Non-crossing partitions and free cumulants

Arturo Jaramillo Gil

Université du Luxembourg
National University of Singapore

Basic definitions

Denote by $\mathcal{P}(n)$ the set of partitions of $[n]:=\{1, \ldots, n\}$. For $\pi \in \mathcal{P}(n)$, define the relation \sim_{π} by: $p \sim_{\pi} q$ if p, q belong to the same block.

Basic definitions

Denote by $\mathcal{P}(n)$ the set of partitions of $[n]:=\{1, \ldots, n\}$. For $\pi \in \mathcal{P}(n)$, define the relation \sim_{π} by: $p \sim_{\pi} q$ if p, q belong to the same block.

Definition

We call a partition $\pi \in \mathcal{P}(n)$ crossing if there exist $p_{1}<q_{1}<p_{2}<q_{2}$ in [n] such that $p_{1} \sim_{\pi} p_{2} \not \chi_{\pi} q_{1} \sim_{\pi} q_{2}$.

Basic definitions

Denote by $\mathcal{P}(n)$ the set of partitions of $[n]:=\{1, \ldots, n\}$. For $\pi \in \mathcal{P}(n)$, define the relation \sim_{π} by: $p \sim_{\pi} q$ if p, q belong to the same block.

Definition

We call a partition $\pi \in \mathcal{P}(n)$ crossing if there exist $p_{1}<q_{1}<p_{2}<q_{2}$ in [n] such that $p_{1} \sim_{\pi} p_{2} \not \chi_{\pi} q_{1} \sim_{\pi} q_{2}$. Graphically,

Basic definitions

Denote by $\mathcal{P}(n)$ the set of partitions of $[n]:=\{1, \ldots, n\}$. For $\pi \in \mathcal{P}(n)$, define the relation \sim_{π} by: $p \sim_{\pi} q$ if p, q belong to the same block.

Definition

We call a partition $\pi \in \mathcal{P}(n)$ crossing if there exist $p_{1}<q_{1}<p_{2}<q_{2}$ in [n] such that $p_{1} \sim_{\pi} p_{2} \not \chi_{\pi} q_{1} \sim_{\pi} q_{2}$. Graphically,

The set of all non-crossing partitions of $[n]$ will be denoted by $N C(n)$.

Examples of non-crossing partitions

Example

The partition $\{\{1,4,5,7\},\{2,3\},\{6\}\}$ of [7] is non-crossing, and it's diagram has the following shape

Examples of non-crossing partitions

Example

The partition $\{\{1,4,5,7\},\{2,3\},\{6\}\}$ of $[7]$ is non-crossing, and it's diagram has the following shape

There is an alternative graphical representation (see the draw)...

Examples of non-crossing partitions

Example

The partition $\{\{1,3,5\},\{2,4\}\}$ of $[5]$ is crossing, and its diagram has the following shape

Counting $|N C(n)|$

Proposition

For every $n \in \mathbb{N},|N C(n)|=C_{n}:=\frac{1}{n+1}\binom{2 n}{n}$.

Counting $|N C(n)|$

Proposition

For every $n \in \mathbb{N},|N C(n)|=C_{n}:=\frac{1}{n+1}\binom{2 n}{n}$.
Proof: Let $D_{n}:=|N C(n)|$ and $D_{0}:=1$. It suffices to show that

$$
D_{n}=\sum_{i=1}^{n} D_{i-1} D_{n-i} .
$$

Counting $|N C(n)|$

Proposition

For every $n \in \mathbb{N},|N C(n)|=C_{n}:=\frac{1}{n+1}\binom{2 n}{n}$.
Proof: Let $D_{n}:=|N C(n)|$ and $D_{0}:=1$. It suffices to show that

$$
D_{n}=\sum_{i=1}^{n} D_{i-1} D_{n-i} .
$$

Let $N C^{(i)}(n)$ be the partitions $\pi \in N C(n)$, for which the block containing 1 , contains i as its largest element.

Counting $|N C(n)|$

Proposition

For every $n \in \mathbb{N},|N C(n)|=C_{n}:=\frac{1}{n+1}\binom{2 n}{n}$.
Proof: Let $D_{n}:=|N C(n)|$ and $D_{0}:=1$. It suffices to show that

$$
D_{n}=\sum_{i=1}^{n} D_{i-1} D_{n-i} .
$$

Let $N C^{(i)}(n)$ be the partitions $\pi \in N C(n)$, for which the block containing 1 , contains i as its largest element. Then,

$$
N C^{(i)}(n) \cong N C^{(i)}(i) \times N C(n-i) \cong N C(i-1) \times N C(n-i)
$$

Posets and lattices

Let P be a finite partially ordered set (poset). Let $\pi, \sigma \in P$.

1. If the set $\{\tau \in P \mid \tau \geq \pi$ and $\tau \geq \sigma\}$ is non-empty and has a unique minimum τ_{0}, we say that τ_{0} is the join of π and τ, denoted $\pi \vee \sigma$.
2. If the set $\{\rho \in P \mid \rho \leq \pi$ and $\rho \geq \sigma\}$ is non-empty and has a unique minimum τ_{0}, we say that ρ_{0} is the meet of π and τ, denoted $\pi \vee \sigma$.

If every two elements of P have a meet and a join, we say that P is a lattice.

Möbius inversion

Let P be a finite poset. There exists a function $\mu(\cdot, \cdot):\left\{(\sigma, \pi) \in P^{2} \mid \sigma \leq \pi\right\}$ such that

Möbius inversion

Let P be a finite poset. There exists a function $\mu(\cdot, \cdot):\left\{(\sigma, \pi) \in P^{2} \mid \sigma \leq \pi\right\}$ such that for every two functions $f, g: P \rightarrow \mathbb{C}$, the statements

$$
f(\pi)=\sum_{\substack{\sigma \in P \\ \sigma \leq \pi}} g(\sigma)
$$

for all $\pi \in P$ and

$$
g(\pi)=\sum_{\substack{\sigma \in P \\ \sigma \leq \pi}} f(\sigma) \mu(\sigma, \pi)
$$

for all $\pi \in P$ are equivalent.

The lattice structure of $N C(n)$

The set $N C(n)$ can be endowed with the "reverse refinement" poset structure, under which $0_{n}=\{\{1\}, \ldots,\{n\}\}$ and $1_{n}:=\{[n]\}$.

The lattice structure of $N C(n)$

The set $N C(n)$ can be endowed with the "reverse refinement" poset structure, under which $0_{n}=\{\{1\}, \ldots,\{n\}\}$ and $1_{n}:=\{[n]\}$.

Proposition

The partial order induced by "reverse refinement" induces a lattice structure on NC(n).

The lattice structure of $N C(n)$

The set $N C(n)$ can be endowed with the "reverse refinement" poset structure, under which $0_{n}=\{\{1\}, \ldots,\{n\}\}$ and $1_{n}:=\{[n]\}$.

Proposition

The partial order induced by "reverse refinement" induces a lattice structure on NC(n).

Proof: Since $N C(n)$ has a maximum 1_{n}, it suffices to show there is a meet $\pi \wedge \sigma$ for $\pi, \sigma \in N C(n)$.

The lattice structure of $N C(n)$

The set $N C(n)$ can be endowed with the "reverse refinement" poset structure, under which $0_{n}=\{\{1\}, \ldots,\{n\}\}$ and $1_{n}:=\{[n]\}$.

Proposition

The partial order induced by "reverse refinement" induces a lattice structure on NC(n).

Proof: Since $N C(n)$ has a maximum 1_{n}, it suffices to show there is a meet $\pi \wedge \sigma$ for $\pi, \sigma \in N C(n)$. Indeed, if $\pi=\left\{V_{1}, \ldots, V_{r}\right\}$ and $\sigma=\left\{W_{1}, \ldots, W_{s}\right\}$, then

$$
\pi \wedge \sigma:=\left\{V_{i} \cap W_{j} \mid i \in[r], j \in[s], \quad V_{i} \cap W_{j} \neq \emptyset\right\}
$$

defines the largest partition in $N C(n)$, which is smaller than π and σ.

The lattice structure of $N C(n)$

The following picture shows the Hasse diagram of NC(4).

The lattice structure of $N C(n)$

The following picture shows the Hasse diagram of NC(4).

Notice the symmetry on the number of partitions of a given rank.

The lattice structure of $N C(n)$

The following picture shows the Hasse diagram of NC(4).

Notice the symmetry on the number of partitions of a given rank. This property reflects the fact that $N C(n)$ is actually self-dual. This property doesn't hold for the set of partitions $\mathcal{P}(n)$.

Kreweras complementation

Here we show a particular anti-isomorphism from $N C(n)$ to itself

Kreweras complementation

Here we show a particular anti-isomorphism from $N C(n)$ to itself

Definition

The complementation map $K: N C(n) \rightarrow N C(n)$ is defined as follows.
We consider additional numbers $\overline{1}, \ldots, \bar{n}$ and interlace them with $1, \ldots, n$ in the following alternating way

$$
1 \overline{1} 2 \overline{2} \ldots n \bar{n} .
$$

Kreweras complementation

Here we show a particular anti-isomorphism from $N C(n)$ to itself

Definition

The complementation map $K: N C(n) \rightarrow N C(n)$ is defined as follows.
We consider additional numbers $\overline{1}, \ldots, \bar{n}$ and interlace them with $1, \ldots, n$ in the following alternating way

$$
1 \overline{1} 2 \overline{2} \ldots n \bar{n} .
$$

Let π be a non-crossing partition of $\{1, \ldots, n\}$. Then its Kreweras complement $K(\pi) \in N C(\overline{1}, \overline{2}, \ldots, \bar{n}) \cong N C(n)$ is defined to be the biggest element among those $\sigma \in N C(\overline{1}, \ldots, \bar{n})$ which have the property that

$$
\pi \cup \sigma \in N C(1, \overline{1}, \ldots, n, \bar{n})
$$

Kreweras complementation

Example

Consider the partition $\pi:=127|3| 46|5| 8 \in N C(8)$.

Kreweras complementation

Example

Consider the partition $\pi:=127|3| 46|5| 8 \in N C(8)$. For the complement $K(\pi)$ we get $K(\pi)=1|236| 45 \mid 78$, as can be seen from the graphical representation:

The factorization of intervals in $N C(n)$

Theorem

For any $\pi, \sigma \in N C(n)$ with $\pi \leq \sigma$, there exists a "canonical" sequence $\left(k_{1}, \ldots, k_{n}\right)$ of non-negative integers such that we have the lattice-decomposition

$$
[\pi, \sigma] \cong N C(1)^{k_{1}} \times N C(2)^{k_{2}} \times \cdots \times N C(n)^{k_{n}} .
$$

The factorization of intervals in $N C(n)$

Theorem

For any $\pi, \sigma \in N C(n)$ with $\pi \leq \sigma$, there exists a "canonical" sequence
$\left(k_{1}, \ldots, k_{n}\right)$ of non-negative integers such that we have the lattice-decomposition

$$
[\pi, \sigma] \cong N C(1)^{k_{1}} \times N C(2)^{k_{2}} \times \cdots \times N C(n)^{k_{n}} .
$$

Proof The proof actually looks like an algorithm. We clearly have

$$
[\pi, \sigma] \cong \prod_{V \in \sigma}\left[\left.\pi\right|_{V},\left.\sigma\right|_{V}\right] .
$$

How the factorization works:

1. By identifying V with $\{1, \ldots,|V|\}$, we identify $\left[\left.\pi\right|_{V},\left.\sigma\right|_{V}\right]$ to an interval of the form $\left[\tau, 1_{|V|}\right]$ (assume $|V|=k$ to simplify notation).

How the factorization works:

1. By identifying V with $\{1, \ldots,|V|\}$, we identify $\left[\left.\pi\right|_{V},\left.\sigma\right|_{V}\right]$ to an interval of the form $\left[\tau, 1_{|V|}\right]$ (assume $|V|=k$ to simplify notation).
2. To factorize $\left[\tau, 1_{k}\right]$, take complementation to conclude that $\left[\tau, 1_{k}\right]$ is anti-isomorphic to $[K(\tau), K(1)]=[0, K(\tau)]$.

How the factorization works:

1. By identifying V with $\{1, \ldots,|V|\}$, we identify $\left[\left.\pi\right|_{V},\left.\sigma\right|_{V}\right]$ to an interval of the form $\left[\tau, 1_{|V|}\right]$ (assume $|V|=k$ to simplify notation).
2. To factorize $\left[\tau, 1_{k}\right]$, take complementation to conclude that $\left[\tau, 1_{k}\right]$ is anti-isomorphic to $[K(\tau), K(1)]=[0, K(\tau)]$.
3. As before, we make $[0, K(\tau)] \cong \prod_{w \in K(\tau)}\left[0_{k}|w, K(\tau)| w\right]$.

How the factorization works:

1. By identifying V with $\{1, \ldots,|V|\}$, we identify $\left[\left.\pi\right|_{V},\left.\sigma\right|_{V}\right]$ to an interval of the form $\left[\tau, 1_{|V|}\right]$ (assume $|V|=k$ to simplify notation).
2. To factorize $\left[\tau, 1_{k}\right]$, take complementation to conclude that $\left[\tau, 1_{k}\right]$ is anti-isomorphic to $[K(\tau), K(1)]=[0, K(\tau)]$.
3. As before, we make $[0, K(\tau)] \cong \prod_{w \in K(\tau)}\left[0_{k}|w, K(\tau)| w\right]$.

Since each $\left[0_{k}|w, K(\tau)| w\right]=N C(W) \cong N C(|W|)$, and hence $\left[\tau, 1_{k}\right]$ is anti-isomorphic to $\prod_{W \in K(\tau)} N C(|W|)$. The latter is anti-isomorphic to itself, and we get the desired result.

Möbius function in NC(n)

Let μ_{n} denote the Möbius function in $N C(n)$, and denote $s_{n}:=\mu_{n}(\hat{0}, \hat{1})$.

Möbius function in NC(n)

Let μ_{n} denote the Möbius function in $N C(n)$, and denote $s_{n}:=\mu_{n}(\hat{0}, \hat{1})$. Then, if

$$
[\pi, \sigma] \cong N C(1)^{k_{1}} \times N C(2)^{k_{2}} \times \cdots \times N C(n)^{k_{n}}
$$

Möbius function in NC(n)

Let μ_{n} denote the Möbius function in $N C(n)$, and denote $s_{n}:=\mu_{n}(\hat{0}, \hat{1})$. Then, if

$$
[\pi, \sigma] \cong N C(1)^{k_{1}} \times N C(2)^{k_{2}} \times \cdots \times N C(n)^{k_{n}}
$$

we have

$$
\mu_{n}(\pi, \sigma)=s_{1}^{k_{1}} \cdots s_{n}^{k_{n}} .
$$

Möbius function in NC(n)

Let μ_{n} denote the Möbius function in $N C(n)$, and denote $s_{n}:=\mu_{n}(\hat{0}, \hat{1})$. Then, if

$$
[\pi, \sigma] \cong N C(1)^{k_{1}} \times N C(2)^{k_{2}} \times \cdots \times N C(n)^{k_{n}}
$$

we have

$$
\mu_{n}(\pi, \sigma)=s_{1}^{k_{1}} \cdots s_{n}^{k_{n}} .
$$

Moreover,

Proposition

For every $n \geq 1, \mu_{n}\left(0_{n}, 1_{n}\right)$ is a signed Catalan number

$$
\mu_{n}\left(0_{n}, 1_{n}\right)=(-1)^{n-1} C_{n-1} .
$$

Non-commutative Probability Spaces

In a "Classical Probability Space", consider bounded real random variables $X_{1}, \ldots, X_{n} \in L^{\infty}(\Omega, \mathbb{P})$.

Non-commutative Probability Spaces

In a "Classical Probability Space", consider bounded real random variables $X_{1}, \ldots, X_{n} \in L^{\infty}(\Omega, \mathbb{P})$. To know the joint law of (X, Y), when X, Y are independent, we only require to use the property

$$
\mathbb{E}\left[X^{n} Y^{m}\right]=\mathbb{E}\left[X^{n}\right]\left[Y^{m}\right] .
$$

Non-commutative Probability Spaces

In a "Classical Probability Space", consider bounded real random variables $X_{1}, \ldots, X_{n} \in L^{\infty}(\Omega, \mathbb{P})$. To know the joint law of (X, Y), when X, Y are independent, we only require to use the property

$$
\mathbb{E}\left[X^{n} Y^{m}\right]=\mathbb{E}\left[X^{n}\right]\left[Y^{m}\right] .
$$

A particular example of this property:

$$
\mathbb{E}\left[X^{2} Y X Y^{7} X^{6} Y^{10}\right]=\mathbb{E}\left[X^{9}\right] \mathbb{E}\left[Y^{18}\right] .
$$

Non-commutative Probability Spaces

In a "Classical Probability Space", consider bounded real random variables $X_{1}, \ldots, X_{n} \in L^{\infty}(\Omega, \mathbb{P})$. To know the joint law of (X, Y), when X, Y are independent, we only require to use the property

$$
\mathbb{E}\left[X^{n} Y^{m}\right]=\mathbb{E}\left[X^{n}\right]\left[Y^{m}\right] .
$$

A particular example of this property:

$$
\mathbb{E}\left[X^{2} Y X Y^{7} X^{6} Y^{10}\right]=\mathbb{E}\left[X^{9}\right] \mathbb{E}\left[Y^{18}\right] .
$$

If the variables X, Y are non-commutative random objects, we have more options for deciding what is a "reasonable" notion of independence, i.e. what to put in the right hand side for the equation

$$
\mathbb{E}\left[X^{2} Y X Y^{7} X^{6} Y^{10}\right]=
$$

\qquad

Non-commutative Probability Spaces

Definition

A non-commutative *-probability space is a pair (\mathcal{A}, φ) where \mathcal{A} is a unital ${ }^{*}$-algebra (namely, a vector space with a multiplication and an involution $a \mapsto a^{*}$) over \mathbb{C} and $\varphi: \mathcal{A} \rightarrow \mathbb{C}$ is a linear functional such that $\varphi\left(1_{\mathcal{A}}\right)=1$. An element $a \in \mathcal{A}$ is called a (non-commutative) random variable.

Non-commutative Probability Spaces

Definition

A non-commutative *-probability space is a pair (\mathcal{A}, φ) where \mathcal{A} is a unital ${ }^{*}$-algebra (namely, a vector space with a multiplication and an involution $a \mapsto a^{*}$) over \mathbb{C} and $\varphi: \mathcal{A} \rightarrow \mathbb{C}$ is a linear functional such that $\varphi\left(1_{\mathcal{A}}\right)=1$. An element $a \in \mathcal{A}$ is called a (non-commutative) random variable. We usually also impose $\varphi\left(a a^{*}\right) \geq 0$.

Non-commutative Probability Spaces

Definition

A non-commutative *-probability space is a pair (\mathcal{A}, φ) where \mathcal{A} is a unital ${ }^{*}$-algebra (namely, a vector space with a multiplication and an involution $a \mapsto a^{*}$) over \mathbb{C} and $\varphi: \mathcal{A} \rightarrow \mathbb{C}$ is a linear functional such that $\varphi\left(1_{\mathcal{A}}\right)=1$. An element $a \in \mathcal{A}$ is called a (non-commutative) random variable. We usually also impose $\varphi\left(a a^{*}\right) \geq 0$.

We define the (algebraic) distribution of a_{1}, \ldots, a_{n}, as the linear functional $\mu_{a_{1}, \ldots, a_{n}}: \mathbb{C}\left\langle X_{1}, \ldots, X_{n}\right\rangle \rightarrow \mathbb{C} \rightarrow$ given by

$$
\mu_{a_{1}, \ldots, a_{n}}\left(X_{i_{1}}^{m_{1}} \ldots X_{i_{k}}^{m_{k}}\right):=\varphi\left(a_{i_{1}}^{m_{1}} \ldots a_{i_{k}}^{m_{k}}\right) .
$$

Free independence

Definition

Let (\mathcal{A}, φ) be a non-commutative probability space and I be an index set. Let, for each $i \in I, \mathcal{A}_{i} \subset \mathcal{A}$ be a unital algebra. The subalgebras $\left\{\mathcal{A}_{i}\right\}_{i \in I}$ are freely independent, if

$$
\varphi\left(a_{1} \cdots a_{k}\right)=0
$$

whenever we have the following

Free independence

Definition

Let (\mathcal{A}, φ) be a non-commutative probability space and I be an index set. Let, for each $i \in I, \mathcal{A}_{i} \subset \mathcal{A}$ be a unital algebra. The subalgebras $\left\{\mathcal{A}_{i}\right\}_{i \in I}$ are freely independent, if

$$
\varphi\left(a_{1} \cdots a_{k}\right)=0
$$

whenever we have the following

1. $a_{j} \in \mathcal{A}_{i(j)}(i(j) \in I)$ for all $j=1, \ldots, k$.

Free independence

Definition

Let (\mathcal{A}, φ) be a non-commutative probability space and I be an index set. Let, for each $i \in I, \mathcal{A}_{i} \subset \mathcal{A}$ be a unital algebra. The subalgebras $\left\{\mathcal{A}_{i}\right\}_{i \in I}$ are freely independent, if

$$
\varphi\left(a_{1} \cdots a_{k}\right)=0
$$

whenever we have the following

1. $a_{j} \in \mathcal{A}_{i(j)}(i(j) \in I)$ for all $j=1, \ldots, k$.
2. $\varphi\left(a_{j}\right)=0$ for all $j=1, \ldots, k$.

Free independence

Definition

Let (\mathcal{A}, φ) be a non-commutative probability space and I be an index set. Let, for each $i \in I, \mathcal{A}_{i} \subset \mathcal{A}$ be a unital algebra. The subalgebras $\left\{\mathcal{A}_{i}\right\}_{i \in I}$ are freely independent, if

$$
\varphi\left(a_{1} \cdots a_{k}\right)=0
$$

whenever we have the following

1. $a_{j} \in \mathcal{A}_{i(j)}(i(j) \in I)$ for all $j=1, \ldots, k$.
2. $\varphi\left(a_{j}\right)=0$ for all $j=1, \ldots, k$.
3. and neighboring elements are from different subalgebras, i.e. $i(1) \neq i(2) \neq \cdots i(k-1) \neq i(k)$.

Partitioned moments

Definition

Define the sequence of linear functionals $\left\{\varphi_{n}\right\}_{n \in \mathbb{N}}$ in \mathcal{A} via $\varphi_{n}\left(a_{1}, \ldots, a_{n}\right):=\varphi\left(a_{1} \cdots a_{n}\right)$. If $\pi \in N C(n)$, define as well the partitioned moments by the formula

$$
\varphi_{\pi}\left[a_{1}, \ldots, a_{n}\right]:=\prod_{V \in \pi} \varphi(V)\left[a_{1}, \ldots, a_{n}\right]
$$

where $\varphi(V)\left[a_{1}, \ldots, a_{n}\right]$ is defined by

$$
\varphi(V)\left[a_{1}, \ldots, a_{n}\right]:=\varphi_{n}\left(a_{i_{1}}, \ldots, a_{i_{s}}\right), \quad \text { for } V=\left\{i_{1}, \ldots, i_{s}\right\} .
$$

Free cumulants

Definition

We define the free cumulants $\left\{\kappa_{\pi}\right\}_{\pi \in N C(n)}$, as the linear functionals $\kappa_{\pi}: \mathcal{A}^{n} \rightarrow \mathbb{C}$, defined by

$$
\kappa_{\pi}\left[a_{1}, \ldots, a_{n}\right]:=\sum_{\substack{\sigma \in N C(n) \\ \sigma \leq \pi}} \varphi_{\sigma}\left[a_{1}, \ldots, a_{n}\right] \mu(\sigma, \pi),
$$

Free cumulants

Definition

We define the free cumulants $\left\{\kappa_{\pi}\right\}_{\pi \in N C(n)}$, as the linear functionals $\kappa_{\pi}: \mathcal{A}^{n} \rightarrow \mathbb{C}$, defined by

$$
\kappa_{\pi}\left[a_{1}, \ldots, a_{n}\right]:=\sum_{\substack{\sigma \in \in C(n) \\ \sigma \leq \pi}} \varphi_{\sigma}\left[a_{1}, \ldots, a_{n}\right] \mu(\sigma, \pi),
$$

or equivalently, by

$$
\varphi\left(a_{1} \cdots a_{n}\right)=\sum_{\sigma \in N C(n)} \kappa_{\pi}\left[a_{1}, \ldots, a_{n}\right] .
$$

We will also use the notation $\kappa_{n}:=\kappa_{1_{n}}$.

What is so special about free cumulants?

Theorem
Let (\mathcal{A}, φ) be a non-commutative probability space, and let $\left\{\kappa_{n}\right\}_{n \in \mathbb{N}}$ be the corresponding cumulants. Then the following two statements are equivalent

1. $\left\{\mathcal{A}_{i}\right\}_{i \in I}$ are freely independent.
2. For all $n \geq 2$ and $a_{j} \in \mathcal{A}_{i(j)}$ with $(j=1, \ldots, n)$ and $i(1), \ldots i(n) \in I$, we have $\kappa_{n}\left(a_{1}, \ldots, a_{n}\right)=0$ whenever there exist $1 \leq k, I \leq n$ with $i(I) \neq i(k)$.

What is so special about free cumulants?

Theorem

Let (\mathcal{A}, φ) be a non-commutative probability space, and let $\left\{\kappa_{n}\right\}_{n \in \mathbb{N}}$ be the corresponding cumulants. Then the following two statements are equivalent

1. $\left\{\mathcal{A}_{i}\right\}_{i \in I}$ are freely independent.
2. For all $n \geq 2$ and $a_{j} \in \mathcal{A}_{i(j)}$ with $(j=1, \ldots, n)$ and $i(1), \ldots i(n) \in I$, we have $\kappa_{n}\left(a_{1}, \ldots, a_{n}\right)=0$ whenever there exist $1 \leq k, I \leq n$ with $i(I) \neq i(k)$.

In particular, if a, b are free random variables, then

$$
\kappa_{n}^{a+b}=\kappa_{n}^{a}+\kappa_{n}^{b} .
$$

So we have a very straightforward method for determining the distribution of $a+b$ if they are freely independent!

Conclusion:

Although there is a lot more to say about $N C(n)$ and about free independence, at least, as very rough conclusion of the talk, we observe that cumulants are easy to handle for free random variables, and the moments of free random variables (which, in principle looked considerably hard to describe) can be written in terms of cumulants, provided that we understand well the structure of the lattice $N C(n)$.

Bibliography

目 Lectures on the combinatorics of free probability (Cambridge U. Press, 2006), pp. 135-194 (mainly pp. 173-194)

