Probabilidad Avanzada I Lista de Problemas 3

Los problemas 3, 5, 8, 10 y 22 son para entregar el miércoles 07/03/18.

1. Sean $(X_n)_{n\geq 1}$ v.a.i.i.d. con media μ y varianza $\sigma^2.$ Demuestre que

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2 = \sigma^2.$$

- 2. Sea X_j una sucesión de v.a. con $\sup_j \mathrm{E}[X_j^2] = c < \infty$ y $\mathrm{E}[X_j X_k] = 0$ si $j \neq k$. Sea $S_n = \sum_{j=1}^n X_j$.
 - a) Demuestre que $P(|S_n/n| \ge \varepsilon) \le \frac{c}{n\varepsilon^2}$ para $\varepsilon > 0$.
 - b) $\lim_{n\to\infty} \frac{1}{n} S_n = 0$ en L^2 y en probabilidad.
- 3. Sean $(X_n)_{n\geq 1}$ v.a.i.i.d. con $X_n\in L^1$ y $\mathrm{E}[X_j]=\mu$. Sean también $(Y_n)_{n\geq 1}$ i.i.d. con $Y_n\in L^1$ y $\mathrm{E}[Y_n]=\nu\neq 0$. Demuestre que

$$\lim_{n \to \infty} \frac{\sum_{j=1}^{n} X_j}{\sum_{j=1}^{n} Y_j} = \frac{\mu}{\nu} \quad c.p. \ 1.$$

- 4. Sean $(X_n)_{n\geq 1}$ v.a.i.i.d. con valores enteros y $\mathrm{E}[|X_n|]<\infty$. Sea $S_n=\sum_1^n X_j$. $(S_n)_{n\geq 1}$ es un paseo al azar sobre los enteros. Demuestre que si $\mathrm{E}(X_j)>0$ entonces $\lim_n S_n=\infty$ c.p.1.
- 5. Sean $(X_n)_{n\geq 1}$ v.a.i.i.d. con distribución $\mathcal{N}(1,3)$. Demuestre que

$$\lim_{n\to\infty} \frac{X_1+\cdots+X_n}{X_1^2+\cdots+X_n^2} = \frac{1}{4} \quad c.s.$$

Más generalmente, sean $(X_n)_{n\geq 1}$ v.a.i.i.d. con media μ y varianza σ^2 . Demuestre que

$$\lim_{n\to\infty} \frac{X_1+\cdots+X_n}{X_1^2+\cdots+X_n^2} = \frac{\mu}{\sigma^2+\mu^2} \quad c.s.$$

6. Sean $(X_n)_{n\geq 1}$ v.a.i.i.d. con $X_n\in L^p$. Demuestre que

$$\lim_{n\to\infty}\frac{1}{n}\sum_{j=1}^n X_j^p=\mathrm{E}[X^p]\quad c.p,1.$$

7. Sea $(B_n)_{n\geq 1}$ una sucesión de v.a.i.i.d. con $P(B_n=\pm 1)=1/2$ y sea $(a_n)_{n\geq 1}$ una sucesión de constantes. Demuestre que

$$\sum_n a_n B_n \text{ converge } \iff \sum_n a_n^2 < \infty.$$

- 8. Use el teorema de las tres series para obtener condiciones necesarias y suficientes para que $\sum_n X_n$ converja c.s. cuando (X_n) con independientes con distribución exponencial.
- 9. Suponga que $(X_n, n \ge 1)$ son v.a.i. con distribución normal y

$$E(X_n) = \mu_n, \quad Var(X_n) = \sigma_n.$$

Demuestre que $\sum_n X_n$ converge c.s. si y sólo si $\sum_n \mu_n$ y $\sum_n \sigma_n^2$ convergen.

10. Sea $(X_n, n \ge 1)$ v.a.i. con

$$P(X_n = n^{-\alpha}) = P(X_n = -n^{-\alpha}) = \frac{1}{2}.$$

Use el criterio de convergencia de Kolmogorov para verificar que si $\alpha > 1/2$ entonces $\sum_n X_n$ converge c.s. Use el teorema de la tres series para verificar que $\alpha > 1/2$ es una condición necesaria para convergencia. Verifique que $\sum_n \mathrm{E}(|X_n|) < \infty$ si y sólo si $\alpha > 1$.

1

- 11. Sean $(X_n)_{n\geq 1}$ v.a.i. con $X_n\in L^1$ y sea $Y_j=e^{X_j}$. Demuestre que $(\prod_{i=1}^n Y_j)^{1/n}$ converge c.p. 1 a $\alpha=e^{\mathrm{E}[X_1]}$.
- 12. Sean $(X_n)_{n\geq 1}$ v.a.i. y $S_n = \sum_{1}^n X_j$. Demuestre que $S_n/n \to 0$ c.p.1 si y sólo si las siguientes condiciones son válidas: a) $S_n/n \stackrel{P}{\to} 0$ b) $S_{2^n}/2^n \to 0$ c.p. 1.
- 13. Definimos $(X_n)_{n\geq 1}$ iterativamente de la siguiente manera: X_0 tiene distribución uniforme en [0,1] y para $n\geq 1$ X_{n+1} tiene distribución uniforme en $[0,X_n]$. Demuestre que $\frac{1}{n}\log X_n$ converge c.s. y halle el límite.
- 14. Suponga que $(X_n, n \ge 1)$ son v.a.i. con $E(X_n) = 0$ para todo n. Si

$$\sum_{n} E\left(X_n^2 \mathbf{1}_{\{|X_n| \le 1\}} + |X_n| \mathbf{1}_{\{|X_n| > 1\}}\right) < \infty,$$

entonces $\sum_{n} X_n$ converge c.s. (Ayuda: $0 = E(X_n) = E(X_n \mathbf{1}_{\{|X_n| \le 1\}}) + E(X_n \mathbf{1}_{\{|X_n| > 1\}})$.

15. Sea (X_k, Y_k) , $1 \le k \le n$ una muestra de una distribución bivariada con vector de medias y matriz de covarianza daos por

$$\mu = \begin{pmatrix} \mu_x \\ \mu_y \end{pmatrix} \qquad \Lambda = \begin{pmatrix} \sigma_x^1 & \rho \\ \rho & \sigma_y^2 \end{pmatrix}.$$

Sea $\bar{X}_n = \frac{1}{n} \sum_{1}^{n} X_k, \ \bar{Y}_n = \frac{1}{n} \sum_{1}^{n} Y_k,$

$$s_{n,x}^2 = \frac{1}{n-1} \sum_{k=1}^n (X_k - \bar{X}_n)^2, \quad s_{n,y}^2 = \frac{1}{n-1} \sum_{k=1}^n (Y_k - \bar{Y}_n)^2$$

- (a) Demuestre que $s_{n,x}^2 \to \sigma_x^2$ y $s_{n,y}^2 \to \sigma_y^2$ cuando $n \to \infty$ donde las convergencias son c.p. 1.
- (b) Definimos el coeficiente de correlación empírico como

$$r_n = \frac{\sum_{k=1}^n (X_k - \bar{X}_n)(Y_k - \bar{Y}_n)}{\left(\sum_{k=1}^n (X_k - \bar{X}_n)^2 \sum_{k=1}^n (Y_k - \bar{Y}_n)^2\right)^{1/2}}$$

Demuestre que $r_n \to \rho$ c.s. cuando $n \to \infty$.

16. Sea $(X_k, k \ge 1)$ una sucesión de v.a.i. con

$$P(X_k = -k^2) = \frac{1}{k^2}, \quad P(X_k = -k^3) = \frac{1}{k^3}, \quad P(X_k = 2) = 1 - \frac{1}{k^2} - \frac{1}{k^3}.$$

Demuestre que $\sum_{k=1}^{n} X_k \to +\infty$ c.s. cuando $n \to \infty$.

- 17. Sea $(X_n, n \ge 1)$ una sucesión de v.a.i.i.d. Demuestre las siguientes proposiciones
 - (a) $P(\sum_{1}^{\infty} X_n \text{ converge}) = 0$
 - (b) Si las variables tienen media $\mu > 0$, entonces $\sum_{1}^{n} X_{k} \to +\infty$ c.s. cuando $n \to \infty$. ¿Qué ocurre si $\mu < 0$? ¿y si $\mu = 0$?
- 18. Sea $(X_n, n \ge 1)$ una sucesión de v.a. tales que para algún $m \in \mathbb{N}$ y todo i = 1, ..., m, las variables $X_i, X_{i+m}, X_{i+2m}, ...$ son independientes a pares e igualmente distribuidas. Suponga además que $\mathrm{E}(|X_1| + \cdots + |X_m|) < \infty$. Demuestre que con probabilidad 1

$$\bar{X}_n \to \frac{1}{m} \sum_{i=1}^m \mathrm{E}(X_i).$$

19. Sea $(X_n, n \ge 1)$ una sucesión de v.a.i.i.d. con f.d. común F y función de cuantiles asociada

$$Q(u) = \inf\{y : F(x) > u\}, \quad 0 < u < 1.$$

Para u fijo suponga que $F(Q(u) + \varepsilon) > u$ para todo $\varepsilon > 0$. Demuestre que $\widehat{Q}_n(u) = \inf\{y : \widehat{F}_n(y) \ge u\}$ converge a Q(u) c.p. 1, donde \widehat{F}_n es la f.d. empírica asociada a X_1, \ldots, X_n .

20. Números Normales Sea $\omega \in (0,1]$ y sea p>1 un entero. El desarrollo de ω en base p es la expresión

$$\omega = \sum_{i=1}^{\infty} X_i(\omega) p^{-i}$$

donde para cada $i, X_i(\omega) \in \{0, 1, 2, \dots, p-1\}$. En clase estudiamos el desarrollo en base 2. Este desarrollo es único excepto para ω de la forma $q/p^n, q=1,2,\dots,p^n-1, n\geq 1$ en cuyo caso hay dos desarrollos posibles, uno de las cuales tiene infinitos términos, que usaremos en estos casos. Diremos que un número $\omega \in (0,1]$ es normal en base p si para todo $q \in \{1,2,\dots,p^n-1\}$ se tiene que

$$\frac{1}{n}\sum_{i=1}^{n}\mathbf{1}(X_i(\omega)=q)\to \frac{1}{p}\quad c.p.\ 1.$$

Diremos que $\omega \in (0,1]$ es completamente normal si es normal con respecto a p para todo entero p > 1. Demuestre que el conjunto de los números completamente normales en (0,1] tiene medida de Lebesgue 1.

- 21. Demuestre la siguiente ley de grandes números: Sea $(X_n, n \ge 1)$ una sucesión de v.a.i.i.d. y suponga que $E(X) = 0, E(X^4) < \infty$.
 - (a) Demuestre que $E(S_n^4) \leq An^2 + Bn$ y determine los valores de A y B.
 - (b) Demuestre que

$$\frac{S_{n^2}}{n^2} \to 0$$
 c.p. 1 cuando $n \to \infty$.

(c) Sea $T_n = \max_{n^2 \le k \le (n+1)^2} |S_n - S_{n^2}|$. Demuestre que

$$P(T_n > n^2 \varepsilon \ i.v.) = 0$$
 para todo $\varepsilon > 0$.

(d) Demuestre que

$$\frac{1}{n}S_n \to 0$$
 c.p. 1 cuando $n \to \infty$.

22. Suponga que $(X_n, n \ge 1)$ son v.a.i. con $E(X_n) = 0$ para todo n. Si

$$\sum_{n} \mathrm{E}\left(X_{n}^{2} \mathbf{1}_{\{|X_{n}| \leq 1\}} + |X_{n}| \mathbf{1}_{\{|X_{n}| > 1\}}\right) < \infty,$$

entonces $\sum_{n} X_n$ converge c.s. (Ayuda: $0 = E(X_n) = E(X_n \mathbf{1}_{\{|X_n| \le 1\}}) + E(X_n \mathbf{1}_{\{|X_n| > 1\}})$.