{n} be a random variable with $\mathbb{P}\left[H_{n}=k\right]=\frac{1}{L_{n} k}$ for $k \leq n$, where $L_{n}:=\sum_{k=1}^{n} \frac{1}{k}$.
Notice that

$$
H_{n}=\prod_{p \in \mathcal{P}_{n}} p^{\alpha_{p}\left(H_{n}\right)}
$$

Proposition

Suppose that $n \geq 21$. We define the event

$$
\begin{equation*}
A_{n}:=\left\{\prod_{p \in \mathcal{P}_{n}} p^{\xi_{p}} \leq n\right\} . \tag{3}
\end{equation*}
$$

Simplified model: the harmonic distribution H_{n}

Let H_{n} be a random variable with $\mathbb{P}\left[H_{n}=k\right]=\frac{1}{L_{n} k}$ for $k \leq n$, where $L_{n}:=\sum_{k=1}^{n} \frac{1}{k}$.
Notice that

$$
H_{n}=\prod_{p \in \mathcal{P}_{n}} p^{\alpha_{p}\left(H_{n}\right)}
$$

Proposition

Suppose that $n \geq 21$. We define the event

$$
\begin{equation*}
A_{n}:=\left\{\prod_{p \in \mathcal{P}_{n}} p^{\xi_{p}} \leq n\right\} . \tag{3}
\end{equation*}
$$

We have

$$
\begin{equation*}
\mathcal{L}\left(\psi\left(H_{n}\right)\right)=\mathcal{L}\left(\sum_{p \in \mathcal{P}_{n}} \psi\left(p^{\alpha_{p}\left(H_{n}\right)}\right)\right)=\mathcal{L}\left(\sum_{p \in \mathcal{P}_{n}} \psi\left(p^{\xi_{p}}\right) \mid A_{n}\right) . \tag{4}
\end{equation*}
$$

Relation with the harmonic distribution

Let $\{Q(k)\}_{k \geq 1}$ be a sequence of independent random variables and independent of $\left(J_{n}, H_{n}\right)$, where $Q(k)$ is uniformly distributed over the set

$$
\mathcal{P}_{k}^{*}:=\{1\} \cup \mathcal{P}_{k} .
$$

Relation with the harmonic distribution

Let $\{Q(k)\}_{k \geq 1}$ be a sequence of independent random variables and independent of $\left(J_{n}, H_{n}\right)$, where $Q(k)$ is uniformly distributed over the set

$$
\mathcal{P}_{k}^{*}:=\{1\} \cup \mathcal{P}_{k} .
$$

Lemma (Chen, Jaramillo y Yang)

For $n \geq 21$,

$$
d_{\mathrm{TV}}\left(J_{n}, H_{n} Q\left(n / H_{n}\right)\right) \leq 61 \frac{\log \log n}{\log n}
$$

Relation with the harmonic distribution

Let $\{Q(k)\}_{k \geq 1}$ be a sequence of independent random variables and independent of $\left(J_{n}, H_{n}\right)$, where $Q(k)$ is uniformly distributed over the set

$$
\mathcal{P}_{k}^{*}:=\{1\} \cup \mathcal{P}_{k} .
$$

Lemma (Chen, Jaramillo y Yang)

For $n \geq 21$,

$$
\begin{aligned}
d_{\mathrm{TV}}\left(J_{n}, H_{n} Q\left(n / H_{n}\right)\right) & \leq 61 \frac{\log \log n}{\log n} \\
\mathbb{P}\left[Q\left(n / H_{n}\right) \text { divides } H_{n}\right] & \leq 6.4 \frac{\log \log n}{\log n} .
\end{aligned}
$$

Relation between $\psi\left(J_{n}\right)$ and $\psi\left(H_{n}\right)$

Since H_{n} and $Q\left(n / H_{n}\right)$ are relatively prime with high probability,

Relation between $\psi\left(J_{n}\right)$ and $\psi\left(H_{n}\right)$

Since H_{n} and $Q\left(n / H_{n}\right)$ are relatively prime with high probability,

$$
\frac{\psi\left(J_{n}\right)}{\sigma_{n}} \stackrel{d_{1}}{\approx} \frac{\psi\left(H_{n} Q\left(n / H_{n}\right)\right)}{\sigma_{n}}
$$

Relation between $\psi\left(J_{n}\right)$ and $\psi\left(H_{n}\right)$

Since H_{n} and $Q\left(n / H_{n}\right)$ are relatively prime with high probability,

$$
\frac{\psi\left(J_{n}\right)}{\sigma_{n}} \stackrel{d_{1}}{\approx} \frac{\psi\left(H_{n} Q\left(n / H_{n}\right)\right)}{\sigma_{n}} \stackrel{d_{1}}{\approx} \frac{\psi\left(H_{n}\right)+\psi\left(Q\left(n / H_{n}\right)\right)}{\sigma_{n}}
$$

Relation between $\psi\left(J_{n}\right)$ and $\psi\left(H_{n}\right)$

Since H_{n} and $Q\left(n / H_{n}\right)$ are relatively prime with high probability,

$$
\frac{\psi\left(J_{n}\right)}{\sigma_{n}} \stackrel{d_{1}}{\approx} \frac{\psi\left(H_{n} Q\left(n / H_{n}\right)\right)}{\sigma_{n}} \stackrel{d_{1}}{\approx} \frac{\psi\left(H_{n}\right)+\psi\left(Q\left(n / H_{n}\right)\right)}{\sigma_{n}} \stackrel{d_{1}}{\approx} \frac{\psi\left(H_{n}\right)}{\sigma_{n}}
$$

Relation between $\psi\left(J_{n}\right)$ and $\psi\left(H_{n}\right)$

Since H_{n} and $Q\left(n / H_{n}\right)$ are relatively prime with high probability,

$$
\frac{\psi\left(J_{n}\right)}{\sigma_{n}} \stackrel{d_{1}}{\approx} \frac{\psi\left(H_{n} Q\left(n / H_{n}\right)\right)}{\sigma_{n}} \stackrel{d_{1}}{\approx} \frac{\psi\left(H_{n}\right)+\psi\left(Q\left(n / H_{n}\right)\right)}{\sigma_{n}} \stackrel{d_{1}}{\approx} \frac{\psi\left(H_{n}\right)}{\sigma_{n}}
$$

Relation between $\psi\left(J_{n}\right)$ and $\psi\left(H_{n}\right)$

Since H_{n} and $Q\left(n / H_{n}\right)$ are relatively prime with high probability,

$$
\frac{\psi\left(J_{n}\right)}{\sigma_{n}} \stackrel{d_{1}}{\approx} \frac{\psi\left(H_{n} Q\left(n / H_{n}\right)\right)}{\sigma_{n}} \stackrel{d_{1}}{\approx} \frac{\psi\left(H_{n}\right)+\psi\left(Q\left(n / H_{n}\right)\right)}{\sigma_{n}} \stackrel{d_{1}}{\approx} \frac{\psi\left(H_{n}\right)}{\sigma_{n}}
$$

Recall that conditionally over $A_{n}:=\left\{\prod_{p \in \mathcal{P}_{n}} p^{\xi_{p}} \leq n\right\}$,

$$
\psi\left(H_{n}\right) \stackrel{\operatorname{Law}}{=} \sum_{p \in \mathcal{P}_{n}} \psi\left(p^{\xi_{p}}\right)
$$

Linearization for $\sum_{p \in \mathcal{P}_{n}} \psi\left(p^{\xi_{p}}\right)$

Finally, we observe that $\psi\left(p^{\xi_{p}}\right)$ satisfies that

Linearization for $\sum_{p \in \mathcal{P}_{n}} \psi\left(p^{\xi_{p}}\right)$

Finally, we observe that $\psi\left(p^{\xi_{p}}\right)$ satisfies that

- Takes the value zero with probability $1-p^{-1}$

Linearization for $\sum_{p \in \mathcal{P}_{n}} \psi\left(p^{\xi_{p}}\right)$

Finally, we observe that $\psi\left(p^{\xi_{p}}\right)$ satisfies that

- Takes the value zero with probability $1-p^{-1}$
- Takes the value $\psi(p)$ with probability $p^{-1}\left(1-p^{-1}\right)$

Linearization for $\sum_{p \in \mathcal{P}_{n}} \psi\left(p^{\xi_{p}}\right)$

Finally, we observe that $\psi\left(p^{\xi_{p}}\right)$ satisfies that

- Takes the value zero with probability $1-p^{-1}$
- Takes the value $\psi(p)$ with probability $p^{-1}\left(1-p^{-1}\right)$
- Takes a value different from zero or $\psi(p)$ with probability at most p^{-2}

Linearization for $\sum_{p \in \mathcal{P}_{n}} \psi\left(p^{\xi_{p}}\right)$

Finally, we observe that $\psi\left(p^{\xi_{p}}\right)$ satisfies that

- Takes the value zero with probability $1-p^{-1}$
- Takes the value $\psi(p)$ with probability $p^{-1}\left(1-p^{-1}\right)$
- Takes a value different from zero or $\psi(p)$ with probability at most p^{-2}

Observation: $\psi(p) \xi_{p}$ satisfies the same conditions.

Linearization for $\sum_{p \in \mathcal{P}_{n}} \psi\left(p^{\xi_{p}}\right)$

Finally, we observe that $\psi\left(p^{\xi_{p}}\right)$ satisfies that

- Takes the value zero with probability $1-p^{-1}$
- Takes the value $\psi(p)$ with probability $p^{-1}\left(1-p^{-1}\right)$
- Takes a value different from zero or $\psi(p)$ with probability at most p^{-2}

Observation: $\psi(p) \xi_{p}$ satisfies the same conditions. One can show that conditionally to $A_{n}, \sum_{p \in \mathcal{P}_{n}} \psi\left(p^{\xi_{p}}\right) \stackrel{d_{1}}{\approx} \sum_{p \in \mathcal{P}_{n}} \psi(p) \xi_{p}$.

Linearization for $\sum_{p \in \mathcal{P}_{n}} \psi\left(p^{\xi_{p}}\right)$

Finally, we observe that $\psi\left(p^{\xi_{p}}\right)$ satisfies that

- Takes the value zero with probability $1-p^{-1}$
- Takes the value $\psi(p)$ with probability $p^{-1}\left(1-p^{-1}\right)$
- Takes a value different from zero or $\psi(p)$ with probability at most p^{-2}

Observation: $\psi(p) \xi_{p}$ satisfies the same conditions. One can show that conditionally to $A_{n}, \sum_{p \in \mathcal{P}_{n}} \psi\left(p^{\xi_{p}}\right) \stackrel{d_{1}}{\approx} \sum_{p \in \mathcal{P}_{n}} \psi(p) \xi_{p}$.

Linearization for $\sum_{p \in \mathcal{P}_{n}} \psi\left(p^{\xi_{p}}\right)$

Finally, we observe that $\psi\left(p^{\xi_{p}}\right)$ satisfies that

- Takes the value zero with probability $1-p^{-1}$
- Takes the value $\psi(p)$ with probability $p^{-1}\left(1-p^{-1}\right)$
- Takes a value different from zero or $\psi(p)$ with probability at most p^{-2}

Observation: $\psi(p) \xi_{p}$ satisfies the same conditions. One can show that conditionally to $A_{n}, \sum_{p \in \mathcal{P}_{n}} \psi\left(p^{\xi_{p}}\right) \stackrel{d_{1}}{\approx} \sum_{p \in \mathcal{P}_{n}} \psi(p) \xi_{p}$.
The problem reduces to estimate

$$
d_{1}\left(\operatorname{Law}\left(\left.\frac{\sum_{p \in \mathcal{P}_{n}} \psi(p) \xi_{p}-\mu_{n}}{\sigma_{n}} \right\rvert\, A_{n}\right), \mathcal{N}\right)
$$

Linearization for $\sum_{p \in \mathcal{P}_{n}} \psi\left(p^{\xi_{p}}\right)$

Finally, we observe that $\psi\left(p^{\xi_{p}}\right)$ satisfies that

- Takes the value zero with probability $1-p^{-1}$
- Takes the value $\psi(p)$ with probability $p^{-1}\left(1-p^{-1}\right)$
- Takes a value different from zero or $\psi(p)$ with probability at most p^{-2}

Observation: $\psi(p) \xi_{p}$ satisfies the same conditions. One can show that conditionally to $A_{n}, \sum_{p \in \mathcal{P}_{n}} \psi\left(p^{\xi_{p}}\right) \stackrel{d_{1}}{\approx} \sum_{p \in \mathcal{P}_{n}} \psi(p) \xi_{p}$.
The problem reduces to estimate

$$
d_{1}\left(\operatorname{Law}\left(\left.\frac{\sum_{p \in \mathcal{P}_{n}} \psi(p) \xi_{p}-\mu_{n}}{\sigma_{n}} \right\rvert\, A_{n}\right), \mathcal{N}\right) .
$$

We will use Stein' s method.

Stein's method

Lemma (Stein's lemma)
For every smooth $f: \mathbb{R} \rightarrow \mathbb{R}$,

$$
\mathbb{E}\left[f^{\prime}(\mathcal{N})\right]=\mathbb{E}[\mathcal{N} f(\mathcal{N})]
$$

Stein's method

Lemma (Stein's lemma)
For every smooth $f: \mathbb{R} \rightarrow \mathbb{R}$,

$$
\mathbb{E}\left[f^{\prime}(\mathcal{N})\right]=\mathbb{E}[\mathcal{N} f(\mathcal{N})]
$$

Stein's heuristic: If X is an \mathbb{R}-valued random variable such that

$$
\mathbb{E}\left[f^{\prime}(X)\right] \approx \mathbb{E}[X f(X)]
$$

for a sufficiently large class of functions f, then Z approximates \mathcal{N}.

Stein's method

Lemma

Let $h: \mathbb{R} \rightarrow \mathbb{R}$ be 1-Lipchitz. Then the equation

$$
f^{\prime}(x)-x f(x)=h(x)-\mathbb{E}[h(\mathcal{N})]
$$

has a unique solution $f=f_{h}$,

Stein's method

Lemma

Let $h: \mathbb{R} \rightarrow \mathbb{R}$ be 1-Lipchitz. Then the equation

$$
f^{\prime}(x)-x f(x)=h(x)-\mathbb{E}[h(\mathcal{N})]
$$

has a unique solution $f=f_{h}$, which satisfies

$$
\begin{equation*}
\sup _{w \in \mathbb{R}}\left|f_{h}(w)\right| \leq 2 \quad \sup _{w \in \mathbb{R}}\left|f_{h}^{\prime}(w)\right| \leq \sqrt{2 / \pi} \quad \sup _{w \in \mathbb{R}}\left|f_{h}^{\prime}(w)\right| \leq 2 . \tag{5}
\end{equation*}
$$

Stein's method

Lemma

Let $h: \mathbb{R} \rightarrow \mathbb{R}$ be 1-Lipchitz. Then the equation

$$
f^{\prime}(x)-x f(x)=h(x)-\mathbb{E}[h(\mathcal{N})]
$$

has a unique solution $f=f_{h}$, which satisfies

$$
\begin{equation*}
\sup _{w \in \mathbb{R}}\left|f_{h}(w)\right| \leq 2 \quad \sup _{w \in \mathbb{R}}\left|f_{h}^{\prime}(w)\right| \leq \sqrt{2 / \pi} \quad \sup _{w \in \mathbb{R}}\left|f_{h}^{\prime}(w)\right| \leq 2 . \tag{5}
\end{equation*}
$$

Thereofore, if X is a random variable,

$$
d_{K}(X, \mathcal{N}) \leq \sup _{f}\left|\mathbb{E}\left[f^{\prime}(X)-X f(X)\right]\right|
$$

where f belongs to the family of functions satisfying (5).

Poisson space representation

Define

$$
W_{n}:=\frac{\sum_{p \in \mathcal{P}_{n}} \psi(p) \xi_{p}-\mu_{n}}{\sigma_{n}}
$$

y $I_{n}:=\mathbb{1}_{A_{n}}$.

Poisson space representation

Define

$$
W_{n}:=\frac{\sum_{p \in \mathcal{P}_{n}} \psi(p) \xi_{p}-\mu_{n}}{\sigma_{n}}
$$

y $I_{n}:=\mathbb{1}_{A_{n}}$. One can verify that

$$
\left|\mathbb{E}\left[Z_{n} f\left(W_{n}\right)-f^{\prime}\left(W_{n}\right) \mid A_{n}\right]\right|=\mathbb{P}\left[A_{n}\right]^{-1}\left|\mathbb{E}\left[f\left(W_{n}\right) W_{n} I_{n}\right]-\mathbb{E}\left[f^{\prime}\left(W_{n}\right) I_{n}\right]\right|
$$

Poisson space representation

Define

$$
W_{n}:=\frac{\sum_{p \in \mathcal{P}_{n}} \psi(p) \xi_{p}-\mu_{n}}{\sigma_{n}}
$$

y $I_{n}:=\mathbb{1}_{A_{n}}$. One can verify that

$$
\begin{aligned}
\left|\mathbb{E}\left[Z_{n} f\left(W_{n}\right)-f^{\prime}\left(W_{n}\right) \mid A_{n}\right]\right| & =\mathbb{P}\left[A_{n}\right]^{-1}\left|\mathbb{E}\left[f\left(W_{n}\right) W_{n} I_{n}\right]-\mathbb{E}\left[f^{\prime}\left(W_{n}\right) I_{n}\right]\right| \\
& \leq 2\left|\mathbb{E}\left[f\left(W_{n}\right) W_{n} I_{n}\right]-\mathbb{E}\left[f^{\prime}\left(W_{n}\right) I_{n}\right]\right|
\end{aligned}
$$

Poisson space representation

Define

$$
W_{n}:=\frac{\sum_{p \in \mathcal{P}_{n}} \psi(p) \xi_{p}-\mu_{n}}{\sigma_{n}}
$$

y $I_{n}:=\mathbb{1}_{A_{n}}$. One can verify that

$$
\begin{aligned}
\left|\mathbb{E}\left[Z_{n} f\left(W_{n}\right)-f^{\prime}\left(W_{n}\right) \mid A_{n}\right]\right| & =\mathbb{P}\left[A_{n}\right]^{-1}\left|\mathbb{E}\left[f\left(W_{n}\right) W_{n} I_{n}\right]-\mathbb{E}\left[f^{\prime}\left(W_{n}\right) I_{n}\right]\right| \\
& \leq 2\left|\mathbb{E}\left[f\left(W_{n}\right) W_{n} I_{n}\right]-\mathbb{E}\left[f^{\prime}\left(W_{n}\right) I_{n}\right]\right|
\end{aligned}
$$

Poisson space representation

Define

$$
W_{n}:=\frac{\sum_{p \in \mathcal{P}_{n}} \psi(p) \xi_{p}-\mu_{n}}{\sigma_{n}}
$$

y $I_{n}:=\mathbb{1}_{A_{n}}$. One can verify that

$$
\begin{aligned}
\left|\mathbb{E}\left[Z_{n} f\left(W_{n}\right)-f^{\prime}\left(W_{n}\right) \mid A_{n}\right]\right| & =\mathbb{P}\left[A_{n}\right]^{-1}\left|\mathbb{E}\left[f\left(W_{n}\right) W_{n} I_{n}\right]-\mathbb{E}\left[f^{\prime}\left(W_{n}\right) I_{n}\right]\right| \\
& \leq 2\left|\mathbb{E}\left[f\left(W_{n}\right) W_{n} I_{n}\right]-\mathbb{E}\left[f^{\prime}\left(W_{n}\right) I_{n}\right]\right|
\end{aligned}
$$

To estimate the right hand side, we represent W_{n} as a functional of a Poisson process.

Poisson space representation

Define

$$
W_{n}:=\frac{\sum_{p \in \mathcal{P}_{n}} \psi(p) \xi_{p}-\mu_{n}}{\sigma_{n}}
$$

y $I_{n}:=\mathbb{1}_{A_{n}}$. One can verify that

$$
\begin{aligned}
\left|\mathbb{E}\left[Z_{n} f\left(W_{n}\right)-f^{\prime}\left(W_{n}\right) \mid A_{n}\right]\right| & =\mathbb{P}\left[A_{n}\right]^{-1}\left|\mathbb{E}\left[f\left(W_{n}\right) W_{n} I_{n}\right]-\mathbb{E}\left[f^{\prime}\left(W_{n}\right) I_{n}\right]\right| \\
& \leq 2\left|\mathbb{E}\left[f\left(W_{n}\right) W_{n} I_{n}\right]-\mathbb{E}\left[f^{\prime}\left(W_{n}\right) I_{n}\right]\right|
\end{aligned}
$$

To estimate the right hand side, we represent W_{n} as a functional of a Poisson process. Consider the space

$$
\mathbb{X}:=\left\{(p, k): p \in \mathcal{P}, k \in \mathbb{N}_{0}\right\}
$$

Poisson space representation

Define

$$
W_{n}:=\frac{\sum_{p \in \mathcal{P}_{n}} \psi(p) \xi_{p}-\mu_{n}}{\sigma_{n}}
$$

y $I_{n}:=\mathbb{1}_{A_{n}}$. One can verify that

$$
\begin{aligned}
\left|\mathbb{E}\left[Z_{n} f\left(W_{n}\right)-f^{\prime}\left(W_{n}\right) \mid A_{n}\right]\right| & =\mathbb{P}\left[A_{n}\right]^{-1}\left|\mathbb{E}\left[f\left(W_{n}\right) W_{n} I_{n}\right]-\mathbb{E}\left[f^{\prime}\left(W_{n}\right) I_{n}\right]\right| \\
& \leq 2\left|\mathbb{E}\left[f\left(W_{n}\right) W_{n} I_{n}\right]-\mathbb{E}\left[f^{\prime}\left(W_{n}\right) I_{n}\right]\right|
\end{aligned}
$$

To estimate the right hand side, we represent W_{n} as a functional of a Poisson process. Consider the space

$$
\mathbb{X}:=\left\{(p, k): p \in \mathcal{P}, k \in \mathbb{N}_{0}\right\}
$$

Let η be a Poisson point process over \mathbb{X}, with intensity $\lambda: \mathbb{X} \rightarrow \mathbb{R}_{+}$given by

$$
\lambda(p, k)=\frac{1}{k p^{k}}, \quad \text { para } p \in \mathcal{P}, k \in \mathbb{N}
$$

Stein's method

Using characteristic functions, one can show that

$$
\begin{equation*}
W_{n} \stackrel{\text { Law }}{=} \tilde{\eta}\left(\rho_{n}\right), \tag{6}
\end{equation*}
$$

where $\tilde{\eta}=\eta(p, k)-\mathbb{E}[\eta(p, k)]$ is the compensation of $\eta(p, k)$ and

$$
\begin{equation*}
\rho_{n}(k, p):=\sigma_{n}^{-1} k \psi(p) \mathbb{1}_{\left\{p \in \mathcal{P}_{n}\right\}} . \tag{7}
\end{equation*}
$$

Stein's method

Using characteristic functions, one can show that

$$
\begin{equation*}
W_{n} \stackrel{\text { Law }}{=} \tilde{\eta}\left(\rho_{n}\right), \tag{6}
\end{equation*}
$$

where $\tilde{\eta}=\eta(p, k)-\mathbb{E}[\eta(p, k)]$ is the compensation of $\eta(p, k)$ and

$$
\begin{equation*}
\rho_{n}(k, p):=\sigma_{n}^{-1} k \psi(p) \mathbb{1}_{\left\{p \in \mathcal{P}_{n}\right\}} . \tag{7}
\end{equation*}
$$

We will suppose that the identity holds pointwise.

Stein's method

Using characteristic functions, one can show that

$$
\begin{equation*}
W_{n} \stackrel{\text { Law }}{=} \tilde{\eta}\left(\rho_{n}\right), \tag{6}
\end{equation*}
$$

where $\tilde{\eta}=\eta(p, k)-\mathbb{E}[\eta(p, k)]$ is the compensation of $\eta(p, k)$ and

$$
\begin{equation*}
\rho_{n}(k, p):=\sigma_{n}^{-1} k \psi(p) \mathbb{1}_{\left\{p \in \mathcal{P}_{n}\right\}} . \tag{7}
\end{equation*}
$$

We will suppose that the identity holds pointwise. As a consequence, if $G_{n}(\eta)$ for some function G_{n},

Stein's method

Using characteristic functions, one can show that

$$
\begin{equation*}
W_{n} \stackrel{\text { Law }}{=} \tilde{\eta}\left(\rho_{n}\right), \tag{6}
\end{equation*}
$$

where $\tilde{\eta}=\eta(p, k)-\mathbb{E}[\eta(p, k)]$ is the compensation of $\eta(p, k)$ and

$$
\begin{equation*}
\rho_{n}(k, p):=\sigma_{n}^{-1} k \psi(p) \mathbb{1}_{\left\{p \in \mathcal{P}_{n}\right\}} . \tag{7}
\end{equation*}
$$

We will suppose that the identity holds pointwise. As a consequence, if $G_{n}(\eta)$ for some function G_{n},

$$
\begin{equation*}
\mathbb{E}\left[\tilde{\eta}\left(\rho_{n}\right) G_{n}(\eta)\right]=\int_{\mathbb{X}} \rho_{n}(x) \mathbb{E}\left[D_{x} G_{n}(\eta)\right] \lambda(d x) \tag{8}
\end{equation*}
$$

where $D_{x} G_{n}(\eta):=G_{n}\left(\eta+\delta_{x}\right)-G_{n}(\eta)$.

Stein' s formula

For the case where $G_{n}=f\left(W_{n}\right) I_{n}$, by the previous formula,

$$
\mathbb{E}\left[W_{n} f\left(W_{n}\right)\right]=\int_{\mathbb{X}} \rho_{n}(x) \mathbb{E}\left[D_{x} G_{n}(\eta)\right] \lambda(d x)
$$

Stein' s formula

For the case where $G_{n}=f\left(W_{n}\right) I_{n}$, by the previous formula,

$$
\mathbb{E}\left[W_{n} f\left(W_{n}\right)\right]=\int_{\mathbb{X}} \rho_{n}(x) \mathbb{E}\left[D_{x} G_{n}(\eta)\right] \lambda(d x)
$$

One can verify the approximation $D_{x}\left(f\left(W_{n}\right) I_{n}\right) \approx f^{\prime}\left(W_{n}\right) \rho_{n}(x) I_{n}$, so that

$$
\mathbb{E}\left[W_{n} f\left(W_{n}\right) I_{n}\right] \approx \int_{\mathbb{X}} \rho_{n}(x)^{2} \mathbb{E}\left[f^{\prime}\left(W_{n}\right) I_{n}\right] \lambda(d x)=\mathbb{E}\left[f^{\prime}\left(W_{n}\right) I_{n}\right]
$$

Stein's method

From the above analysis we get

$$
d_{1}\left(Z_{n}, \mathcal{N}\right)
$$

The result follows from a suitable measurement of the error of the approximations.

Stein's method

From the above analysis we get

$$
d_{1}\left(Z_{n}, \mathcal{N}\right) \approx d_{1}\left(\operatorname{Law}\left(W_{n} \mid A_{n}\right), \mathcal{N}\right)
$$

The result follows from a suitable measurement of the error of the approximations.

Stein's method

From the above analysis we get

$$
\begin{aligned}
d_{1}\left(Z_{n}, \mathcal{N}\right) & \approx d_{1}\left(\operatorname{Law}\left(W_{n} \mid A_{n}\right), \mathcal{N}\right) \\
& \leq\left|\mathbb{E}\left[W_{n} f\left(W_{n}\right)-f^{\prime}\left(W_{n}\right) \mid A_{n}\right]\right|
\end{aligned}
$$

The result follows from a suitable measurement of the error of the approximations.

Stein's method

From the above analysis we get

$$
\begin{aligned}
d_{1}\left(Z_{n}, \mathcal{N}\right) & \approx d_{1}\left(\operatorname{Law}\left(W_{n} \mid A_{n}\right), \mathcal{N}\right) \\
& \leq\left|\mathbb{E}\left[W_{n} f\left(W_{n}\right)-f^{\prime}\left(W_{n}\right) \mid A_{n}\right]\right| \\
& \leq 2\left|\mathbb{E}\left[f\left(W_{n}\right) W_{n} I_{n}\right]-\mathbb{E}\left[f^{\prime}\left(W_{n}\right) I_{n}\right]\right|
\end{aligned}
$$

The result follows from a suitable measurement of the error of the approximations.

Stein's method

From the above analysis we get

$$
\begin{aligned}
d_{1}\left(Z_{n}, \mathcal{N}\right) & \approx d_{1}\left(\operatorname{Law}\left(W_{n} \mid A_{n}\right), \mathcal{N}\right) \\
& \leq\left|\mathbb{E}\left[W_{n} f\left(W_{n}\right)-f^{\prime}\left(W_{n}\right) \mid A_{n}\right]\right| \\
& \leq 2\left|\mathbb{E}\left[f\left(W_{n}\right) W_{n} I_{n}\right]-\mathbb{E}\left[f^{\prime}\left(W_{n}\right) I_{n}\right]\right| \approx 0
\end{aligned}
$$

The result follows from a suitable measurement of the error of the approximations.

Poisson case

Theorem (Chen, Jaramillo y Yang)

Suppose that

$$
\begin{equation*}
\lambda_{n}:=\sum_{p \in \mathcal{P}_{n}} \frac{\psi(p)}{p-1}>0, \quad n \in \mathbb{N} . \tag{9}
\end{equation*}
$$

Poisson case

Theorem (Chen, Jaramillo y Yang)

Suppose that

$$
\begin{equation*}
\lambda_{n}:=\sum_{p \in \mathcal{P}_{n}} \frac{\psi(p)}{p-1}>0, \quad n \in \mathbb{N} . \tag{9}
\end{equation*}
$$

Let M_{n} be a Poisson random variable with intensity λ_{n}. Then,

$$
\begin{equation*}
d_{T V}\left(\psi\left(J_{n}\right), M_{n}\right) \leq \frac{\gamma_{1}}{\sqrt{\lambda_{n}}}+\frac{\gamma_{2}}{\lambda_{n}}+\frac{2 \gamma_{3}}{\lambda_{n}} \sum_{p \in \mathcal{P}_{n}} \frac{|\psi(p)-1|}{p} . \tag{10}
\end{equation*}
$$

for $\gamma_{1}, \ldots, \gamma_{3}$ explicit in terms of ψ.

References

嗇 Chen L., Jaramillo A., Yang X. A probabilistic approach to the Erdös-Kac theorem for additive functions. Soon in Arxiv.

囯 R. Arratia. On the amount of dependence in the prime factorization of a uniform random integer. In Contemporary combinatorics, volume 10 of Bolyai Soc. Math. Stud., pages 29-91. János Bolyai Math. Soc., Budapest, 2002.
(R. D. Barbour, E. Kowalski, and A. Nikeghbali. Mod-discrete expansions. Probab. Theory Related Fields, 158(3-4):859-893, 2014.
(Adam J. Harper. Two new proofs of the Erdös-Kac theorem, with bound on the rate of convergence, by Stein's method for distributional approximations. Math. Proc. Cambridge Philos. Soc., 147(1):95-114, 2009.

