1 The Fundamental Group

Manuel González Villa Lecture 1, Scribe: Okan Akalin

9/9/2015

Fundamental Group

Let *X* be a topological space and let $x, y \in X$. Define by P(X, x, y) the set { $\gamma : [0,1] \rightarrow X : \gamma(0) = x$, $\gamma(1) = y$ and γ is continuous}. In the case, x = y, we denote P(X, x, x) by $\Omega(X, x)$. Next we define an equivalence relation.

1.1 Definition (Homotopic paths). Two paths $\gamma, \delta \in P(X, x, y)$ are called **homotopic** (denoted $\gamma \sim \delta$) if there is a continuous map $F : [0,1] \times [0,1] \rightarrow X$ such that

$F(t,0) = \gamma(t), \ \forall t \in [0,1],$	$F(0,s)=x, \ \forall s\in [0,1],$
$F(t,1) = \delta(t), \ \forall t \in [0,1],$	$F(1,s) = y, \ \forall s \in [0,1].$

1.2 Lemma. The homotopy relation \sim is an equivalence relation. *Proof.* • **Reflexivity** $\gamma \sim \gamma$ with $F(t,s) = \gamma(t), \forall s \in [0,1].$

- Symmetry If $\gamma \sim \delta$ then $\delta \sim \gamma$ with F'(t,s) = F(t,1-s).
- **Transivity** If $\gamma \stackrel{F}{\sim} \delta$ and $\delta \stackrel{G}{\sim} \varphi$ then $\gamma \stackrel{H}{\sim} \varphi$ with:

$$H(t,s) = \begin{cases} F(t,2s) & 0 \le s \le \frac{1}{2} \\ G(t,2s-1) & \frac{1}{2} \le s \le 1 \end{cases}$$

1.3 Remark. We have:

$$H(t,0) = F(t,0) = \gamma(t)$$

$$H(t,1) = G(t,1) = \varphi(t)$$

$$H(0,s) = \begin{cases} F(0,2s) = x & 0 \le s \le \frac{1}{2} \\ G(0,2s-1) = x & \frac{1}{2} \le s \le 1 \end{cases}$$

$$H(1,s) = y$$

Also $H(t, 1/2) = F(t, 1) = G(t, 0) = \delta(t)$. Hence *H* is well defined.

Question: Is *H* continuous?

1.4 *Remark.* If $X = A \cup B$ with A, B both closed (or open) and if $f : X \to Y$ is a map with continuous restrictions $f|_A$ and $f|_B$ then f is continuous.

Hence *H* is the desired map, proving transivity.

1.5 Definition (Fundamental Group). The **fundamental group** of *X* with base point *x* (denoted by $\pi_1(X, x)$) is the quotient of $\Omega(X, x)$ with respect to the homotopy equivalence relation on $\Omega(X, x)$:

$$\pi_1(X,x) = \Omega(X,x) / \sim .$$

1.6 Definition (Concatenation of paths in *X*). We define **concatenation operator** as the map $* : P(X, x, y) \times P(X, y, z) \rightarrow P(X, x, z)$ given by $(\gamma, \delta) \mapsto \gamma * \delta$ where $\gamma * \delta : [0, 1] \rightarrow X$ is defined by

$$\gamma * \delta(t) = \begin{cases} \gamma(2t) & 0 \le t \le \frac{1}{2} \\ \delta(2t-1) & \frac{1}{2} \le t \le 1. \end{cases}$$

1.7 Remark. One can also define for fixed $s \in [0, 1]$,

$$\gamma *_{s} \delta(t) = \begin{cases} \gamma(t/s) & 0 \le t \le s \\ \delta\left(\frac{t-s}{1-s}\right) & s \le t \le 1 \end{cases}.$$

Lecture 1 — 9/9/2015

1.8 Lemma. Concatenation of paths is consistent with the homotopy relation (i.e. if $\gamma \sim \gamma'$ and $\delta \sim \delta'$ then $\gamma * \delta \sim \gamma' * \delta'$).

Proof. Let us say $\gamma \stackrel{F}{\sim} \gamma'$ and $\delta \stackrel{G}{\sim} \delta'$. Consider: $H : [0,1] \times [0,1] \to X$ given by

$$H(t,s) = \begin{cases} F(2t,s) & \text{for } 0 \le t \le \frac{1}{2} \\ G(2t-1,s) & \text{for } \frac{1}{2} \le t \le 1 \end{cases}$$

Claim: $\gamma * \delta \stackrel{H}{\sim} \gamma' * \delta'$. Proof is left as an exercise.

1.9 Corollary. The operation, *, of concatenation of paths induces a binary law on the set $\pi_1(X, x)$ by $[\gamma] \cdot [\delta] = [\gamma * \delta]$.

Manuel González Villa Lecture 2, Scribe: Okan Akalin 9/11/2015

1.10 Theorem (Fundamental Group). $(\pi_1(X, x), *)$ *is a group*.

Proof. We need to show that the group axioms hold for $(\pi_1(X, x), *)$. $\pi_1(X, x)$ is clearly closed under concatenation.

• **Associativity** We will show that for $\gamma, \delta, \varphi \in \Omega(X, x)$, we have $(\gamma * \delta) * \varphi = \gamma * (\delta * \varphi)$.

Hint: Recall from Remark 1.7 $\gamma * \delta \sim \gamma * \delta$ for any $s, s' \in (0, 1)$ and since concatenation is consistent with the homotopy equivalence relation, we have:

$$(\gamma*\delta)*\varphi\sim(\gamma*\delta)\underset{3/4}{*}\varphi\sim(\gamma\underset{2/3}{*}\delta)\underset{3/4}{*}\varphi=\gamma*(\delta*\varphi), \quad \ (1.1)$$

thus proving associativity of the concatenation operator. Note that the equality in eq. (1.1) can be checked by simply expanding the definition of concatenation. We refer the reader to ¹ page 27, for a visual demonstration of the idea.

• **Identity Element** We contend the constant map:

 $e_x: [0,1] \to X$ given by $e_x(t) = x$

is the left and right identity elements of $\pi_1(X, x)$. Let $\gamma \in \Omega(X, x)$. We show that $\gamma \stackrel{G}{\sim} e_x * \gamma$ where $G : [0, 1] \times [0, 1] \rightarrow X$ is defined by:

$$(t,s)\mapsto egin{cases} x & 0\leq t\leq rac{1}{2}s \ \gamma\left(rac{2t-s}{2-s}
ight) & rac{1}{2}s\leq t\leq 1 \end{cases}$$

¹ Allen Hatcher. *Algebraic topology*. Cambridge ; New York : Cambridge University Press, 2002

Lecture 2 — 9/11/2015

We have:

$$G(t,0) = \gamma(t)$$

$$G(t,1) = \begin{cases} x & 0 \le t \le \frac{1}{2} \\ \gamma(2t-1) & \frac{1}{2} \le t \le 1 \end{cases}$$

It is easy to check that G(0,s) = G(1,s) = x, $\forall x \in [0,1]$. The continuity of *G* follows from Remark 1.4.

A similar proof shows that $\gamma \sim \gamma * e_x$. Hence e_x is the identity element.

• **Inverse Elements** Let $\gamma : [0,1] \to X$ be a closed continuous path with $\gamma(0) = \gamma(1) = x$. Consider $\bar{\gamma} : [0,1] \to X$ given by $\bar{\gamma}(t) = \gamma(1-t)$. Clearly $\bar{\gamma}$ is continuous. $\bar{\gamma}(0) = \bar{\gamma}(1) = x$. We contend that $e_x \stackrel{F}{\sim} \gamma * \bar{\gamma}$ where $F : [0,1] \times [0,1] \to X$ is given by:

$$F(t,s) = \begin{cases} \gamma(2t) & 0 \le t \le \frac{1}{2}s \\ \gamma(s) & \frac{1}{2}s \le t \le 1 - \frac{1}{2}s \\ \gamma(2-2t) & 1 - \frac{1}{2}s \le t \le 1 \end{cases}$$

It is easy to see that *F* is well defined. Continuity of *F* follows from Remark **1.4**. We have:

$$F(t,0) = \gamma(0) = x = e_x,$$

$$F(t,1) = \begin{cases} \gamma(2t) & 0 \le t \le \frac{1}{2} \\ \gamma(2-2t) & \frac{1}{2} \le t \le 1 \\ = \gamma * \bar{\gamma} \end{cases}$$

-	-	

1.11 Example. Fundamental groups of certain spaces:

- 1. If $X = \{x\}$ (point space), $\Omega(X, x) = \{e_x\}$ and $\pi_1(X, x) = \langle [e_x] \rangle$.
- 2. If *X* is a convex subset of \mathbb{R}^n and $x \in X$ then $\pi_1(X, x) = \langle [e_x] \rangle$ because if $\gamma \in \Omega(X, x)$ then $H(t, s) = se_x(t) + (1 s)\gamma(t)$ is a continuous map with $H(t, 0) = \gamma(t)$ and $H(t, 1) = e_x(t) = x$. So $\gamma \stackrel{H}{\sim} e_x$.
- 3. For $n \ge 2$, we will see $\pi_1(S^n, x) = \langle [e_x] \rangle$.
- 4. We will see that $\pi_1(S^1, x) \cong \langle [\gamma] \rangle \cong \mathbb{Z}$ where $\gamma(t) = (\cos(2\pi t), \sin(2\pi t))$.

Base Point Independence: Question: How does $\pi_1(X, x)$ change under base point change? Assume that *X* is path connected. Take two distinct points $x, y \in X$ where $x \neq y$.

Choose a continuous path α : $[0,1] \rightarrow X$ with $\alpha(0) = x$, $\alpha(1) = y$. If $\gamma \in \Omega(X, x)$ then $\bar{\alpha} * \gamma * \alpha \in \Omega(X, y)$.

Lecture 2 — 9/11/2015

1.12 *Remark.* If $\gamma \stackrel{H}{\sim} \gamma'$ then $\bar{\alpha} * \gamma * \alpha \stackrel{H'}{\sim} \bar{\alpha} * \gamma' * \alpha$ where H' is a reparametrization of H. Hence this operation is compatible with homotopies, and we get the map:

$$\alpha_{\#}: \pi_1(X, x) \to \pi_1(X, y)$$

1.13 Theorem. If X is path-connected and α is a path from y to x, $\alpha_{\#}$ is an isomorphism.

Proof. First we will show that $\alpha_{\#}$ is a homomorphism. Take $[\gamma], [\eta] \in \pi_1(X, x)$, we have $\alpha_{\#}([\gamma] \cdot [\eta]) = \alpha_{\#}([\gamma * \eta]) = [\bar{\alpha} * \gamma * \eta * \delta] = [\bar{\alpha} * \gamma * e_y * \eta * \alpha] = [\bar{\alpha} * \gamma * \alpha * \bar{\alpha} * \eta * \alpha] = [\bar{\alpha} * \gamma * \alpha] \cdot [\bar{\alpha} * \eta * \alpha] = \alpha_{\#}([\gamma]) \cdot \alpha_{\#}([\eta])].$

Secondly, $\alpha_{\#}$ is an isomorphism with inverse map $\bar{\alpha}_{\#}$ since $\forall \gamma \in \pi_1(X, x)$:

$$(\alpha_{\#} \circ \bar{\alpha}_{\#})([\gamma]) = \alpha_{\#} ([\alpha * \gamma * \bar{\alpha}])$$
$$= [\bar{\alpha} * \alpha * \gamma * \bar{\alpha} * \alpha]$$
$$= [e_{x} * \gamma * e_{x}]$$
$$= [\gamma].$$

Similarly $\forall \gamma \in \pi_1(X, y)$, we have $(\bar{\alpha}_{\#} \circ \alpha_{\#})([\gamma]) = [\gamma]$.