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Basic definitions

Denote by P(n) the set of partitions of [n] := {1, . . . , n}. For π ∈ P(n),
define the relation ∼π by: p ∼π q if p, q belong to the same block.

Definition
We call a partition π ∈ P(n) crossing if there exist p1 < q1 < p2 < q2 in
[n] such that p1 ∼π p2 6∼π q1 ∼π q2. Graphically,

· · · p1 · · · q1 · · · p2 · · · q2 · · ·

The set of all non-crossing partitions of [n] will be denoted by NC(n).

2



Basic definitions

Denote by P(n) the set of partitions of [n] := {1, . . . , n}. For π ∈ P(n),
define the relation ∼π by: p ∼π q if p, q belong to the same block.

Definition
We call a partition π ∈ P(n) crossing if there exist p1 < q1 < p2 < q2 in
[n] such that p1 ∼π p2 6∼π q1 ∼π q2.

Graphically,

· · · p1 · · · q1 · · · p2 · · · q2 · · ·

The set of all non-crossing partitions of [n] will be denoted by NC(n).

2



Basic definitions

Denote by P(n) the set of partitions of [n] := {1, . . . , n}. For π ∈ P(n),
define the relation ∼π by: p ∼π q if p, q belong to the same block.

Definition
We call a partition π ∈ P(n) crossing if there exist p1 < q1 < p2 < q2 in
[n] such that p1 ∼π p2 6∼π q1 ∼π q2. Graphically,

· · · p1 · · · q1 · · · p2 · · · q2 · · ·

The set of all non-crossing partitions of [n] will be denoted by NC(n).

2



Basic definitions

Denote by P(n) the set of partitions of [n] := {1, . . . , n}. For π ∈ P(n),
define the relation ∼π by: p ∼π q if p, q belong to the same block.

Definition
We call a partition π ∈ P(n) crossing if there exist p1 < q1 < p2 < q2 in
[n] such that p1 ∼π p2 6∼π q1 ∼π q2. Graphically,

· · · p1 · · · q1 · · · p2 · · · q2 · · ·

The set of all non-crossing partitions of [n] will be denoted by NC(n).

2



Examples of non-crossing partitions

Example
The partition {{1, 4, 5, 7}, {2, 3}, {6}} of [7] is non-crossing, and it’s
diagram has the following shape

1 2 3 4 5 6 7

There is an alternative graphical representation (see the draw)...
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Counting |NC(n)|

Proposition

For every n ∈ N, |NC(n)| = Cn := 1
n+1

(
2n
n

)
.

Proof: Let Dn := |NC(n)| and D0 := 1. It suffices to show that

Dn =
n∑

i=1
Di−1Dn−i .

Let NC (i)(n) be the partitions π ∈ NC(n), for which the block containing
1, contains i as its largest element. Then,

NC (i)(n) ∼= NC (i)(i)× NC(n − i) ∼= NC(i − 1)× NC(n − i)

�
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Posets and lattices

Let P be a finite partially ordered set (poset). Let π, σ ∈ P.

1. If the set {τ ∈ P | τ ≥ π and τ ≥ σ} is non-empty and has a
unique minimum τ0, we say that τ0 is the join of π and τ , denoted
π ∨ σ.

2. If the set {ρ ∈ P | ρ ≤ π and ρ ≥ σ} is non-empty and has a
unique minimum τ0, we say that ρ0 is the meet of π and τ , denoted
π ∨ σ.

If every two elements of P have a meet and a join, we say that P is a
lattice.
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Möbius inversion

Let P be a finite poset. There exists a function
µ(·, ·) : {(σ, π) ∈ P2 | σ ≤ π} such that

for every two functions
f , g : P → C, the statements

f (π) =
∑
σ∈P
σ≤π

g(σ)

for all π ∈ P and

g(π) =
∑
σ∈P
σ≤π

f (σ)µ(σ, π)

for all π ∈ P are equivalent.
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The lattice structure of NC(n)

The set NC(n) can be endowed with the “reverse refinement” poset
structure, under which 0n = {{1}, . . . , {n}} and 1n := {[n]}.

Proposition
The partial order induced by “reverse refinement” induces a lattice
structure on NC(n).

Proof: Since NC(n) has a maximum 1n, it suffices to show there is a
meet π ∧ σ for π, σ ∈ NC(n). Indeed, if π = {V1, . . . ,Vr} and
σ = {W1, . . . ,Ws}, then

π ∧ σ := {Vi ∩Wj | i ∈ [r ], j ∈ [s], Vi ∩Wj 6= ∅}

defines the largest partition in NC(n), which is smaller than π and σ. �
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The lattice structure of NC(n)

The following picture shows the Hasse diagram of NC(4).

Notice the symmetry on the number of partitions of a given rank. This
property reflects the fact that NC(n) is actually self-dual. This property
doesn’t hold for the set of partitions P(n).
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Kreweras complementation

Here we show a particular anti-isomorphism from NC(n) to itself

Definition
The complementation map K : NC(n)→ NC(n) is defined as follows.
We consider additional numbers 1, . . . , n and interlace them with 1, . . . , n
in the following alternating way

1122 . . . nn.

Let π be a non-crossing partition of {1, . . . , n}. Then its Kreweras
complement K (π) ∈ NC(1, 2, . . . , n) ∼= NC(n) is defined to be the
biggest element among those σ ∈ NC(1, . . . , n) which have the property
that

π ∪ σ ∈ NC(1, 1, . . . , n, n).
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Kreweras complementation

Example
Consider the partition π := 127|3|46|5|8 ∈ NC(8).

For the complement
K (π) we get K (π) = 1|236|45|78, as can be seen from the graphical
representation:

1 2 3 4 5 6 7 81 2 3 4 5 6 7 8
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The factorization of intervals in NC(n)

Theorem
For any π, σ ∈ NC(n) with π ≤ σ, there exists a “canonical” sequence
(k1, . . . , kn) of non-negative integers such that we have the
lattice-decomposition

[π, σ] ∼= NC(1)k1 × NC(2)k2 × · · · × NC(n)kn .

Proof The proof actually looks like an algorithm. We clearly have

[π, σ] ∼=
∏
V∈σ

[π|V , σ|V ].
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How the factorization works:

1. By identifying V with {1, . . . , |V |}, we identify [π|V , σ|V ] to an
interval of the form [τ, 1|V |] (assume |V | = k to simplify notation).

2. To factorize [τ, 1k ], take complementation to conclude that [τ, 1k ] is
anti-isomorphic to [K (τ),K (1)] = [0,K (τ)].

3. As before, we make [0,K (τ)] ∼=
∏

W∈K(τ)[0k |W ,K (τ)|W ].

Since each [0k |W ,K (τ)|W ] = NC(W ) ∼= NC(|W |), and hence [τ, 1k ] is
anti-isomorphic to

∏
W∈K(τ) NC(|W |). The latter is anti-isomorphic to

itself, and we get the desired result. �
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Möbius function in NC(n)

Let µn denote the Möbius function in NC(n), and denote sn := µn(0̂, 1̂).

Then, if
[π, σ] ∼= NC(1)k1 × NC(2)k2 × · · · × NC(n)kn ,

we have
µn(π, σ) = sk1

1 · · · skn
n .

Moreover,

Proposition
For every n ≥ 1, µn(0n, 1n) is a signed Catalan number

µn(0n, 1n) = (−1)n−1Cn−1.
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Non-commutative Probability Spaces

In a “Classical Probability Space”, consider bounded real random
variables X1, . . . ,Xn ∈ L∞(Ω,P).

To know the joint law of (X ,Y ), when
X ,Y are independent, we only require to use the property

E [X nY m] = E [X n] [Y m] .

A particular example of this property:

E
[
X 2YXY 7X 6Y 10] = E

[
X 9]E [Y 18] .

If the variables X ,Y are non-commutative random objects, we have more
options for deciding what is a “reasonable” notion of independence, i.e.
what to put in the right hand side for the equation

E
[
X 2YXY 7X 6Y 10] =

15
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Non-commutative Probability Spaces

Definition
A non-commutative *-probability space is a pair (A, ϕ) where A is a
unital *-algebra (namely, a vector space with a multiplication and an
involution a 7→ a∗) over C and ϕ : A → C is a linear functional such that
ϕ(1A) = 1. An element a ∈ A is called a (non-commutative) random
variable.

We usually also impose ϕ(aa∗) ≥ 0.

We define the (algebraic) distribution of a1, . . . , an, as the linear
functional µa1,...,an : C 〈X1, . . . ,Xn〉 → C→ given by

µa1,...,an (X m1
i1 . . .X mk

ik ) := ϕ(am1
i1 . . . amk

ik ).
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Free independence

Definition
Let (A, ϕ) be a non-commutative probability space and I be an index set.
Let, for each i ∈ I, Ai ⊂ A be a unital algebra. The subalgebras {Ai}i∈I

are freely independent, if

ϕ(a1 · · · ak) = 0,

whenever we have the following

1. aj ∈ Ai(j) (i(j) ∈ I) for all j = 1, . . . , k.
2. ϕ(aj) = 0 for all j = 1, . . . , k.
3. and neighboring elements are from different subalgebras, i.e.

i(1) 6= i(2) 6= · · · i(k − 1) 6= i(k).
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Partitioned moments

Definition
Define the sequence of linear functionals {ϕn}n∈N in A via
ϕn(a1, . . . , an) := ϕ(a1 · · · an). If π ∈ NC(n), define as well the
partitioned moments by the formula

ϕπ[a1, . . . , an] :=
∏
V∈π

ϕ(V )[a1, . . . , an],

where ϕ(V )[a1, . . . , an] is defined by

ϕ(V )[a1, . . . , an] := ϕn(ai1 , . . . , ais ), for V = {i1, . . . , is}.
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Free cumulants

Definition
We define the free cumulants {κπ}π∈NC(n), as the linear functionals
κπ : An → C, defined by

κπ[a1, . . . , an] :=
∑

σ∈NC(n)
σ≤π

ϕσ[a1, . . . , an]µ(σ, π),

or equivalently, by

ϕ(a1 · · · an) =
∑

σ∈NC(n)

κπ[a1, . . . , an].

We will also use the notation κn := κ1n .
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What is so special about free cumulants?

Theorem
Let (A, ϕ) be a non-commutative probability space, and let {κn}n∈N be
the corresponding cumulants. Then the following two statements are
equivalent

1. {Ai}i∈I are freely independent.
2. For all n ≥ 2 and aj ∈ Ai(j) with (j = 1, . . . , n) and i(1), . . . i(n) ∈ I,

we have κn(a1, . . . , an) = 0 whenever there exist 1 ≤ k, l ≤ n with
i(l) 6= i(k).

In particular, if a, b are free random variables, then

κa+b
n = κa

n + κb
n.

So we have a very straightforward method for determining the
distribution of a + b if they are freely independent!
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Conclusion:

Although there is a lot more to say about NC(n) and about free
independence, at least, as very rough conclusion of the talk, we observe
that cumulants are easy to handle for free random variables, and the
moments of free random variables (which, in principle looked
considerably hard to describe) can be written in terms of cumulants,
provided that we understand well the structure of the lattice NC(n).
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