Eigenvalue collision for matrix Gaussian processes

Arturo Jaramillo

University of Kansas

December 2017

Eigenvalues of GOE

Consider a d-dimensional random matrix X of the form

$$
X=\left(\begin{array}{cccc}
\sqrt{2} \xi_{1,1} & \xi_{1,2} & \cdots & \xi_{1, d} \\
\xi_{1,2} & \sqrt{2} \xi_{2,2} & & \xi_{2, d} \\
\vdots & & \ddots & \vdots \\
\xi_{1, d} & \xi_{2, d} & \cdots & \sqrt{2} \xi_{d, d}
\end{array}\right)
$$

where the $\xi_{i, j}$ are real centered i.i.d. Gaussian variables.

Eigenvalues of GOE

Consider a d-dimensional random matrix X of the form

$$
X=\left(\begin{array}{cccc}
\sqrt{2} \xi_{1,1} & \xi_{1,2} & \cdots & \xi_{1, d} \\
\xi_{1,2} & \sqrt{2} \xi_{2,2} & & \xi_{2, d} \\
\vdots & & \ddots & \vdots \\
\xi_{1, d} & \xi_{2, d} & \cdots & \sqrt{2} \xi_{d, d}
\end{array}\right)
$$

where the $\xi_{i, j}$ are real centered i.i.d. Gaussian variables. Denote by $\left(\lambda_{1}, \ldots, \lambda_{d}\right)$, the vector of ordered eigenvalues of X, and let F be its associated distribution function.

Eigenvalues of GOE

Fact:

F is absolutely continuous with respect to the Lebesgue measure.

Eigenvalues of GOE

Fact:

F is absolutely continuous with respect to the Lebesgue measure. In particular, we have that

$$
\mathbb{P}\left[\lambda_{i}=\lambda_{j}, \quad \text { for some } \quad i \neq j\right]=0
$$

Eigenvalues of GOE

Fact:

F is absolutely continuous with respect to the Lebesgue measure. In particular, we have that

$$
\mathbb{P}\left[\lambda_{i}=\lambda_{j}, \quad \text { for some } \quad i \neq j\right]=0
$$

Question

If the $\xi_{i, j}$'s are Gaussian processes instead of Gaussian variables, when can we guarantee that the probability that the eigenvalues of X are "always" different?

Statement of the problem

For $r \in \mathbb{N}$ fixed, consider i.i.d, real centered Gaussian fields, indexed by $(i, j) \in \mathbb{N}^{2}$,

$$
\left\{\xi_{i, j}(t)\right\}_{t \in \mathbb{R}^{r}}, \quad \text { and } \quad\left\{\eta_{i, j}(t)\right\}_{t \in \mathbb{R}^{r}}
$$

defined in a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

Statement of the problem

For $r \in \mathbb{N}$ fixed, consider i.i.d, real centered Gaussian fields, indexed by $(i, j) \in \mathbb{N}^{2}$,

$$
\left\{\xi_{i, j}(t)\right\}_{t \in \mathbb{R}^{r}}, \quad \text { and } \quad\left\{\eta_{i, j}(t)\right\}_{t \in \mathbb{R}^{r}}
$$

defined in a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.
We will assume that there exists a non-negative definite function $R: \mathbb{R}^{2} \rightarrow \mathbb{R}$, such that

$$
\mathbb{E}\left[\xi_{i, j}(s) \xi_{p, q}(t)\right]=\mathbb{E}\left[\eta_{i, j}(s) \eta_{p, q}(t)\right]=\delta_{i, p} \delta_{j, q} R(s, t)
$$

Statement of the problem

Consider, for $\beta \in\{1,2\}$ and $d \in \mathbb{N}$ fixed, the matrix-valued process $X^{\beta}=\left\{X_{i, j}^{\beta}\right\}_{i, n \in \mathbb{N}}$, by

$$
X_{i, j}^{\beta}(t)= \begin{cases}\xi_{i, j}(t)+\mathbb{1}_{\{\beta=2\}} \mathbf{i} \eta_{i, j}(t) & \text { if } i<j \\ \left(\mathbb{1}_{\{\beta=1\}} \sqrt{2}+\mathbb{1}_{\{\beta=2\}}\right) \xi_{i, i}(t)+\mathbb{1}_{\{\beta=2\}} \eta_{i, i}(t) & \text { if } i=j \\ \xi_{i, j}(t)-\mathbb{1}_{\{\beta=2\}} \mathbf{i} \eta_{i, j}(t) & \text { if } j<i .\end{cases}
$$

Statement of the problem

Consider, for $\beta \in\{1,2\}$ and $d \in \mathbb{N}$ fixed, the matrix-valued process $X^{\beta}=\left\{X_{i, j}^{\beta}\right\}_{i, n \in \mathbb{N}}$, by

$$
X_{i, j}^{\beta}(t)= \begin{cases}\xi_{i, j}(t)+\mathbb{1}_{\{\beta=2\}} \mathbf{i} \eta_{i, j}(t) & \text { if } i<j \\ \left(\mathbb{1}_{\{\beta=1\}} \sqrt{2}+\mathbb{1}_{\{\beta=2\}}\right) \xi_{i, i}(t)+\mathbb{1}_{\{\beta=2\}} \eta_{i, i}(t) & \text { if } i=j \\ \xi_{i, j}(t)-\mathbb{1}_{\{\beta=2\}} \mathbf{i} \eta_{i, j}(t) & \text { if } j<i .\end{cases}
$$

Let A^{β} be a fixed Hermitian deterministic matrix, such that A^{β} has real entries in the case $\beta=1$, and complex entries in the case $\beta=2$.

Statement of the problem

Consider, for $\beta \in\{1,2\}$ and $d \in \mathbb{N}$ fixed, the matrix-valued process $X^{\beta}=\left\{X_{i, j}^{\beta}\right\}_{i, n \in \mathbb{N}}$, by

$$
X_{i, j}^{\beta}(t)= \begin{cases}\xi_{i, j}(t)+\mathbb{1}_{\{\beta=2\}} \mathbf{i} \eta_{i, j}(t) & \text { if } i<j \\ \left(\mathbb{1}_{\{\beta=1\}} \sqrt{2}+\mathbb{1}_{\{\beta=2\}}\right) \xi_{i, i}(t)+\mathbb{1}_{\{\beta=2\}} \eta_{i, i}(t) & \text { if } i=j \\ \xi_{i, j}(t)-\mathbb{1}_{\{\beta=2\}} \mathbf{i} \eta_{i, j}(t) & \text { if } j<i .\end{cases}
$$

Let A^{β} be a fixed Hermitian deterministic matrix, such that A^{β} has real entries in the case $\beta=1$, and complex entries in the case $\beta=2$. We are interested in the ordered eigenvalues $\lambda_{1}^{\beta}(t) \geq \cdots \geq \lambda_{d}^{\beta}(t)$ of

$$
Y^{\beta}(t):=A^{\beta}+X^{\beta}(t)
$$

Statement of the problem

Goal:

For a fixed interval $I \subset \mathbb{R}^{r}$ of the form $I=\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{r}, b_{r}\right]$, we want to determine necessary and sufficient conditions on X^{β}, under which the following non-collision property holds

$$
\mathbb{P}\left[\lambda_{i}^{\beta}(t)=\lambda_{j}^{\beta}(t) \text { for some } t \in I, \text { and } 1 \leq i<j \leq n\right]=0 .
$$

A basic example

The fractional Brownian motion of Hurst parameter $H \in(0,1)$, is a centered Gaussian process $\left\{B_{t}\right\}_{t \geq 0}$ with covariance function

$$
R(s, t):=\mathbb{E}\left[B_{t} B_{s}\right]=\frac{1}{2}\left(t^{2 H}+s^{2 H}-|t-s|^{2 H}\right)
$$

A basic example

The fractional Brownian motion of Hurst parameter $H \in(0,1)$, is a centered Gaussian process $\left\{B_{t}\right\}_{t \geq 0}$ with covariance function

$$
R(s, t):=\mathbb{E}\left[B_{t} B_{s}\right]=\frac{1}{2}\left(t^{2 H}+s^{2 H}-|t-s|^{2 H}\right)
$$

Some properties of B :

A basic example

The fractional Brownian motion of Hurst parameter $H \in(0,1)$, is a centered Gaussian process $\left\{B_{t}\right\}_{t \geq 0}$ with covariance function

$$
R(s, t):=\mathbb{E}\left[B_{t} B_{s}\right]=\frac{1}{2}\left(t^{2 H}+s^{2 H}-|t-s|^{2 H}\right) .
$$

Some properties of B :

- If $H=\frac{1}{2}, B$ is a Brownian motion.

A basic example

The fractional Brownian motion of Hurst parameter $H \in(0,1)$, is a centered Gaussian process $\left\{B_{t}\right\}_{t \geq 0}$ with covariance function

$$
R(s, t):=\mathbb{E}\left[B_{t} B_{s}\right]=\frac{1}{2}\left(t^{2 H}+s^{2 H}-|t-s|^{2 H}\right)
$$

Some properties of B :

- If $H=\frac{1}{2}, B$ is a Brownian motion.
- It has stationary increments.

A basic example

The fractional Brownian motion of Hurst parameter $H \in(0,1)$, is a centered Gaussian process $\left\{B_{t}\right\}_{t \geq 0}$ with covariance function

$$
R(s, t):=\mathbb{E}\left[B_{t} B_{s}\right]=\frac{1}{2}\left(t^{2 H}+s^{2 H}-|t-s|^{2 H}\right)
$$

Some properties of B :

- If $H=\frac{1}{2}, B$ is a Brownian motion.
- It has stationary increments.
- For all $c>0,\left\{B_{c t}\right\}_{t \geq 0} \stackrel{\text { Law }}{=}\left\{c^{H} B_{t}\right\}_{t \geq 0}$.

A basic example

The fractional Brownian motion of Hurst parameter $H \in(0,1)$, is a centered Gaussian process $\left\{B_{t}\right\}_{t \geq 0}$ with covariance function

$$
R(s, t):=\mathbb{E}\left[B_{t} B_{s}\right]=\frac{1}{2}\left(t^{2 H}+s^{2 H}-|t-s|^{2 H}\right) .
$$

Some properties of B :

- If $H=\frac{1}{2}, B$ is a Brownian motion.
- It has stationary increments.
- For all $c>0,\left\{B_{c t}\right\}_{t \geq 0} \stackrel{\text { Law }}{=}\left\{c^{H} B_{t}\right\}_{t \geq 0}$.
- For all $0<\alpha<H$, the trayectories of B are Hölder continuous of order α.

A basic example

The fractional Brownian motion of Hurst parameter $H \in(0,1)$, is a centered Gaussian process $\left\{B_{t}\right\}_{t \geq 0}$ with covariance function

$$
R(s, t):=\mathbb{E}\left[B_{t} B_{s}\right]=\frac{1}{2}\left(t^{2 H}+s^{2 H}-|t-s|^{2 H}\right)
$$

Some properties of B :

- If $H=\frac{1}{2}, B$ is a Brownian motion.
- It has stationary increments.
- For all $c>0,\left\{B_{c t}\right\}_{t \geq 0} \stackrel{\text { Law }}{=}\left\{c^{H} B_{t}\right\}_{t \geq 0}$.
- For all $0<\alpha<H$, the trayectories of B are Hölder continuous of order α.
- If $H \neq \frac{1}{2}$, it is not a martingale, doesn't satisfy the Markov property and its increments are not independent.

Previous work

The non-collision property has been studied by

- Mckean, whom proved that if $\beta=r=1$, and the $\xi_{i, j}$'s are standard Brownian motions, the eigenvalues don't collide.

Previous work

The non-collision property has been studied by

- Mckean, whom proved that if $\beta=r=1$, and the $\xi_{i, j}$'s are standard Brownian motions, the eigenvalues don't collide.
- Nualart and Pérez-Abreu, whom proved that if $\beta=r=1$, and the $\xi_{i, j}$'s are fractional Brownian motions of Hurst parameter $\frac{1}{2}<H<1$, the eigenvalues don't collide.

Previous work

The non-collision property has been studied by

- Mckean, whom proved that if $\beta=r=1$, and the $\xi_{i, j}$'s are standard Brownian motions, the eigenvalues don't collide.
- Nualart and Pérez-Abreu, whom proved that if $\beta=r=1$, and the $\xi_{i, j}$'s are fractional Brownian motions of Hurst parameter $\frac{1}{2}<H<1$, the eigenvalues don't collide.

Question:

What happens when $H<\frac{1}{2}$?

Hypothesis of the Main Theorem

Assume that the there exist $\left(H_{1}, \ldots, H_{r}\right) \in(0,1)^{r}$, and $c_{2,1}, c_{2,2}, c_{2,3}, c_{2,4}>0$ such that for all $s=\left(s_{1}, \ldots, s_{r}\right), t=\left(t_{1}, \ldots, t_{r}\right) \in I$,

$$
\begin{aligned}
c_{2,1} & \leq \mathbb{E}\left[\xi_{1,1}(t)^{2}\right] \\
c_{2,2} \sum_{j=1}^{r}\left|s_{j}-t_{j}\right|^{2 H_{j}} & \leq \mathbb{E}\left[\left|\xi_{1,1}(s)-\xi_{1,1}(t)\right|^{2}\right] \leq c_{2,3} \sum_{j=1}^{r}\left|s_{j}-t_{j}\right|^{2 H_{j}}, \\
c_{2,4} \sum_{j=1}^{r}\left|s_{j}-t_{j}\right|^{2 H_{j}} & \leq \operatorname{Var}\left[\xi_{1,1}(t) \mid \xi_{1,1}(s)\right]
\end{aligned}
$$

Main Theorem

Define $Q:=\sum_{j=1}^{r} \frac{1}{H_{j}}$.

Main Theorem

Define $Q:=\sum_{j=1}^{r} \frac{1}{H_{j}}$.
Theorem (Jaramillo, Nualart)
For $\beta=1,2$, we have the following
(i) If $Q<\beta+1$,

$$
\mathbb{P}\left[\lambda_{i}^{\beta}(t)=\lambda_{j}^{\beta}(t) \text { for some } t \in I, \text { and } 1 \leq i<j \leq n\right]=0
$$

Main Theorem

Define $Q:=\sum_{j=1}^{r} \frac{1}{H_{j}}$.
Theorem (Jaramillo, Nualart)
For $\beta=1,2$, we have the following
(i) If $Q<\beta+1$,

$$
\mathbb{P}\left[\lambda_{i}^{\beta}(t)=\lambda_{j}^{\beta}(t) \text { for some } t \in I, \text { and } 1 \leq i<j \leq n\right]=0
$$

(ii) If $Q>\beta+1$,

$$
\mathbb{P}\left[\lambda_{i}^{\beta}(t)=\lambda_{j}^{\beta}(t) \text { for some } t \in I, \text { and } 1 \leq i<j \leq n\right]>0
$$

Main Theorem

Corollary
Suppose that $r=1$ and the $\xi_{i, j}$'s and $\eta_{i, j}$'s are fractional Brownian motions of Hurst parameter H. Then,

- If $\frac{1}{1+\beta}<H<1$, the eigenvalues of Y^{β} don't collide,
- If $H<\frac{1}{1+\beta}$, the eigenvalues of Y^{β} collide with positive probability.

Main Theorem

Corollary

Suppose that $r=1$ and the $\xi_{i, j}$'s and $\eta_{i, j}$'s are fractional Brownian motions of Hurst parameter H. Then,

- If $\frac{1}{1+\beta}<H<1$, the eigenvalues of Y^{β} don't collide,
- If $H<\frac{1}{1+\beta}$, the eigenvalues of Y^{β} collide with positive probability. Moreover, if either $A^{\beta}=0$ or the spectrum of A^{β} has cardinality $d-1$, then for every $T>0$,

$$
\mathbb{P}\left[\lambda_{i}^{\beta}(t)=\lambda_{j}^{\beta}(t) \text { for some } t \in(0, T), \text { and } 1 \leq i, j \leq n\right]=1
$$

Sketch of the proof

Let $V=\left\{V_{1}(t), \ldots, V_{n}(t)\right\}_{t \in \mathbb{R}^{r}}$ be any n-dimensional Gaussian field, whose entries are i.i.d and satisfy the same properties as $\xi_{1,1}$.

Sketch of the proof

Let $V=\left\{V_{1}(t), \ldots, V_{n}(t)\right\}_{t \in \mathbb{R}^{r}}$ be any n-dimensional Gaussian field, whose entries are i.i.d and satisfy the same properties as $\xi_{1,1}$.

Corollary (Biermé, Lacaux, Xiao)
Let $F \subset \mathbb{R}^{n}$ be a Borel set. Then, if $\operatorname{dim}_{H} F$ denotes the Hausdorff dimension of F,

- If $\operatorname{dim}_{H} F<n-Q$, the set $V^{-1}(F) \cap I$ is empty with probability one.

Sketch of the proof

Let $V=\left\{V_{1}(t), \ldots, V_{n}(t)\right\}_{t \in \mathbb{R}^{r}}$ be any n-dimensional Gaussian field, whose entries are i.i.d and satisfy the same properties as $\xi_{1,1}$.

Corollary (Biermé, Lacaux, Xiao)
Let $F \subset \mathbb{R}^{n}$ be a Borel set. Then, if $\operatorname{dim}_{H} F$ denotes the Hausdorff dimension of F,

- If $\operatorname{dim}_{H} F<n-Q$, the set $V^{-1}(F) \cap I$ is empty with probability one.
- If $\operatorname{dim}_{H} F>n-Q$, then

$$
0<\mathbb{P}\left[V^{-1}(F) \cap I \neq \emptyset\right]
$$

Proof of the main theorem

Let $\mathcal{S}_{\text {deg }}(d)$ and $\mathcal{H}_{\text {deg }}(d)$ denote the set of degenerate real symmetric matrices and complex Hermitian matrices, respectively.

Proof of the main theorem

Let $\mathcal{S}_{\text {deg }}(d)$ and $\mathcal{H}_{\text {deg }}(d)$ denote the set of degenerate real symmetric matrices and complex Hermitian matrices, respectively. The collision probability for Y^{β} can be written as

$$
\begin{aligned}
\mathbb{P}\left[\lambda_{i}^{1}(t)=\lambda_{j}^{1}(t) \text { for some } t \in I\right. & \text { and } 1 \leq i<j \leq n] \\
& =\mathbb{P}\left[Y^{1}(t) \in \mathcal{S}_{d e g}^{d} \text { for some } t \in I\right]
\end{aligned}
$$

Proof of the main theorem

Let $\mathcal{S}_{\text {deg }}(d)$ and $\mathcal{H}_{\text {deg }}(d)$ denote the set of degenerate real symmetric matrices and complex Hermitian matrices, respectively. The collision probability for Y^{β} can be written as

$$
\begin{aligned}
\mathbb{P}\left[\lambda_{i}^{1}(t)=\lambda_{j}^{1}(t) \text { for some } t \in I\right. & \text { and } 1 \leq i<j \leq n] \\
& =\mathbb{P}\left[Y^{1}(t) \in \mathcal{S}_{d e g}^{d} \text { for some } t \in I\right]
\end{aligned}
$$

and

$$
\left.\left.\left.\begin{array}{rl}
\mathbb{P}\left[\lambda_{i}^{2}(t)=\lambda_{j}^{2}(t) \text { for some } t \in I\right. & , \text { and } 1 \leq i<j \leq n] \\
& =\mathbb{P}\left[Y^{2}(t)\right.
\end{array}\right) \mathcal{H}_{d e g}^{d} \text { for some } t \in I\right]\right] ~ \$
$$

Proof of the main theorem

Define $n_{1}(d):=\frac{d(d+1)}{2}$ and $n_{2}(d):=d^{2}$, and identify the real symmetric matrices and the complex Hermitian matrices with $\mathbb{R}^{n_{1}}$ and $\mathbb{R}^{n_{2}}$ respectively.

Proof of the main theorem

Define $n_{1}(d):=\frac{d(d+1)}{2}$ and $n_{2}(d):=d^{2}$, and identify the real symmetric matrices and the complex Hermitian matrices with $\mathbb{R}^{n_{1}}$ and $\mathbb{R}^{n_{2}}$ respectively.

Lemma

There exist $\mathcal{S}_{\text {in }}^{d}, \mathcal{S}_{\text {out }}^{d} \subset \mathbb{R}^{n_{1}(d)}$ and $\mathcal{H}_{\text {in }}^{d}, \mathcal{H}_{\text {out }}^{d} \subset \mathbb{R}^{n_{2}(d)}$, satisfying

$$
\mathcal{S}_{\text {in }}^{d} \subset \mathcal{S}_{\text {deg }}^{d} \subset \mathcal{S}_{\text {out }}^{d} \quad \text { and } \quad \mathcal{H}_{\text {in }}^{d} \subset \mathcal{H}_{\text {deg }}^{d} \subset \mathcal{H}_{\text {out }}^{d},
$$

and

- $\mathcal{S}_{i n}^{d}$ and $\mathcal{H}_{i n}^{d}$ are manifolds of dimensions $n_{1}(d)-2$ and $n_{2}(d)-3$.
- $\mathcal{S}_{\text {out }}^{d}$ is locally, the image of smooth function defined in an open subset of $\mathbb{R}^{n_{1}(d)-2}$ and $\mathcal{H}_{i n}^{d}$ is locally the image of smooth function defined in an open subset of $\mathbb{R}^{n_{2}(d)-3}$.

Bibliography

围 Jaramillo, A. and Nualart D. Collision of the eigenvalues of matrix-valued processes. In elaboration.
囦 Anderson, G. and Guionnet, A. and Zeitouni, O (2010). An introduction to random matrices. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge.
Rualart, D. and Pérez-Abreu, V. (2014). On the eigenvalue process of a matrix fractional Brownian motion. Stochastic Processes and their Applications. 124 4266-4282.

