Elementos de Probabilidad y Estadística Problemas IX

Los problemas 2, 7, 15 y 21 son para entregar el miércoles 6/05/09.

- 1. Sea X una variable aleatoria con distribución normal de parámetros $\mu=12,\,\sigma^2=9$. Use R para calcular a. P(X>3). b. P(|X-12|<4). c. P(|X-10|>2).
- 2. Determine el valor que debe tomar la constante A en cada caso para que las siguientes funciones sean densidad
 - de una función de distribución.
 - a. $f(x) = Ae^{-\alpha|x-\theta|}, -\infty < x < \infty, \alpha y \theta$ constantes.
 - b. $f(x) = Ax^{\alpha+1}$, $x > x_0 > 0$, α constante.
 - c. $f(x) = Ax(1-x), \ 0 \le x \le 1.$
 - d. $f(x) = \frac{A}{1+x^2}, -\infty < x < \infty$.
- 3. Sea $f(x) = Cxe^{-x}$, x > 0 una densidad.
- a. Determine el valor de C. b. Calcule P(X < 2). c. Calcule P(2 < X < 3).
- 4. Halle la función de distribución F y su gráfica si la densidad es
 - a. $f(x) = 1/2, \ 0 \le x \le 2.$ b. $f(x) = \begin{cases} x, & \text{si } 0 \le x \le 1\\ 2 x, & \text{si } 1 \le x \le 2. \end{cases}$
- 5. Si $f(x) = \frac{1}{2}e^{-x/2}$, x > 0, halle un número x_0 tal que $P(X > x_0) = 1/2$.
- 6. Sea X una variable aleatoria con distribución exponencial de parámetro $\lambda=0.5$. Calcule
 - a. P(X > 1), b. P(0.5 < X < 1.5), c. P(X > 2|X > 1).
- 7. La vida de una máquina, medida en horas, tiene densidad $f(x) = C/x^2$, x > 100.
 - a. Calcule C. b. Halle la función de distribución. c. Calcule P(X > 500).
- 8. La temperatura T de cierto objeto, medida en grados Fahrenheit, tiene una distribución normal con parámetros $\mu = 98.6$ y $\sigma^2 = 2$. La temperatura θ medida en grados centígrados está relacionada con T por la fórmula $\theta = 5 \cdot (T 32)/9$. Obtenga la distribución de θ .
- 9. La magnitud v de la velocidad de una molécula con masa m en un gas de temperatura absoluta T es una variable aleatoria que, de acuerdo a la teoría cinética de los gases, posee una distribución de Maxwell con parámetro $\alpha = (2kT/m)^{1/2}$, donde k es la constante de Boltzman. La distribución de Maxwell de parámetro α tiene densidad

$$f(x) = \begin{cases} \frac{4}{\sqrt{\pi}} \frac{1}{\alpha^3} x^2 \exp\left(\frac{x^2}{k^2}\right) & \text{si } x > 0\\ 0 & \text{si } x \le 0 \end{cases}$$

¿Cuál es la densidad de la energía cinética $E = mv^2/2$ de una molécula?

- 10. Halle la densidad de $Y = e^X$ donde X tiene distribución normal con parámetros μ y σ^2 . (Se dice que la variable Y tiene distribución lognormal con parámetros μ y σ^2).
- 11. Escriba un programa de computación para simular n valores de una variable de Bernoulli con p = 1/3. Corra el programa para n = 100; 1000; 10000 y en cada caso determine la proporción de los valores que son iguales a 1.
- 12. Escriba un programa de computación que tenga como entrada la función de probabilidad p_i , i = 1, ..., n y como resultado produzca un valor de la variable con esta función de probabilidad y valores en $\{1, 2, ..., n\}$.
- 13. Considere la distribución binomial negativa con parámetros p y k. Verifique la relación

$$P(X = j + 1) = \frac{j(1 - p)}{j + 1 - k}P(X = j).$$

Use esta relación para dar un nuevo algoritmo para generar esta distribución.

- 14. Dé un método para generar una variable aleatoria tal que $P(X=i)=\left(e^{-\lambda}\lambda^i/i!\right)/\left(\sum_{i=0}^k e^{-\lambda}\lambda^i/i!\right),\ i=0,\ldots,k.$
- 15. Dé un método para generar una variable aleatoria con distribución triangular.
- 16. Dé un método para generar una variable aleatoria con función de densidad $f(x) = e^x/(e-1)$, $0 \le x \le 1$.
- 17. Dé un método para generar una variable aleatoria con función de densidad

$$f(x) = \begin{cases} \frac{x-2}{2}, & \text{si } 2 \le x \le 3, \\ \frac{2-x/3}{2}, & \text{si } 3 \le x \le 6. \end{cases}$$

- 18. Use el método de la transformada inversa para generar una variable aleatoria con función de distribución $F(x) = (x^2 + x)/2$, $0 \le x \le 1$.
- 19. Dada la función de probabilidad conjunta definida por

$$p_{ij} = C(i+j) \tag{1}$$

en los puntos (1,1); (2,1); (2,1) y (3,1), donde C es una constante, determine en valor de C y obtenga la función de probabilidad marginal correspondiente a la primera variable.

- 20. Sean X, Y variables aleatorias con valores en $\{1, 2, ..., n\}$ y con función de probabilidad conjunta dada por (1). Halle el valor de C y las distribuciones marginales.
- 21. La función $p_{i,j}$ está dada por $p_{i,j} = C\alpha^i\beta^j$ para $i,j \in \mathbb{N}$ y $0 < \alpha, \beta < 1$. Halle el valor de C para que $p_{i,j}$ sea la función de probabilidad de las variables (X,Y). Halle las funciones de probabilidad marginales. ¿Son independientes estas variables?
- 22. ¿Es $p_{i,j}=(0.5)^{i+j}$ para $i,j\in\{0,1,2,\dots\}$ una función de probabilidad? Si la respuesta es positiva, calcule $P\{1\leq i\leq 3, j\geq 2\}$
- 23. La función $p_{i,j}$ está dada por

$$p_{i,j} = C \binom{10}{j} \left(\frac{1}{2}\right)^{10}.$$

Halle el valor de C y determine las funciones de probabilidad marginales.

- 24. Sea $\Omega = \{\omega_1, \omega_2, \omega_3\}$ y P la distribución uniforme en Ω (todos los puntos tienen igual probabilidad). Definimos las variables X, Y y Z de la siguiente manera: $X(\omega_1) = Y(\omega_2) = Z(\omega_3) = 1$, $X(\omega_2) = Y(\omega_3) = Z(\omega_1) = 2$, $X(\omega_3) = Y(\omega_1) = Z(\omega_2) = 3$. Demuestre que estas tres variables tienen la misma función de probabilidad. Halle las funciones de probabilidad de X + Y, Y + Z y X + Z.
- 25. Considere un grupo de cartas que consiste de J, Q, K y A de las cuatro pintas. Se extraen dos cartas del grupo sin reposición y llamamos X e Y al número de diamantes y corazones obtenidos, respectivamente. Obtenga la función de probabilidad conjunta y la función marginal correspondiente a X.
- 26. Una caja tiene 6 bolas numeradas del 1 al 6. Las bolas numeradas 1 y 2 son rojas mientras que las otras son blancas. Extraemos dos bolas al azar de la caja y sean X,Y las variables aleatorias que representan el número de bolas rojas y el número de bolas pares en la muestra, respectivamente. Halle la distribuciones de X e Y y su distribución conjunta. Determine si estas variables son independientes.