Math 751 Lecture note Week 11

December 21, 2015

Excision Theorem

(a) Let $Z \subset A \subset X$ with $\overline{Z} \subset int(A)$. The inclusion map $(X - Z, A - Z) \hookrightarrow (X, A)$ induces isomorphisms $H_n(X - Z, A - Z) \to H_n(X, A)$ for all n. i.e., $H_n(X - Z, A - Z) \cong H_n(X, A)$ for all n.

(b) Let $A, B \subset X$ with $X = int(A) \cup int(B)$. The inclusion map $(B, A \cap B) \hookrightarrow (X, A)$ induces $H_n(B, A \cap B) \cong H_n(X, A)$ for

all n.

<u>Remark</u> (a) and (b) are equivalent by taking B = X - Z (or Z = X - B). Then we have $A \cap B = A - Z$ and $\overline{Z} \subset int(A)$ iff $X = int(A) \cup int(B)$

Sketch of the proof of the Excision Theorem :

For a topological space X, let $\mathcal{U} = \{U_i\}_{i \in I}$ be a collection of subspaces of X with $X = \bigcup_{i \in I} int(U_i)$. Consider $C_n^{\mathcal{U}}(X) := \{\sum_{i=1}^m n_i \sigma_i \mid im(\sigma_i) \subset U_j \text{ for some } j \in I\}$, a subcomplex of $C_n(X)$. Then $C_{\bullet}^{\mathcal{U}}(X)$ forms a Chain complex with boundary map ∂ . Denote the homology group of this chain complex by $H_{\bullet}^{\mathcal{U}}(X)$. We have the following proposition.

Proposition $H_n^{\mathcal{U}}(X) \cong H_n(X)$ for all n.

This is because the inclusion map $i : C^{\mathcal{U}}_{\bullet}(X) \to C_{\bullet}(X)$ is a homotopy equivalence. i.e., $\exists \rho : C_{\bullet}(X) \to C^{\mathcal{U}}_{\bullet}(X)$ such that $\rho \circ i = Id_{C_{\bullet}(X)}$ and $i \circ \rho = Id_{C^{\mathcal{U}}_{\bullet}(X)}$.

Now, for the proof of the part (b), consider the cover $\mathcal{U} = \{A, B\}$ and denote $C_n(A+B) := C_n^{\mathcal{U}}(X)$. The inclusion $C_n(A+B) / C_n(A) \hookrightarrow C_n(X) / C_n(A) = C_n(X, A)$ induces isomorphism on homology.

Moreover, $C_n(B, A \cap B) = C_n(B) / C_n(A \cap B) \to C_n(A+B) / C_n(A)$ also induces isomorphism on homology. In consequence, we get $H_n(X, A) \cong H_n(B, A \cap B)$.