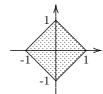
Modelos Estocásticos I

Problemas 4

Los problemas 1 y 2 son para entregar el miércoles 05/09/12

1. Seleccionamos al azar (es decir, con distribución uniforme) un punto en la siguiente región Sean X e Y las coordenadas del punto.

- (b) Obtenga la densidad marginal de X.
- (c) X Son X e Y independientes?
- (d) Halle la densidad condicional $f_{X|Y}(x|y)$ para -1 < y < 1.
- (e) Halle E(X|Y).



2. Suponga que $X,\ Y$ tienen densidad conjunta

$$f(x,y) = \begin{cases} \frac{1}{\pi}, & \text{si } x^2 + y^2 \le 1, \\ 0, & \text{en otro caso.} \end{cases}$$

(a) Halle la distribución condicional de Y dada X. Calcule $\mathrm{E}(Y|X)$. (b) ¿Son X, Y independientes? ¿Por qué? (c) Demuestre que estas variables no están correlacionadas.

3. Si X tiene densidad $f(x) = e^{-|x|/2}, x \in \mathbb{R}$, ¿Cuál es la distribución de Y = |X|?

4. Escogemos cinco puntos al azar de manera independiente en el intervalo [0, 1]. Sea X el número de puntos que pertenecen al intervalo [0,c], donde 0 < c < 1 es un número fijo. ¿Cuál es la distribución de X?

5. Una caja tiene tres bolas numeradas 1, 2 y 3. Sacamos dos bolas al azar, sucesivamente y sin reposición. Sea X el número en la primera e Y el número en la segunda. (a) Describa la distribución conjunta de $X \in Y$. (b) Calcule P(X < Y). (c) Determine las distribuciones marginales de las variables $X \in Y$. Son independientes?

6. Seleccionamos al azar un punto en el círculo unitario $\{(x,y): x^2+y^2\leq 1\}$ y sean (X,Y) las coordenadas del punto seleccionado. (a) ¿Cuál es la densidad conjunta de (X,Y)? (b) Determine P(X < Y), P(X > Y)Y), P(X = Y).

7. Seleccionamos al azar un punto en el cuadrado unitario $\{(x,y):0\leq x\leq 1,0\leq y\leq 1\}$. Sean (X,Y) las coordenadas del punto seleccionado. (a) ¿Cuál es la densidad conjunta de (X,Y)? (b) Calcule P(|(Y/X)- $1 \le 1/2$). (c) Calcule $P(Y \ge X | Y \ge 1/2)$.

8. Sean X, Y variables aleatorias con función de distribución conjunta $F(x,y) = (1-e^{-x})(1-e^{-y})$ para $x,y \ge 0$ y F(x,y) = 0 en cualquier otro caso. Halle la densidad conjunta y las densidades marginales. $X \in Y \text{ independientes?}$

9. Sea X, Y, Z variables aleatorias independientes cada una con distribución uniforme en [0, 1]. ¿Cuál es la probabilidad de que la ecuación cuadrática $Xt^2 + Yt + Z = 0$ tenga soluciones reales?

10. Sean $X \sim \mathcal{U}[0,a], Y \sim \mathcal{U}[a,a+b],$ donde a,b>0 variables aleatorias independientes. ¿Cuál es la probabilidad de que los tres segmentos [0, X], [X, Y], [Y, a + b] puedan formar un triángulo?

11. Sean X_1, \ldots, X_n v.a.i. con distribución exponencial de parámetros respectivos $\lambda_1, \ldots, \lambda_n$. (a) Demuestre que la distribución de $Y = \min_{1 \le i \le n} X_i$ también es exponencial ¿Cuál es su parámetro? (b) Demuestre que para $k = 1, \ldots, n$

$$P(X_k = \min_{1 \le i \le n} X_i) = \frac{\lambda_k}{\lambda_1 + \dots + \lambda_n}.$$

(Sugerencia: X_k e Y son independientes y tienen distribución exponencial. Considere el evento $\{X_k < 1\}$ $\min_{i\neq k} X_i$).

1

- 12. Sea X una variable cuya función de distribución F es continua en la recta. Demuestre que la distribución de Y = F(X) es $\mathcal{U}[0,1]$.
- 13. Sea A el triángulo de vértices (0,0); (1,0); (0,1) y suponga que X,Y tienen densidad conjunta $f(x,y) = C\mathbf{1}_A(x,y)$. (a) Determine el valor de la constante C. (b) Halle las distribuciones marginales de X e Y y la de Z = X + Y. (c) ¿Son X e Y independientes? ¿Por qué?
- 14. Sean X, Y variables aleatorias independientes con distribución común $\mathcal{N}(0,1)$. Demuestre que $U = (X + Y)/\sqrt{2}$ y $V = (X Y)/\sqrt{2}$ también son independientes y tienen distribución $\mathcal{N}(0,1)$.
- 15. Sean X, Y variables aleatorias independientes con distribución común $\mathcal{U}(0,1)$. Halle la densidad conjunta de W y Z, donde W = X + Y y Z = X Y. ¿Son estas variables independientes?
- 16. Sea X una v.a. $\mathcal{N}(0,1)$. Calcule la densidad de $Y=X^4$ y la de Z=1/X. ¿Tienen densidad conjunta Y y Z? ¿Por qué?
- 17. Sean X, Y v. a. i. tales que $X \sim Bin(m, p)$ e $Y \sim Bin(n, p)$. Obtenga la distribución condicional de X dada X + Y. ¿Cómo se llama esta distribución?
- 18. Considere el siguiente experimento en dos etapas: primero escogemos un punto X con distribución uniforme en (0,1); después escogemos un punto Y con distribución uniforme en (-X,X). El vector aleatorio (X,Y) representa el resultado del experimento. ¿Cuál es su densidad conjunta? ¿Cuál es la densidad marginal de Y? ¿Cuál es la densidad condicional de X dada Y?
- 19. Se observan dos focos durante su vida útil. Suponga que sus tiempos de vida son independientes y exponenciales de parámetro λ . Sea X el tiempo de vida del primer foco en apagarse e Y el tiempo de vida del otro foco. (a) ¿Cuál es la distribución condicional de X dada Y? ¿Cuál es la distribución de Y dada X?
- 20. Suponga que (X,Y) tiene distribución uniforme en A, donde A es una región del plano de área positiva y finita. Demuestre que la distribución condicional de X dado que Y=y es uniforme en A_y , la sección de A en y, que definimos $A_y=\{x:(x,y)\in A\}$.
- 21. Demuestre que si $P(X \in B|Y=y) = P(X \in B)$ para todo $B \in \mathcal{B}$ e $y \in \mathbb{R}$, entonces X e Y son independientes.
- 22. Sea X una v.a. con densidad f(x), f continua. ¿Cuál es la distribución condicional de X dada |X|?
- 23. Sean X, Y el mínimo y el máximo, respectivamente de dos variables aleatorias independientes con distribución común $\mathcal{E}xp(\lambda), \lambda > 0$. Demuestre que $(Y X)|X \sim \mathcal{E}xp(\lambda)$.
- 24. Sean X_1, \ldots, X_n v.a.i.i.d. con distribución continua F. Sea $X = \max_{1 \le i \le n} X_i$. (a) Demuestre que para todo $k = 1, 2, \ldots, n$,

$$P(X_k \le x | X = t) = \begin{cases} \frac{(n-1)F(x)}{nF(t)}, & \text{si } x < t, \\ 1, & \text{si } x \ge t. \end{cases}$$

(Sugerencia: $x^n - y^n = (x - y)(x^{n-1} + x^{n-2}y + \dots + xy^{n-2} + y^{n-1})$). (b) Suponga que F es diferenciable. ¿Existe la densidad condicional para la distribución anterior?

- 25. Sean X, Y v.a. tales que $E(X^2) < \infty$, $E(Y^2) < \infty$. Demuestre que Cov(X,Y) = Cov(X,E(Y|X)).
- 26. Definimos la varianza condicional de X dada Y por

$$Var(X|Y) = E(X^2|Y) - [E(X|Y)]^2$$

Sean X, Y variables aleatorias con segundo momento finito. (a) Demuestre que

$$Var(Y) = E(Var(Y|X)) + Var(E(Y|X))$$

(b) Sea Z otra v.a. Demuestre la siguiente fórmula

$$Cov(X, Y) = E[Cov((X, Y|Z))] + Cov(E(X|Z), E(Y|Z)),$$

donde definimos Cov((X,Y)|Z) = E(XY|Z) - E(X|Z) E(Y|Z).

27. Sean X, Y v.a.i. con distribución $\mathcal{N}(0, \sigma^2)$. ¿Cuál es la distribución condicional de (X, Y) dada $\sqrt{X^2 + Y^2}$, la distancia de (X, Y) all origen?