Math 751 Week 10 Notes

Qiao He, Jinhua Xu

Definition A short sequence of chain complex:

 $0 \longrightarrow A_{\cdot} \xrightarrow{i} B_{\cdot} \xrightarrow{j} C_{\cdot} \longrightarrow 0$

is said to be exact if

$$0 \longrightarrow A_n \xrightarrow{i} B_n \xrightarrow{j} C_n \longrightarrow 0$$

is a short exact sequence for each n, i.e, (1) i is injective, (2) Im(i) = Ker(j), (3) j is surjective.

We will show that when we pass to homology groups, this short exact sequence of chain complexes stretches out into a long exact sequence of homology groups

$$\cdots \longrightarrow H_n(A_{\cdot}) \xrightarrow{i_*} H_n(B_{\cdot}) \xrightarrow{j_*} H_n(C_{\cdot}) \xrightarrow{\partial} H_{n-1}(A_{\cdot}) \xrightarrow{i_*} H_{n-1}(B_{\cdot}) \longrightarrow \cdots$$

where $H_n(A_{\cdot})$ denotes the homology group $Ker\partial/Im\partial$ at A_n in the chain complex A_{\cdot} , and $H_n(B_{\cdot})$ and $H_n(C_{\cdot})$ are defined similarly.

$$A_{n-1} \xrightarrow{i} B_{n-1} \xleftarrow{\partial} B_n \xrightarrow{j} C_n$$

The commutativity of the squares in the short exact sequence of chain complexes means that i and j are chain maps. These therefore induce maps i_* and j_* on homology. To define the boundary map $\partial : H_n(C_{\cdot}) \longrightarrow$ $H_{n-1}(A_{\cdot})$, let $c \in C_n$ be a cycle. Since j is onto, c = j(b) for some $b \in B_n$. The element $\partial b \in B_{n-1}$ is in Kerj since $j(\partial b) = \partial j(b) = \partial c = 0$. So $\partial b = i(a)$ for some $a \in A_{n-1}$ since Kerj = Imi. Note that $\partial a = 0$ since $i(\partial a) = \partial i(a) = \partial \circ \partial b = 0$ and i is injective. We define $\partial : H_n(C_{\cdot}) \longrightarrow H_{n-1}(A_{\cdot})$ by sending the homology class of c to the homology class of a, $\partial [c] = [a]$. This is well-defined since:

- The element a is uniquely determined by ∂b since i is injective.
- A different choice b' for b would have j(b') = j(b), so b' b is in Kerj = Imi. Thus b' b = i(a') for some a', hence b' = b + i(a'). The effect of replacing b by b + i(a') is to change a to the homologous element $a + \partial a'$ since $i(a + \partial a') = i(a) + i(\partial a') = \partial b + \partial i(a') = \partial (b + i(a'))$.

• A different choice of c within its homology class would have the form $c + \partial c'$. Since c' = j(b') for some b', we then have $c + \partial c' = c + \partial j(b') = c + j(\partial b') = j(b + \partial b')$, so b is replaced by $b + \partial b'$, which leaves ∂b and therefore also a unchanged.

The map $\partial : H_n(C_.) \longrightarrow H_{n-1}(A_.)$ is a homomorphism since if $\partial [c_1] = [a_1]$ and $\partial [c_2] = [a]$ via elements b_1 and b_2 as above, then $j(b_1+b_2) = j(b_1)+j(b_2) = c_1+c_2$ and $i(a_1+a_2) = i(a_1)+i(a_2) = \partial b_1+\partial b_2 = \partial (b_1+b_2)$, so $\partial ([c_1] + [c_2]) = [a_1] + [a_2]$.

Exactness at $H_n(B_{\cdot})$:

- Im $i_* \subset \text{Ker} j_*$. This is immediate since ji = 0 implies $j_*i_*=0$.
- Ker $j_* \subset \text{Im } i_*$. A homology class in Ker j_* is represented by a cycle $b \in B_n$ with j(b) a boundary, so $j(b) = \partial c$ for some $c' \in C_{n+1}$. Since j is surjective, c' = j(b') for some $b' \in B_{n+1}$. We have $j(b \partial b') = j(b) j(\partial b') = j(b) \partial j(b') = 0$ since $\partial j(b' = \partial c' = j(b)$. So $b \partial b' = i(a)$ for some $a \in A_n$. This a is a cycle since $i(\partial a) = \partial i(a) = \partial (b \partial b') = \partial b = 0$ and i is injective. Thus $i_*[a] = [b \partial b'] = [b]$, showing that i_* maps onto Ker j_* .

Exactness at $H_n(C.)$:

- Im $j_* \subset \text{Ker}\partial$. We have $\partial j_* = 0$ since in this case $\partial b = 0$ in the definition of ∂ .
- Ker $\partial \subset \text{Im } j_*$. In the notation used in the definition of ∂ , if c represents a homology class in Ker ∂ , then $a = \partial a'$ for some $a' \in A_n$. The element b i(a') is a cycle since $\partial(b i(a')) = \partial b \partial i(a') = \partial b i(\partial a') = \partial b i(a) = 0$. And j(b i(a')) = j(b) ji(a') = j(b) = c, so j_* maps [b i(a')] to [c].

Exactness at $H_n(A_n)$:

- Im $\partial \subset \text{Ker}i_*$. Here $i_*\partial = 0$ since $i_*\partial$ takes [c] to $[\partial b] = 0$.
- Ker $i_* \subset Im\partial$. Given a cycle $a \in A_n 1$ such that $i(a) = \partial b$ for some $b \in B_n$, then j(b) is a cycle since $\partial j(b) = j(\partial b) = ji(a) = 0$, and ∂ takes [j(b)] to [a].

Applications

1) Now we define relative topology. Given a space X and a subspace $A \subset X$, let $C_n(X, A)$ be the quotient group $C_n(X)/C_n(A)$. Thus chains in A are trivial in $C_n(X, A)$. Since the boundary map $\partial : C_n(X) \to C_{n-1}(X)$ takes $C_n(A)$ to $C_{n-1}(A)$, it induces a quotient boundary map $\partial : C_n(X, A) \to C_{n-1}(X, A)$. Letting n vary, we have a sequence of boundary maps

$$\cdots \longrightarrow C_n(X,A) \xrightarrow{\partial} C_{n-1}(X,A) \longrightarrow \cdots$$

The relation $\partial^2 = 0$ holds for these boundary maps since it holds before passing to quotient groups. So we have a chain complex, and the homology groups Ker $\partial/\text{Im}\partial$ of this chain complex are by definition the relative homology groups $H_n(X, A)$. By the definition of relative topology, we have the following short exact sequence:

$$0 \longrightarrow \mathbb{C}_{.}(A) \xrightarrow{i_{*}} \mathbb{C}_{.}(X) \xrightarrow{p_{*}} \mathbb{C}_{.}(X,A) \longrightarrow 0$$

Therefore, by the previous argument we have the long exact sequence

$$\cdots \longrightarrow H_n(A) \longrightarrow H_n(X) \longrightarrow H_n(X,A) \longrightarrow H_{n-1}(A) \longrightarrow \cdots$$

Remark This also works for augmented chain complex

and this gives

$$\cdots \longrightarrow \widetilde{H}_n(A) \longrightarrow \widetilde{H}_n(X) \longrightarrow H_n(X,A) \longrightarrow \widetilde{H}_{n-1}(A) \longrightarrow \cdots$$

Exercise:

- If $A = x_0 \subset X$ for some pint $x_0 \in X$, then $\widetilde{H}_n(X) \cong H_n(X, x_0)$ for all n.
- If $A = \partial D^n \subset X = D^n$, then

$$H_i(D^n, \partial D^n) \xrightarrow{\partial} \widetilde{H}_{i-1}(S^{n-1}) = \begin{cases} \mathbb{Z} & i = n, \\ 0 & otherwise. \end{cases}$$

2) For $A \subset B \subset X$, we have short exact sequence

$$0 \longrightarrow \mathbb{C}_{\cdot}(A,B) \xrightarrow{i_*} \mathbb{C}_{\cdot}(X,B) \xrightarrow{p_*} \mathbb{C}_{\cdot}(X,A) \longrightarrow 0$$

and hence the corresponding long exact sequence

$$\cdots \longrightarrow H_n(A,B) \longrightarrow H_n(X,B) \longrightarrow H_n(X,A) \longrightarrow H_{n-1}(A,B) \longrightarrow \cdots$$