
NOTES IN MALLIAVIN-STEIN CALCULUS MINICOURSE

ARTURO JARAMILLO

1. Introduction

These notes are devoted to the study of limit theorems via the Malliavin-Stein method,
and are largely based on the exposition found in [1]. Malliavin calculus is, in essence, more
of a tool than a self-contained theory, although one could certainly choose to view it as such.
What matters most for purposes of this minicourse, is to keep in mind a clear picture of on
single, very modest concrete problem to address by using it. In general, our main goal is
to study Gaussian distributional limit theorems through the lens of Malliavin calculus. The
type of problem we will have in mind throughout has the following structure:

Ingredients:

- A Gaussian process G = {Gt ; t ∈ T}, indexed by some set T lurking in the back-
ground.

- A random variable that is measurable with respect to G, and which we interpret as
a functional of the trajectory of G.

Conditions:

- The random variable of interest depends on a parameter n, and we assume that its
behavior becomes interesting as n → ∞. Thus, we consider a sequence Zn of such
random variables.

- After appropriate normalization, we can assume that each Zn has mean zero and
variance one.

Meta-problems:

- Suppose we suspect that the sequence Zn converges in distribution to a standard
Gaussian random variable. What kinds of conditions can we establish to rigorously
guarantee this convergence?

- Assuming the above convergence does hold, how can we quantify the rate at which
Zn converges to the Gaussian limit? (More precisely, we will seek to bound this rate
rather than describe it exactly, though the latter is sometimes possible.)

The reader might think of the example that feels most familiar or interesting to them. But
to make things more concrete, I’ll share the example that means the most to me personally:
the BreuerMajor theorem.
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Before talking about that, let’s quickly go over the classic central limit theorem to really
understand the motivation. Suppose we have a sequence X1, X2, . . . of independent and
identically distributed random variables, each with mean zero and finite third moment.
Then we know that the sum

1√
n

n

k=1

Xk

converges in distribution, as n tends to infinity, to a Gaussian random variable with some
variance σ2 > 0.

There’s also a more precise version called the Berry-Esseen theorem. It gives a bound on
how fast this convergence happens, using the Kolmogorov distance:

dK(µ, ν) := sup
z∈R

|µ((−∞, z])− ν((−∞, z])|.

This theorem says theres a universal constant C > 0 such that

dK(Zn/σ, N) ≤ C√
nσ3

E[|ξ1|3],

where Zn =
n

k=1 ξk, and N is a standard Gaussian. This result might be a bit less well-
known than the central limit theorem, but its still pretty common. And it naturally raises
a few important questions. For example:

(i) What if the variables aren’t identically distributed?
(ii) What if the limit isn’t Gaussian?
(iii) What if we don’t assume independence?

Charles Stein came up with a method (now known as Stein’s method) that gives very clean
answers to the first two questions. We’ll talk about this more in the second lecture. The
nice thing is that the same kind of ideas can be used when the limit is something other than
Gaussian, like Poisson, exponential, gamma, beta, Wigner, or even the Dickman distribu-
tion. Point number (iii) is by far more delicate, and it is precisely this point that we address
in the following example:

The Breuer-Major problem
Lets look at a specific case where the source of randomness is a stationary, standardized
Gaussian time series ξ = {ξk}k≥1. This means that ξ is a Gaussian process where each ξk
has mean zero and variance one, and the sequence is stationary in the sense that

L(ξ1, ξ2, . . . ) = L(ξ1+r, ξ2+r, . . . )

for every integer r ≥ 1, where L denotes the law (i.e., the joint distribution) of the process.

In the Gaussian case, the full distribution of ξ is determined by its covariance function. So
we define

ρ(r) := E[ξ1ξ1+r]
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as the correlation at lag r. We are particularly interested in situations where ρ(r) stays
nonzero for many values of r, meaning the process has long memoryunlike white noise,
where ρ(r) = δ0,r. This kind of structured noise appears frequently in real-world applica-
tions.

Now, suppose we don’t observe ξk directly, but instead see a transformed version through
a function ϕ. That is, we define a new sequence Xk := ϕ(ξk), where ϕ is a fixed function
chosen to match the needs of the problem. We’ll assume that ϕ satisfies some regularity or
integrability conditions, enough to allow the use of limit theorems, while keeping things as
flexible as possible.

Recall that for centered Gaussian random vectors, being independent is equivalent to being
uncorrelated. So in our setting (where ρ(r) is nonzero for a large set of values of r), we
definitely can’t treat the sum

1√
n

n

k=1

Xk (1.1)

as we would in the classical central limit theorem. But intuitively, if the dependence between
variables is weak or decays fast enough, it still seems reasonable to expect that some kind
of asymptotic Gaussian behavior could emerge.

This brings us to what I’ll call the Breuer-Major problem: under what conditions on the
correlation structure ρ and on the function ϕ can we guarantee that the sum (1.1) converges
in distribution to a standard Gaussian variable? Breuer and Major were able to provide
surprisingly mild conditions to ensure this, and we’ll discuss the precise statement of their
theorem in the final lecture. For now, I just want to use this problem as motivation (it
is a great example of why the tools we’ll study in these notes are worth learning). Actu-
ally, this type of problem is a special case of a broader class: the study of functionals of
Gaussian processes. If this structure feels familiar, you might be right to suspect your own
favorite problem falls into the same general framework. I highly recommend checking out
the following website, which presents a wide range of results and developments in this area:

https://sites.google.com/site/malliavinstein/home

The methodology we’re about to follow is built around two key components. At first, they
might seem a bit abstract, but I promise theyll become very familiar as we go along:

- Stein’s method, which gives a way to measure how far the distribution of a random
variable X is from the standard Gaussian distribution. It does so by analyzing
expressions of the form

E[Xf(X)− f ′(X)], (1.2)

where f runs over a suitable class of test functions for which f ′ makes sense.
- The challenge in estimating (1.2) is handled by introducing a new random variable
Γ[X], which depends on X, and is chosen so that

E[Xf(X)− f ′(X)Γ[X]] = 0 (1.3)
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holds for all functions f in our class.

These two ideas together give us a path forward: the quality of the approximation to Gaus-
sianity can be understood by measuring how close Γ[X] is to 1.

Of course, I haven’t yet said how to construct this Γ[X], and that’s exactly where Malliavin
calculus comes in. Although originally developed for very different purposes, the tools from
Malliavin calculus provide a remarkably clean and powerful way to build such a Γ[X]. It’s
worth noting that this construction is far from unique, but Malliavin’s framework offers a
natural and elegant route that fits perfectly with our goals. I invite the reader to bare with
the reading of the following sections with the promise that all the language will eventually
be utilized for solving the concrete application of the resolution of the Breuer Major problem

2. Malliavin calculus in one dimension

In this section, we introduce the basic tools of Malliavin calculus in the most accessible
way possible. Following the approach in [1], we focus on the simplest case: Gaussian noise
generated by a single random variable, rather than a full process. This helps us get familiar
with the ideas without getting overwhelmed by technicalities.

Throughout this section, all random variables will be defined on a common probability space
(Ω,F ,P). As a concrete and manageable starting point, we take Ω = R, F as the Borel
σ-algebra, and P as the standard Gaussian measure, which we denote by γ, and which is
defined by

γ(dx) :=
1√
2π

exp


−x2

2


dx.

Just a quick heads-up: later on, we’ll use the same symbol γ to refer to the Gaussian distri-
bution in higher dimensions. Hopefully, this won’t be too confusing when we get there. The
main theme of this section is to describe random variables on Ω using an orthogonal basis,
and to explore different ways to interpret these decompositions. The point of working with
orthogonal decompositions is that applying expectations becomes much easier.

Let’s begin with the basic building block: the Malliavin derivative. In what follows, we
denote by S the set of C∞-functions f : R → R such that f and all of its derivatives have at
most polynomial growth. We call any element of S a smooth function. For a function f ∈ S,
the Malliavin derivative is just the usual derivative: Df = f ′. Things get more interesting
when we want to differentiate functions outside of S, like

f(x) = (x− a)+,

for some a ∈ R. There are many ways to define derivatives in such cases, but since well
eventually work with spaces that have more structure, well follow an approach inspired by
Sobolev spaces. The precise idea is as follows:
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- We already know how to define D on S, so we want to extend this definition by
approximation. To do this, well need a way to measure distances between functions
something that justifies writing fn ≈ f .

- This is done by introducing a norm. For functions f ∈ S, we define

fD1,2 :=

f2L2(Ω) + f ′2L2(Ω)

1/2

.

This turns S into a normed space (not yet complete).
- Since the space is not complete, let’s just complete it. The resulting space will be
denoted by D1,2

- By the construction in the previous step, an element F in D1,2 would have an approxi-
mating sequence fn in the metric ·D1,2 . Since we have made the constuction to force
the derivatives fn to converge (in L2(Ω)), then we have a candidate Df := limn Dfn.

The above program indeed works, and the first 3 steps are just definitions. The well-
poseddness of the definition of Df , however, is not, and we require the following fundamental
property: if fn, gn are sequences that are Cauchy in D1,2, and both converge in L2(Ω) to the
same random variable h, then it might become natural to expect that Dfn −Dgn converges
to zero so that we can safely define Dh = limn Dfn. Actually, by linearity, it suffices to think
that the gk are all equal to zero and the property of D being such that Dfn converges to zero
in L2(Ω) is called clossability. This property for D sounds reasonable but not exactly trivial
to prove. The first couple of pages of the book [1] are devoted to prove this in detail. Here,
we settle for describing the program for proving it and refer the reader to the aforementioned
book for filling the details.

As in the theory of PDE’s. the proof of this property is based on integration by parts, but
now the integration by parts is carried not through the Lebesgue measure, but with respect
to the Gaussian measure γ, so we have to formulate the appropriate integration by parts
formula for the Gaussian distribution.

Lemma 2.1 (Integration by parts). Let f : R → R be an absolutely continuous function
such that f ′ ∈ L1(γ). Then the function x → xf(x) belongs to L1(γ), and



R
xf(x) dγ(x) =



R
f ′(x) dγ(x),

where γ denotes the standard Gaussian measure on R.

Proof. We only make the sketch of the proof and in the exercise session you can do the
details: we start with the identity



R
xf(x) dγ(x) =



R
f(x)


x

1√
2π

e−x2/2


dx =



R
f(x)

d

dx


− 1√

2π
e−x2/2


dx.

An integration by parts formula yields the result. □

Now, let’s go back to the closability property

Lemma 2.2 (Closability of D). The operator D : S ⊂ L2(γ) → L2(γ) is closable.
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Proof. The key idea in this proof is to think of Dfn not just as a function, but as an operator
acting on test functions in L2(Ω). With that in mind, try imagining how you might approach
the proof with just this perspective.

Now for the argument: let (fn) ⊂ S be a sequence such that (i) fn → 0 in L2(γ), and (ii)
Dpfn → η in L2(γ), for some η ∈ L2(γ). We want to show that η = 0 almost everywhere.
Take any test function g ∈ S, and define the function

δg(x) := xg(x)− g′(x).

This object plays a key role in what’s coming next. Using integration by parts, we compute:


R
η(x)g(x) dγ(x) = lim

n→∞



R
Dfn(x) g(x) dγ(x)

= lim
n→∞



R
fn(x) δg(x) dγ(x).

Since fn → 0 in L2(γ) and δg ∈ S ⊂ L2(γ), Hlders inequality tells us that the last integral
tends to zero. So: 

R
η(x)g(x) dγ(x) = 0 for all g ∈ S.

Now, this means that the functional

g →


R
η(x)g(x) dγ(x)

vanishes on the whole space S. From Proposition 1.1.5 in [1], we know that S is dense in
L2(γ), so the functional must be zero on all of L2(γ). By the Riesz representation theorem,
this implies that η = 0 γ-almost everywhere, as we wanted to show. □

One can play the same game for defining properly the derivative of higher order: Fix an
integer p ≥ 1. We define Dp,2 as the closure of S with respect to the norm:

fDp,2 =



R
|f(x)|2 dγ(x) +



R
|f ′(x)|2 dγ(x) + · · ·+



R
|f (p)(x)|2 dγ(x)

1/2

.

We can construct Dp,2 similarly to D1,2 and define Dp by approximation as in the p = 1 case.
The arguments for showing that the operator is closable are analogous. We will call Dp,
defined over Dp,2 Malliavin derivative of order p.

A closer examination of the proof of the closedness of the operator D allows us to see that
the trick of ”not looking at DX as a function but rather as looking at its action over other
functions” implicitly required to consider the action of functions against δ. In other words,
we used the following identity, which definetely deserves to be called integration by parts
(thinking of integration by parts as a duality operation)



R
Dg(x)f(x)γ(dx) =



R
g(x)δf(x)γ(dx)

for f, x ∈ D1,2.
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Definition 2.3 (Definition of Domδ). We denote by Dom(δp) the subset of L2(γ) composed
of those functions g such that there exists a constant c > 0 satisfying the following property:
for all f ∈ S, 



R
f (p)(x)g(x) dγ(x)

 ≤ c



R
f 2(x) dγ(x)

1/2

. (2.1)

Now we define propertly the operator δr

Definition 2.4 (Divergence). The pth divergence operator δp is defined as follows: if g ∈
Dom(δp), then δpg is the unique element of L2(Ω) characterized by



R
f (p)(x)g(x) dγ(x) =



R
f(x)δpg(x) dγ(x). (2.2)

which holds for f ∈ S.

One could have also thought of formulating an iteration of the operation δ in the form
δr+1 := δ[δr]. One can verify that both roads lead to the same result.

This note is a small reminder that we had a goal at the beginning, which was to construct
an operation Γ[X] that would satisfy (1.3). We are a couple of extra definitions apart from
getting there. Be patient.

Definition 2.5 (Ornstein Uhlenbeck semigroup). The Ornstein–Uhlenbeck semigroup, writ-
ten (Pt)t≥0, is defined as follows. For f ∈ S and t ≥ 0,

Ptf(x) =



R
f

e−tx+

√
1− e−2t y


dγ(y), x ∈ R,

where γ denotes the standard Gaussian measure on R.

The semigroup Pθ has the fundamental property that (as any semigroup), its value at zero
is the identity operator and in the other hand, we we evaluate Pθ at θ equal to infinity, we
obtain the trivial operator that sends f to E[f(N)], where N is a standard Gaussian random
variable. This gives the semigroup a nice interpretation of briding the operation of ”not
doing anything to test functions” with the operation of ”acting over functions precisely like
a standard Gaussian probability measure”.

By elementary computations, one can check that Pt is a contraction that indeed the semi-
group property Ps+t = Ps ◦ Pt holds. Being a semigroup, it has an associated generator,
which we denote by L. More precisely, DomL is defined as the collection of those f ∈ L2(γ)
such that the expression

Phf − f

h
converges in L2(γ) as h → 0. By differentiating with respect to t in the expression of Ptf(x),

d

dt
Ptf(x) = −xe−t



R
f ′

e−tx+

√
1− e−2t y


dγ(y)

+
e−2t

√
1− e−2t



R
f ′

e−tx+

√
1− e−2t y


y dγ(y),
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so integrating by parts, we get

d

dt
Ptf(x) = −xe−t



R
f ′

e−tx+

√
1− e−2t y


dγ(y)

+ e−2t



R
f ′′


e−tx+

√
1− e−2t y


dγ(y),

In particular, by evaluating the previous expression at t = 0, we get:

Proposition 2.1. For any X ∈ S, we have

LX = −δDX.

Another important relationship between D and δ is the following relation, typically named
as the Heisenberg commutativity relation

Proposition 2.2 (Heisenberg). For every f ∈ S, it holds that

(Dδ − δD)f = f.

Moreover,

(Dδp − δpD)f = pδp−1f, for all f ∈ S.

We can now have a sneak-peak of what is coming next: suppose for a moment that we
could have X such that taking the inverse L−1[X] would make sense, so we could write
X = LL−1X. Then we have that

E[Xf(X)] = −E[δDL−1f(X)] = E[(−DL−1X ·DX)f ′(X)].

Then, the variable that we are looking for is

Γ[X] = (−DL−1X) · (DX).

Ok, I wrote a formula, but for the moment is not obvious what to do with it. In order to
being able to use this effectively, we need a good basis to express the variable X in, and
so that we could have nice compatibility with the measure γ. A common choice of basis of
this sort are the orthogonal ones. With this in mind, we define the Hermite polynomials
(note: there are some references that use a slightly modified version of the polynomials as
we present them)

Definition 2.6 (Hermite polynomials). Let p ≥ 0 be an integer. We define the pth Hermite
polynomial as

H0(x) = 1 and Hp(x) := δp1, for p ≥ 1.

The reason why it is worth studying these polynomials is explained next

Proposition 2.3 (Properties of Hermite polynomials).

(i) For any p ≥ 0, we have

H ′
p = pHp−1, LHp = −pHp, and PtHp = e−ptHp, t ≥ 0.

(ii) For any p ≥ 0,

Hp+1(x) = xHp(x)− pHp−1(x).
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(iii) For any p, q ≥ 0,


R
Hp(x)Hq(x) dγ(x) =


p! if p = q,

0 otherwise.

(iv) The family


1√
p!
Hp : p ≥ 0


is an orthonormal basis of L2(γ).

(v) If f ∈ D∞,2, then

f =
∞

p=0

1

p!



R
f (p)(x) dγ(x)


Hp in L2(γ).

Proof. (i) By the definition of Hp, we have

H ′
p = Dδp1.

Using Proposition 2.2, we get

H ′
p = pδp−11 + δpD1 = pHp−1,

since D1 = 0. Now, using the fact that L = −δD, we find

LHp = −δDHp = −δH ′
p = −δ(pHp−1) = −pδHp−1 = −pHp.

To prove the third identity, fix x ∈ R and define yx(t) := PtHp(x). Then:

yx(0) = P0Hp(x) = Hp(x),

and for t > 0,

y′x(t) =
d

dt
PtHp(x) = PtLHp(x) = −pPtHp(x) = −pyx(t).

Solving this differential equation gives yx(t) = e−ptHp(x), that is,

PtHp = e−ptHp.

(ii) Take p ≥ 1. By definition, Hp+1 = δp+11 = δδp1 = δHp. From the definition of the
divergence operator δ, we have:

Hp+1(x) = xHp(x)−H ′
p(x).

Using the result from part (i), H ′
p(x) = pHp−1(x), we deduce the recurrence:

Hp+1(x) = xHp(x)− pHp−1(x).

□

Now is the time to take some time to reflect on what we have done. We started with
definitions which are very familiar to us: the notion of derivative that we appreciate since long
ago was extended to a larger domain, then we defined the operation that is dual to D (hence
the name divergence), and we denoted by δ. Some cryptic semigroup Pθ was introduced with
the help of some explicit formula that relies in the standard Gaussian distribution somehow,
and it was promised to be a handy tool that could interpolate the identity with a standard
Gaussian behavior. This operator was utilized in a spirit very similar to MCMC to estimate
variances by mean of the Poincaré inequality. The point here is that every single construction
was motivated by objects that are familiar to us since quite some time ago. Then we are
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presented with a family of orthogonal polynomials, and if we look closely at the result, we
don’t only get the orthonormality (up to an explicit normalizing factor) with respect to
the standard Gaussian distribution, but we also have very easy formulas for the actions of
D, δ, Pθ, L over Hermite polynomials. This very simple, but extremely useful information
can be used to stop thinking of D, δ, Pθ, L as familiar objects and simply think of them as
abstract operations defined over the basis H0, H1, H2, ... Why is this helpful? suppose that
you have an abstract expression of a given L2(Ω) function f in the form

f(x) =


q≥0

aqHq.

(if you are very strict about convergence, just think of the sum as being finite). Clearly the
operators D, δ, Pθ, L should act linearly over f , so that if A ∈ {D, δ, Pθ, L}, then

A[f ](x) =


q≥0

aqA[Hq].

Since we have a formula for A[Hq] by the previous proposition we could instead of getting
the explicit value of A[Hq] as a consequence of our definitions, we could simply take it
as a definition, and this perspective doesn’t require at all the interpretation of Ω as being
Euclidean, and actually, is the way to generalize these ideas to very abstract spaces (including
Radamacher chaoses, Wigner chaos, etc).

3. The infinite dimensional case

In this section we present the implementation of the above ideas, but in the context of
stochastic processes. In the sequel, H will denote the Hilbert space H := L2([0, T ]), endowed
with the Lebesgue measure, where T is a time horizon that is allowed to consider the case
T equals to infinity.

Let B be a Brownian motion defined over (Ω,F ,P). In the sequel, we will assume that F is
the σ-algebra generated by B. A very handy way of getting the randomness of B codified in
a structured way is to consider the so called ”isonormal Gaussian process associated to B”,
formally defined as the process {Wh ; h ∈ H}, with

Wh :=



[0,T ]

h(x)W (dx). (3.1)

Observe that it is equivalent to have access to B than to have access to W , since we can jump
from B to W via (3.1) and reciprocally, we can recover Bt by noticing that Bt = W

[0,t]
. A

fundamental property of the process W is that is centered Gaussian, with covariance given
by

E[Wh1Wh2 ] = 〈h1, h2〉. (3.2)

A very useful property of the Hermite polynomials is that they can be used to obtain a quite
much more robust version of the isometry (3.2), as illustrated in the following proposition
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Proposition 3.1. Let Z, Y ∼ N (0, 1) be jointly Gaussian. Then, for all n,m ≥ 0,

E[Hn(Z)Hm(Y )] =


ρnn!, if n = m,

0, otherwise,

where ρ = E[ZY ] and Hn denotes the nth Hermite polynomial.

Proof. Set ρ = E[ZY ], and assume for the moment that ρ > 0. Let N,N ′ ∼ N (0, 1) be
independent standard normal random variables, and observe that the pair (Z, Y ) has the

same law as (N, ρN +


1− ρ2N ′). Hence, for n,m ≥ 0, we compute E[Hn(Z)Hm(Y )] by
replacing Z and Y accordingly. From here it follows that

E[Hn(Z)Hm(Y )] = E

Hn(N)Plog(1/ρ)Hm(N)


= ρm E[Hn(N)Hm(N)] = n! {m=n}ρ

n.

The case ρ < 0 is an easy generalization that is left as an exercise to the reader. □

The above theorem gives us the building blocks for constructing an extension to the
orthogonality decomposition of R (endowed with γ), but now extended to the whole Ω.

Definition 3.1. For each n ≥ 0, we write Hn to denote the closed linear subspace of L2(Ω)
generated by the random variables of the form Hn(X(h)), where h ∈ H and hH = 1. The
space Hn is called the nth Wiener chaos of X.

Clearly, H0 = R and H1 = {X(h) : h ∈ H} = X. By Proposition 2.2.1, if n ∕= m, then Hn

and Hm are orthogonal in the usual inner product of L2(Ω). The following result is known
as the WienerIt chaotic decomposition of L2(Ω).

Theorem 3.2 (Chaos decomposition). The linear space generated by the class

{Hn(X(h)) : n ≥ 0, h ∈ H, hH = 1}
is dense in Lq(Ω) for every q ∈ [1,∞). Moreover, one has

L2(Ω) =
∞

n=0

Hn.

That is, every random variable F ∈ L2(Ω) admits a unique expansion as a (possibly infinite)
sum of orthogonal components in each Hn, and this sum converges in L2(Ω).

The above theorem gives us a mild substitute of the orthogonal decomposition that we
reviewed in dimension one, although the description will turn out to be quite more exact, as
we will see a bit later. Before that, we copy paste absolutely everything that we have done
in dimension one, but in infinite dimensions. The reader is referred to [] for rigurous proofs,
and to have have a small leap of faith and believe me that the ideas presented in dimension
one are exactly the same ones that are utilized in infinite dimensions, with just very small
adjustments.

Our immediate goal is to generalize the definitions of D, δ, Pθ, L. We begin with the deriva-
tive. I emphasize that the material sounds like a reminescence of the one dimensional case
because the constructions are basicaly the same. We begin by considering the set S of all
random variables of the form

F = f

Wϕ1 , . . . ,Wϕm


, (3.3)
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where m ≥ 1, f : Rm → R is a C∞-function such that f and all its partial derivatives have
at most polynomial growth, and ϕi ∈ H, for i = 1, . . . ,m. A random variable of the form
(3.3) is said to be smooth.

Next we introduce the notion of Malliavin derivative. To this end, we introduce the notation

H⊗q := {h : [0, T ]q → ; h is square integrable with respect to Lebesgue}.

The notation alludes to the fact that the space in the right is isomorphic to the q-tensor of
H, which can be constructed in an abstract way if we want, although for purposes of these
notes, is completely fine to just work with this version. A special subset of H⊗ is the set H⊙q

consisting of those elements of H⊗q, such that they are symmetric. This space is called the
symmetrized tensor of order q.

Next, we introduce the notion of the Malliavin derivative in the space of smooth random
variables. Let F ∈ S be given by (3.3), and let p ≥ 1 be an integer. The pth Malliavin deriv-
ative of F (with respect to X) is defined as the element of L2(Ω,H⊙p) (note the symmetric
tensor product) given by

DpF =
m

i1,...,ip=1

∂pf

∂xi1 · · · ∂xip

(Wϕ1 , . . . ,Wϕm)ϕi1 ⊗ · · ·⊗ ϕip .

At this point, a subtle issue arises: the representation of F in the form (3.3) is generally
not unique. Therefore, one must verify that the definition of DpF does not depend on
the specific representation chosen. This fact is true, although the full justification involves
technical details and is left to the reader.

As in the one-dimensional case, the operator

Dp : S ⊂ L1(Ω) → L1(Ω,H⊙p)

is closable. This allows us to define, for F ∈ S, the norm

FDp,2 =

E[|F |2] + E


DF2H


+ · · ·+ E


DpF2H⊙p

1/2
.

We can then complete S under this norm to define the Sobolev-type space Dp,2, which will
serve as the extended domain of the operator Dp. The Malliavin derivative satisfies the
following chain rule

Proposition 3.3. Let ϕ : Rm → R be a continuously differentiable function with bounded
partial derivatives. Suppose that F = (F1, . . . , Fm) is a random vector whose components
belong to D1,2. Then ϕ(F ) ∈ D1,2, and

Dϕ(F ) =
m

i=1

∂ϕ

∂xi

(F )DFi.

The notion of Malliavin derivative can be extended to the case of Hilbert valued random
variables. Indeed, if we consider a separable Hilbert space U, we can define the space SU of
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all smooth U-valued random elements of the type

F =
n

j=1

Fjvj,

where Fj ∈ S and vj ∈ U (careful, here the vj are not random!). For k ≥ 1, the kth Malliavin
derivative of any F ∈ SU is given by the H⊗k ⊗ U -valued random element

DkF =
n

j=1

DkFj ⊗ vj.

A procedure as before can be performed, in order to deduce that this operator can be
extended to a domain Dk,2(U), which is defined completely analogusly to the cases we have
considered. The reason why we insist of this level of generality is because DaF can be
thought of as an element in U = H⊗a, and thus, now it makes sense to take Db to this
element. By looking at the above phenomena first over elements F that are smooth, we can
show that

Da+bF = DaDbF.

Something very important to notice is that the space of random elements in H⊗r is a very
familiar object. Indeed, the elements of this space are functions (random) over r parameters
belonging to [0, T ]. This way, we are thinking of the derivative as being inputed by a random
variable and spitting a (multi-parameter) stochastic process.

We now continue with the extension of the divergence: Fix an integer p ≥ 1. We will now
define δp (the divergence operator of order p) as the adjoint of

Dp : Dp,2 → L2(Ω,H⊙p).

This is the exact analog of the operator δp we introduced before (line by line!).

Definition 3.2. Let p ≥ 1 be an integer. We denote by Dom(δp) the subset of L2(Ω,H⊗p)
composed of those elements u such that there exists a constant c > 0 satisfying

|E[〈DpF, u〉H⊗p ]| ≤ cE[F 2] for all F ∈ S,
There exists a unique element in L2(Ω), denoted by δp(u), such that

E[〈DpF, u〉H⊗p ] = E[F δp(u)] for all F ∈ S.

Definition 2.5.2. If u ∈ Dom(δp), then δp(u) is the unique element of L2(Ω) characterized
by the following duality formula:

E[F δp(u)] = E[〈DpF, u〉H⊗p ], (2.5.2)

for all F ∈ S. The operator

δp : Dom(δp) ⊂ L2(Ω,H⊗p) → L2(Ω)

is called the multiple divergence operator of order p. We define δ0 to be equal to the identity.
To make emphasis on the analogy with the one dimensional case, we will typically refer to
the duality formula ”integration by parts formula”. Now, since δ is the dual of D, several
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properties of D should have translated consequences for the operator δ. The following
proposition is the translation of the property of Leibnitz rule.

Proposition 3.4. Let F ∈ D1,2 and u ∈ Dom(δ) be such that the three expectations

E[F 2u2H], E[F 2δ(u)2], and E[〈DF, u〉2H]
are finite. Then Fu ∈ Dom(δ), and

δ(Fu) = F δ(u)− 〈DF, u〉H.

Proof. For any G ∈ S, we have

E[〈DG,Fu〉H] = E[F 〈DG, u〉H] = E[〈FDG, u〉H]
= E[〈D(FG)−GDF, u〉H] = E[G(F δ(u)− 〈DF, u〉H)].

Hence, using the assumptions, we conclude that Fu ∈ Dom(δ) and

δ(Fu) = F δ(u)− 〈DF, u〉H.
□

For a smooth random element of the form u =
n

j=1 Fjhj, we then have

δ(u) =
n

j=1

δ(Fjhj) =
n

j=1


FjWhj

− 〈DFj, hj〉H

. (2.5.3)

Consequently,

Dδ(u) =
n

j=1


Whj

DFj + Fjhj − 〈D2Fj, hj〉H

.

On the other hand, it is immediate that

Du =
n

j=1

DFj ⊗ hj,

Once more using the proposition, as well as the explicit expression of Fj as a finite sum of
random numbers multiplied by non-random vectors in H, we obtain

δ(Du) =
n

j=1

δ(DFj ⊗ hj) =
n

j=1


X(hj)DFj − 〈D2Fj, hj〉H


. (2.5.4)

Combining these identities, we obtain the so-called Heisenberg commutativity relation

Dδ(u)− δ(Du) = u. (2.5.5)

Finally, in the same way we considered the derivative of Hilbert-valued random variables,
we can consider the divergence of Hilbert valued random variables. The use of this, as in the
case of the derivative, is that we can consider certain types of iterations of the divergence
operator. Fix k ≥ 1, let be a real separable Hilbert space, and let

u =
n

j=1

vj ⊗ hj ∈ U⊗ H⊗k,
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where vj ∈ U and hj ∈ H⊗k. We define δk(u) to be the U-valued random element

δk(u) =
n

j=1

vjδk(hj), (3.4)

It can be shown that vectors of this type are dense in U⊗ H⊗k, so that δk can be extended
to a bounded operator from U⊗ H⊗k into L2(Ω,U).

Note that this construction allows a precise meaning to be given to the expression δk(f),
where f ∈ H⊗p and p > k. Indeed, since H⊗p = H⊗(p−k) ⊗ H⊗k, we define δk(f) to be
the element of L2(Ω,H⊗(p−k)) obtained by specializing the previous construction to the case
U = H⊗(p−k). Note that, for every k = 1, . . . , p− 1 and every f ∈ H⊗p, we also have

δp(f) = δp−k(δk(f)). (3.5)

One can get a bit confused when reading expressions that involve divergences and deriva-
tives of Hilbert valued random objects, but the bright side of this is that the notation is quite
robust and suggests analogies that were present in the one-dimensional case. The following
proposition is one of them

Proposition 3.5. Let p ≥ 1 be an integer. For all u ∈ H⊗p, we have δp(u) ∈ D1,2 and

Dδp(u) = pδp−1(u).

Proof. We proceed by induction. For p = 1, this is a direct consequence of Equation (2.5.5).
Now, assume that Dδp(u) = pδp−1(u) holds for some p ≥ 1 and all u ∈ H⊗p. Let v ∈ H⊗(p+1).
Then, again using (2.5.5),

Dδp+1(v) = Dδ(δpv) = δ(D(δpv)) + δpv = δ(pδp−1(v)) + δpv = (p+ 1)δp(v),

which completes the induction and proves the result for p+ 1. □

As the reader might have noticed, we are making a repetition of everything presented in
the one dimensional case. What about the generalization of the Hermite polynomials? well,
by reasoning as before, we can consider the repeated action of δq acting over something.
Since the domain of δq is H⊙q. This motivates the following definition

Definition 3.6. Multiple integrals Let p ≥ 1 and f ∈ H⊙p. The pth multiple integral of f
(with respect to W ) is defined by

Ip(f) = δp(f).

What we are left to prove is that these are good generalizations of the Hermite polynomials.
To this end, we first prove the following lemma

Proposition 3.7. Let p ≥ 1 and f ∈ H⊙p. Then, the multiple integral Ip(f) belongs to the
Sobolev space D∞,q. Moreover, for all integers r ≥ 1, the r-th Malliavin derivative of Ip(f)
satisfies:

DrIp(f) =






p!

(p− r)!
Ip−r(f) if r ≤ p,

0 if r > p.
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Proof. For the proof of the fact that Ip(f) ∈ D∞,2, please consult [1]. To show the explicit
expression under consideration, notice that the first Malliavin derivative is given by:

DIp(f) = Dδp(f) = pδp−1(f) = pIp−1(f),

which corresponds exactly to the formula for r = 1.

Applying this reasoning recursively, we deduce that Ip(f) ∈ D∞,2, and we obtain the
general expression for DrIp(f) as above. □
Proposition 3.8 (Isometry property). Fix integers 1 ≤ q ≤ p, and let f ∈ H⊙p, g ∈ H⊙q.
Then we have In particular,

E[Ip(f)Iq(g)] =


p!〈f, g〉H⊗p if p = q,

0 if p > q.

Proof. It suffices to observe that

E[Ip(f)Iq(g)] = E[δp(f)Iq(g)] = E [〈f,DpIq(g)〉H⊗p ] =


p!〈f, g〉H⊗p if p = q,

0 if p > q.

The argumentation being exactly the same as in the one dimensional case. □

Finally, we connect all the dots. In particular, we introduce a relation between multiple
integrals and Hermite polynomials, which ultimately yields a characterization of the chaoses
Hq, with q ≥ 1.

Theorem 3.9. Let f ∈ H be such that fH = 1. Then, for any integer p ≥ 1, we have

Hp(Wf ) = Ip(f
⊗p). (2.7.7)

As a consequence, the linear operator Ip provides an isometry from H⊙p to the p-th Wiener
chaos Hp of X (equipped with the L2(Ω)-norm).

Proof. We prove identity (2.7.7) by induction on p. For p = 1, the result is immediate:

H1(X(f)) = X(f) = δ(f) = I1(f).

Assume now that the property holds for all integers 1, 2, . . . , p. Then we compute:

Ip+1(f
⊗(p+1)) = δ


δp(f⊗p)f



= δ

Ip(f

⊗p)f


= Ip(f
⊗p)δ(f)− 〈DIp(f

⊗p), f〉H
= Ip(f

⊗p)Wf − pIp−1(f
⊗(p−1))f2H

= Hp(Wf )Wf − pHp−1(Wf )

= Hp+1(Wf )

This completes the induction and the proof. □

Now we generalize Stroock’s formula for the stochastic processes version. The proof is
analogous to the one dimensional case.
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Corollary 3.10 (Stroock formula). Every F ∈ L2(Ω) can be expanded as

F =
∞

p=0

Ip(fp), (2.7.8)

for some unique collection of kernels fp ∈ H⊙p, for all p ≥ 0. Moreover, if F ∈ Dn,2 for
some n ≥ 1, then for all p ≤ n,

fp =
1

p!
E[DpF ].

Now we proceed with the formulation of the Ornstein Uhlenbeck semigroup

Definition 3.11. The OrnsteinUhlenbeck semigroup (Pt)t≥0 is defined, for all t ≥ 0 and
F ∈ L2(Ω), by

Pt(F ) =
∞

p=0

e−ptJp(F ) ∈ L2(Ω),

where Jp(F ) denotes the projection of F onto the p-th Wiener chaos.

Next we connect with the formulation of Ornstein Uhlenbeck semigroup that we had before.
Before stating exactly a type of result of this type, we observe that since F is measurable
with respect to the Gaussian process W , we can view F as a measurable function of W ,
meaning F = F (X) almost surely with respect to the law of X.

Now fix t ≥ 0, and let X ′ be an independent copy of X, defined on a separate probability
space. Then the expression

F

e−tX +

√
1− e−2tX ′



is a well-defined random variable, almost surely with respect to the product measure P×P′.
This is justified because the random vector e−tX+

√
1− e−2tX ′ has the same distribution as

X, so evaluating F at this input makes sense. As shown by an argument similar as before,
the collection of operators

F → E′

F

e−tX +

√
1− e−2tX ′


, t ≥ 0,

where E′ denotes expectation with respect toX ′, forms a semigroup that is well-defined for all
F ∈ L1(Ω). The next result shows that this semigroup coincides with the OrnsteinUhlenbeck
semigroup (Pt)t≥0 when restricted to L2(Ω).

Theorem 3.12 (Mehlers formula). For every F ∈ L2(Ω) and every t ≥ 0, we have

Pt(F ) = E′

F

e−tX +

√
1− e−2tX ′


, (2.8.1)

where E′ denotes expectation with respect to the independent copy X ′ of X.

Proof. To prove the identity, it is enough to verify it on a dense class of random variables in
L2(Ω). A natural choice is the linear span of exponentials of the form

F = exp

X(h)− 1

2
h2H


, h ∈ H.

This class is dense in L2(Ω), a fact that can be shown using arguments similar to those used
in the one dimensional case. We therefore focus on the case where F = exp


X(h)− 1

2


,
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assuming without loss of generality that hH = 1. Fix t ≥ 0, and let X ′ be an independent
copy of X. Then, using the representation from the right-hand side of Mehlers formula, we
compute:

E′

F

e−tX +

√
1− e−2tX ′


= E′


exp


e−tX(h) +

√
1− e−2tX ′(h)− 1

2


.

Since X ′(h) is a standard Gaussian independent of X(h), the expectation becomes:

exp

e−tX(h)− 1

2
e−2t


.

Using the Hermite expansion of the exponential function, we have:

exp

e−tX(h)− 1

2
e−2t


=

∞

p=0

e−pt

p!
Hp(X(h)).

On the other hand, by equation (2.7.7), we know that:

Hp(X(h)) = Ip(h
⊗p),

so the above becomes:
∞

p=0

e−ptIp(h
⊗p) = Pt(F ).

This confirms the identity for all F in the span of exponentials, and since this class is
dense in L2(Ω), the result follows for all F ∈ L2(Ω) by continuity of both sides. □

We now consider the associated generator

Definition 3.13. We say that a random variable F ∈ L2(Ω) belongs to the domain of the
OrnsteinUhlenbeck generator, denoted Dom(L), if

∞

p=1

p2 E

Jp(F )2


< ∞,

where Jp(F ) denotes the projection of F onto the p-th Wiener chaos.

The following result establishes a fundamental connection between the Malliavin derivative
D, the divergence operator δ, and the Ornstein-Uhlenbeck generator L. It serves as the exact
analogue of the one dimensional case.

Proposition 3.14. Let F ∈ L2(Ω). Then F ∈ Dom(L) if and only if F ∈ D1,2 and
DF ∈ Dom(δ). In this case, we have

δ(DF ) = −LF.

It is worth noting that the quantity −DL−1F admits at least two different, yet equivalent,
representations. Suppose F ∈ D1,2 and has mean zero, that is, E[F ] = 0. Then we have the
following result.

Proposition 3.15. Let F ∈ D1,2 with E[F ] = 0. Then

−DL−1F =

 ∞

0

e−tPtDF dt
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Proof. Assume that F = Ip(f) for some p ≥ 1 and f ∈ H⊙p. Then we know that L−1F =
−1

p
F , so by Proposition 2.7.4 we get:

−DL−1F =
1

p
DF = Ip−1(f).

On the other hand, using the action of the Ornstein–Uhlenbeck semigroup on derivatives,
we have:

PtDF = pe−(p−1)tIp−1(f),

and therefore,
 ∞

0

e−tPtDF dt =

 ∞

0

e−tpe−(p−1)tIp−1(f) dt = Ip−1(f),

since the integral evaluates to p
p
= 1. This proves the identity. □
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