Eigenvalue collision for matrix Gaussian processes

Arturo Jaramillo

University of Kansas

December 2017

3

Consider a d-dimensional random matrix X of the form

$$X = \begin{pmatrix} \sqrt{2}\xi_{1,1} & \xi_{1,2} & \cdots & \xi_{1,d} \\ \xi_{1,2} & \sqrt{2}\xi_{2,2} & & \xi_{2,d} \\ \vdots & & \ddots & \vdots \\ \xi_{1,d} & \xi_{2,d} & \cdots & \sqrt{2}\xi_{d,d} \end{pmatrix},$$

where the $\xi_{i,j}$ are real centered i.i.d. Gaussian variables.

イロト イポト イヨト イヨト

Consider a d-dimensional random matrix X of the form

$$X = \begin{pmatrix} \sqrt{2}\xi_{1,1} & \xi_{1,2} & \cdots & \xi_{1,d} \\ \xi_{1,2} & \sqrt{2}\xi_{2,2} & & \xi_{2,d} \\ \vdots & & \ddots & \vdots \\ \xi_{1,d} & \xi_{2,d} & \cdots & \sqrt{2}\xi_{d,d} \end{pmatrix},$$

where the $\xi_{i,j}$ are real centered i.i.d. Gaussian variables. Denote by $(\lambda_1, \ldots, \lambda_d)$, the vector of ordered eigenvalues of X, and let F be its associated distribution function.

▲ □ ▶ ▲ □ ▶ ▲ □

Fact:

F is absolutely continuous with respect to the Lebesgue measure.

Fact:

F is absolutely continuous with respect to the Lebesgue measure. In particular, we have that

$$\mathbb{P}[\lambda_i = \lambda_j, \text{ for some } i \neq j] = 0.$$

Fact:

 ${\it F}$ is absolutely continuous with respect to the Lebesgue measure. In particular, we have that

$$\mathbb{P}[\lambda_i = \lambda_j, \text{ for some } i \neq j] = 0.$$

Question

If the $\xi_{i,j}$'s are Gaussian processes instead of Gaussian variables, when can we guarantee that the probability that the eigenvalues of X are "always" different?

(4) (日本)

For $r \in \mathbb{N}$ fixed, consider i.i.d, real centered Gaussian fields, indexed by $(i,j) \in \mathbb{N}^2$,

 $\{\xi_{i,j}(t)\}_{t\in\mathbb{R}^r},$ and $\{\eta_{i,j}(t)\}_{t\in\mathbb{R}^r},$

defined in a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

For $r \in \mathbb{N}$ fixed, consider i.i.d, real centered Gaussian fields, indexed by $(i, j) \in \mathbb{N}^2$,

 $\{\xi_{i,j}(t)\}_{t\in\mathbb{R}^r},$ and $\{\eta_{i,j}(t)\}_{t\in\mathbb{R}^r},$

defined in a probability space $(\Omega, \mathcal{F}, \mathbb{P}).$

We will assume that there exists a non-negative definite function $R: \mathbb{R}^2 \to \mathbb{R}$, such that

$$\mathbb{E}[\xi_{i,j}(s)\xi_{p,q}(t)] = \mathbb{E}[\eta_{i,j}(s)\eta_{p,q}(t)] = \delta_{i,p}\delta_{j,q}R(s,t),$$

(人間) シスヨン スヨン

Consider, for $\beta \in \{1,2\}$ and $d \in \mathbb{N}$ fixed, the matrix-valued process $X^{\beta} = \{X_{i,j}^{\beta}\}_{i,n \in \mathbb{N}}$, by

$$X_{i,j}^{\beta}(t) = \begin{cases} \xi_{i,j}(t) + \mathbb{1}_{\{\beta=2\}} i\eta_{i,j}(t) & \text{if } i < j \\ (\mathbb{1}_{\{\beta=1\}}\sqrt{2} + \mathbb{1}_{\{\beta=2\}})\xi_{i,i}(t) + \mathbb{1}_{\{\beta=2\}}\eta_{i,i}(t) & \text{if } i = j \\ \xi_{i,j}(t) - \mathbb{1}_{\{\beta=2\}}i\eta_{i,j}(t) & \text{if } j < i. \end{cases}$$

・ロト ・四ト ・ヨト ・ヨト

Consider, for $\beta \in \{1,2\}$ and $d \in \mathbb{N}$ fixed, the matrix-valued process $X^{\beta} = \{X_{i,j}^{\beta}\}_{i,n \in \mathbb{N}}$, by

$$X_{i,j}^{\beta}(t) = \begin{cases} \xi_{i,j}(t) + \mathbb{1}_{\{\beta=2\}} \mathbf{i} \eta_{i,j}(t) & \text{if } i < j \\ (\mathbb{1}_{\{\beta=1\}} \sqrt{2} + \mathbb{1}_{\{\beta=2\}}) \xi_{i,i}(t) + \mathbb{1}_{\{\beta=2\}} \eta_{i,i}(t) & \text{if } i = j \\ \xi_{i,j}(t) - \mathbb{1}_{\{\beta=2\}} \mathbf{i} \eta_{i,j}(t) & \text{if } j < i. \end{cases}$$

Let A^{β} be a fixed Hermitian deterministic matrix, such that A^{β} has real entries in the case $\beta = 1$, and complex entries in the case $\beta = 2$.

ヘロト 人間ト ヘヨト ヘヨト

Consider, for $\beta \in \{1,2\}$ and $d \in \mathbb{N}$ fixed, the matrix-valued process $X^{\beta} = \{X_{i,j}^{\beta}\}_{i,n \in \mathbb{N}}$, by

$$X_{i,j}^{\beta}(t) = \begin{cases} \xi_{i,j}(t) + \mathbb{1}_{\{\beta=2\}} \mathbf{i} \eta_{i,j}(t) & \text{if } i < j \\ (\mathbb{1}_{\{\beta=1\}} \sqrt{2} + \mathbb{1}_{\{\beta=2\}}) \xi_{i,i}(t) + \mathbb{1}_{\{\beta=2\}} \eta_{i,i}(t) & \text{if } i = j \\ \xi_{i,j}(t) - \mathbb{1}_{\{\beta=2\}} \mathbf{i} \eta_{i,j}(t) & \text{if } j < i. \end{cases}$$

Let A^{β} be a fixed Hermitian deterministic matrix, such that A^{β} has real entries in the case $\beta = 1$, and complex entries in the case $\beta = 2$. We are interested in the ordered eigenvalues $\lambda_1^{\beta}(t) \ge \cdots \ge \lambda_d^{\beta}(t)$ of

$$Y^{\beta}(t) := A^{\beta} + X^{\beta}(t).$$

Goal:

For a fixed interval $I \subset \mathbb{R}^r$ of the form $I = [a_1, b_1] \times \cdots \times [a_r, b_r]$, we want to determine necessary and sufficient conditions on X^{β} , under which the following non-collision property holds

$$\mathbb{P}\left[\lambda_i^eta(t) = \lambda_j^eta(t) \;\; ext{for some} \;\; t \in extsf{I}, \; ext{and} \; 1 \leq i < j \leq n
ight] = 0.$$

The fractional Brownian motion of Hurst parameter $H \in (0, 1)$, is a centered Gaussian process $\{B_t\}_{t \ge 0}$ with covariance function

$$R(s,t) := \mathbb{E}[B_t B_s] = rac{1}{2}(t^{2H} + s^{2H} - |t-s|^{2H}).$$

イロト イポト イヨト イヨト

The fractional Brownian motion of Hurst parameter $H \in (0, 1)$, is a centered Gaussian process $\{B_t\}_{t \ge 0}$ with covariance function

$$R(s,t) := \mathbb{E}[B_t B_s] = rac{1}{2}(t^{2H} + s^{2H} - |t-s|^{2H}).$$

Some properties of *B*:

The fractional Brownian motion of Hurst parameter $H \in (0, 1)$, is a centered Gaussian process $\{B_t\}_{t \ge 0}$ with covariance function

$$R(s,t) := \mathbb{E}[B_t B_s] = rac{1}{2}(t^{2H} + s^{2H} - |t-s|^{2H}).$$

Some properties of *B*:

• If $H = \frac{1}{2}$, B is a Brownian motion.

The fractional Brownian motion of Hurst parameter $H \in (0, 1)$, is a centered Gaussian process $\{B_t\}_{t \ge 0}$ with covariance function

$$R(s,t) := \mathbb{E}[B_t B_s] = rac{1}{2}(t^{2H} + s^{2H} - |t-s|^{2H}).$$

Some properties of *B*:

- If $H = \frac{1}{2}$, B is a Brownian motion.
- It has stationary increments.

・ 同 ト ・ ヨ ト ・ ヨ

The fractional Brownian motion of Hurst parameter $H \in (0, 1)$, is a centered Gaussian process $\{B_t\}_{t \ge 0}$ with covariance function

$$R(s,t) := \mathbb{E}[B_t B_s] = rac{1}{2}(t^{2H} + s^{2H} - |t-s|^{2H}).$$

Some properties of *B*:

- If $H = \frac{1}{2}$, B is a Brownian motion.
- It has stationary increments.
- For all c > 0, $\{B_{ct}\}_{t \ge 0} \stackrel{Law}{=} \{c^H B_t\}_{t \ge 0}$.

The fractional Brownian motion of Hurst parameter $H \in (0, 1)$, is a centered Gaussian process $\{B_t\}_{t \ge 0}$ with covariance function

$$R(s,t) := \mathbb{E}[B_t B_s] = rac{1}{2}(t^{2H} + s^{2H} - |t-s|^{2H}).$$

Some properties of *B*:

- If $H = \frac{1}{2}$, B is a Brownian motion.
- It has stationary increments.
- For all c > 0, $\{B_{ct}\}_{t \ge 0} \stackrel{Law}{=} \{c^H B_t\}_{t \ge 0}$.
- For all 0 < α < H, the trayectories of B are Hölder continuous of order α.

The fractional Brownian motion of Hurst parameter $H \in (0, 1)$, is a centered Gaussian process $\{B_t\}_{t \ge 0}$ with covariance function

$$R(s,t) := \mathbb{E}[B_t B_s] = rac{1}{2}(t^{2H} + s^{2H} - |t-s|^{2H}).$$

Some properties of *B*:

- If $H = \frac{1}{2}$, B is a Brownian motion.
- It has stationary increments.
- For all c > 0, $\{B_{ct}\}_{t \ge 0} \stackrel{Law}{=} \{c^H B_t\}_{t \ge 0}$.
- For all 0 < α < H, the trayectories of B are Hölder continuous of order α.
- If H ≠ ¹/₂, it is not a martingale, doesn't satisfy the Markov property and its increments are not independent.

▲ □ ▶ ▲ □ ▶ ▲ □

The non-collision property has been studied by

• Mckean, whom proved that if $\beta = r = 1$, and the $\xi_{i,j}$'s are standard Brownian motions, the eigenvalues don't collide.

The non-collision property has been studied by

- Mckean, whom proved that if $\beta = r = 1$, and the $\xi_{i,j}$'s are standard Brownian motions, the eigenvalues don't collide.
- Nualart and Pérez-Abreu, whom proved that if $\beta = r = 1$, and the $\xi_{i,j}$'s are fractional Brownian motions of Hurst parameter $\frac{1}{2} < H < 1$, the eigenvalues don't collide.

The non-collision property has been studied by

- Mckean, whom proved that if $\beta = r = 1$, and the $\xi_{i,j}$'s are standard Brownian motions, the eigenvalues don't collide.
- Nualart and Pérez-Abreu, whom proved that if $\beta = r = 1$, and the $\xi_{i,j}$'s are fractional Brownian motions of Hurst parameter $\frac{1}{2} < H < 1$, the eigenvalues don't collide.

Question: What happens when $H < \frac{1}{2}$?

▲ □ ▶ ▲ □ ▶ ▲ □

Hypothesis of the Main Theorem

Assume that the there exist $(H_1, \ldots, H_r) \in (0, 1)^r$, and $c_{2,1}, c_{2,2}, c_{2,3}, c_{2,4} > 0$ such that for all $s = (s_1, \ldots, s_r), t = (t_1, \ldots, t_r) \in I$,

$$\begin{split} c_{2,1} &\leq \mathbb{E}\left[\xi_{1,1}(t)^2\right],\\ c_{2,2}\sum_{j=1}^r |s_j - t_j|^{2\mathcal{H}_j} &\leq \mathbb{E}\left[|\xi_{1,1}(s) - \xi_{1,1}(t)|^2\right] \leq c_{2,3}\sum_{j=1}^r |s_j - t_j|^{2\mathcal{H}_j},\\ c_{2,4}\sum_{j=1}^r |s_j - t_j|^{2\mathcal{H}_j} \leq \textit{Var}\left[\xi_{1,1}(t) \mid \xi_{1,1}(s)\right], \end{split}$$

Define
$$Q := \sum_{j=1}^{r} \frac{1}{H_j}$$

Arturo Jaramillo (University of Kansas)

Define $Q := \sum_{j=1}^{r} \frac{1}{H_j}$.

Theorem (Jaramillo, Nualart) For $\beta = 1, 2$, we have the following (i) If $Q < \beta + 1$,

$$\mathbb{P}\left[\lambda_i^\beta(t) = \lambda_j^\beta(t) \ \text{ for some } t \in I, \text{ and } 1 \leq i < j \leq n\right] = 0$$

3

A D N A B N A B N A B N

Define
$$Q := \sum_{j=1}^{r} \frac{1}{H_j}$$
.

Theorem (Jaramillo, Nualart) For $\beta = 1, 2$, we have the following (i) If $Q < \beta + 1$. $\mathbb{P}\left[\lambda_i^{\beta}(t) = \lambda_i^{\beta}(t) \text{ for some } t \in I, \text{ and } 1 \leq i < j \leq n\right] = 0.$ (ii) If $Q > \beta + 1$, $\mathbb{P}\left[\lambda_i^{\beta}(t) = \lambda_i^{\beta}(t) \text{ for some } t \in I, \text{ and } 1 \leq i < j \leq n \right] > 0.$

3

Corollary

Suppose that r = 1 and the $\xi_{i,j}$'s and $\eta_{i,j}$'s are fractional Brownian motions of Hurst parameter H. Then,

- If $\frac{1}{1+\beta} < H < 1$, the eigenvalues of Y^{β} don't collide,
- If $H < \frac{1}{1+\beta}$, the eigenvalues of Y^{β} collide with positive probability.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Corollary

Suppose that r = 1 and the $\xi_{i,j}$'s and $\eta_{i,j}$'s are fractional Brownian motions of Hurst parameter H. Then,

- If $\frac{1}{1+\beta} < H < 1$, the eigenvalues of Y^{β} don't collide,
- If H < 1/(1+β), the eigenvalues of Y^β collide with positive probability. Moreover, if either A^β = 0 or the spectrum of A^β has cardinality d - 1, then for every T > 0,

$$\mathbb{P}\left[\lambda_i^eta(t)=\lambda_j^eta(t) \;\; ext{for some }\; t\in(0,T), \; ext{and } 1\leq i,j\leq n
ight]=1.$$

< □ > < □ > < □ > < □ > < □ > < □ >

Let $V = \{V_1(t), \ldots, V_n(t)\}_{t \in \mathbb{R}^r}$ be any *n*-dimensional Gaussian field, whose entries are i.i.d and satisfy the same properties as $\xi_{1,1}$.

イロト イポト イヨト イヨト

Let $V = \{V_1(t), \ldots, V_n(t)\}_{t \in \mathbb{R}^r}$ be any *n*-dimensional Gaussian field, whose entries are i.i.d and satisfy the same properties as $\xi_{1,1}$.

Corollary (Biermé, Lacaux, Xiao)

Let $F \subset \mathbb{R}^n$ be a Borel set. Then, if dim_HF denotes the Hausdorff dimension of F,

• If $\dim_H F < n - Q$, the set $V^{-1}(F) \cap I$ is empty with probability one.

< □ > < □ > < □ > < □ > < □ > < □ >

Let $V = \{V_1(t), \ldots, V_n(t)\}_{t \in \mathbb{R}^r}$ be any *n*-dimensional Gaussian field, whose entries are i.i.d and satisfy the same properties as $\xi_{1,1}$.

Corollary (Biermé, Lacaux, Xiao)

Let $F \subset \mathbb{R}^n$ be a Borel set. Then, if dim_HF denotes the Hausdorff dimension of F,

- If $\dim_H F < n Q$, the set $V^{-1}(F) \cap I$ is empty with probability one.
- If $dim_H F > n Q$, then

$$0 < \mathbb{P}\left[V^{-1}(F) \cap I \neq \emptyset\right].$$

・ロト ・四ト ・ヨト ・ヨト

Let $S_{deg}(d)$ and $\mathcal{H}_{deg}(d)$ denote the set of degenerate real symmetric matrices and complex Hermitian matrices, respectively.

< □ > < 同 > < 三 > < 三 >

Let $S_{deg}(d)$ and $\mathcal{H}_{deg}(d)$ denote the set of degenerate real symmetric matrices and complex Hermitian matrices, respectively. The collision probability for Y^{β} can be written as

$$\begin{split} \mathbb{P}\left[\lambda_i^1(t) = \lambda_j^1(t) \ \text{ for some } \ t \in I, \text{ and } 1 \leq i < j \leq n\right] \\ &= \mathbb{P}\left[Y^1(t) \in \mathcal{S}_{deg}^d \ \text{ for some } \ t \in I\right] \end{split}$$

< □ > < 同 > < 三 > < 三 >

Let $S_{deg}(d)$ and $\mathcal{H}_{deg}(d)$ denote the set of degenerate real symmetric matrices and complex Hermitian matrices, respectively. The collision probability for Y^{β} can be written as

$$\mathbb{P}\left[\lambda_i^1(t) = \lambda_j^1(t) \text{ for some } t \in I, \text{ and } 1 \leq i < j \leq n\right]$$
$$= \mathbb{P}\left[Y^1(t) \in \mathcal{S}_{deg}^d \text{ for some } t \in I\right]$$

and

$$\mathbb{P}\left[\lambda_i^2(t) = \lambda_j^2(t) \text{ for some } t \in I, \text{ and } 1 \leq i < j \leq n\right]$$
$$= \mathbb{P}\left[Y^2(t) \in \mathcal{H}_{deg}^d \text{ for some } t \in I\right]$$

(4 何) トイヨト イヨト

Define $n_1(d) := \frac{d(d+1)}{2}$ and $n_2(d) := d^2$, and identify the real symmetric matrices and the complex Hermitian matrices with \mathbb{R}^{n_1} and \mathbb{R}^{n_2} respectively.

イロト 不得 トイヨト イヨト 二日

Define $n_1(d) := \frac{d(d+1)}{2}$ and $n_2(d) := d^2$, and identify the real symmetric matrices and the complex Hermitian matrices with \mathbb{R}^{n_1} and \mathbb{R}^{n_2} respectively.

Lemma

There exist $S_{in}^d, S_{out}^d \subset \mathbb{R}^{n_1(d)}$ and $\mathcal{H}_{in}^d, \mathcal{H}_{out}^d \subset \mathbb{R}^{n_2(d)}$, satisfying

$$\mathcal{S}_{\textit{in}}^{\textit{d}} \subset \mathcal{S}_{\textit{deg}}^{\textit{d}} \subset \mathcal{S}_{\textit{out}}^{\textit{d}}$$
 and $\mathcal{H}_{\textit{in}}^{\textit{d}} \subset \mathcal{H}_{\textit{deg}}^{\textit{d}} \subset \mathcal{H}_{\textit{out}}^{\textit{d}},$

and

- S_{in}^d and \mathcal{H}_{in}^d are manifolds of dimensions $n_1(d) 2$ and $n_2(d) 3$.
- S_{out}^d is locally, the image of smooth function defined in an open subset of $\mathbb{R}^{n_1(d)-2}$ and \mathcal{H}_{in}^d is locally the image of smooth function defined in an open subset of $\mathbb{R}^{n_2(d)-3}$.

ヘロト 人間ト ヘヨト ヘヨト

Bibliography

- Jaramillo, A. and Nualart D. Collision of the eigenvalues of matrix-valued processes. In elaboration.
- Anderson, G. and Guionnet, A. and Zeitouni, O (2010). An introduction to random matrices. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge.
- Nualart, D. and Pérez-Abreu, V. (2014). On the eigenvalue process of a matrix fractional Brownian motion. *Stochastic Processes and their Applications*. **124** 4266–4282.

< □ > < 同 > < 三 > < 三 >