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Last time, we showed that the fundamental group of a path connected space is independent of our
choice of base point. The precise statement is as follows:

Theorem. Let X be a path connected space, and x, y ∈ X. Let α : [0, 1]→ X be a continuous path
with α(0) = x, α(1) = y. Then

α# : π1(X,x)→ π1(X, y)

[γ] 7→ [α−1 ∗ γ ∗ α]

is an isomorphism.

Remark. The path connectedness assumption might be redundant.

1 Induced Homomorphism

If f : X → Y is a continuous map, with f(x) = y, then what is the relation between π1(X,x) and
π1(Y, y)? Given a continuous loop γ : [0, 1] → X with fixed base point x, f ◦ γ : [0, 1] → Y is a
continuous loop in Y with fixed base point y. Thus, we have a map

f# : Ω(X,x)→ Ω(Y, y)

γ 7→ f ◦ γ.

Moreover, if two paths γ, γ′ ∈ Ω(X,x) are homotopic, then f#(γ) and f#(γ′) are also homotopic.

(Indeed, suppose γ
H∼ γ′. Then f#(γ)

f◦H∼ f#(γ′).) It follows that the map

f∗ : π1(X,x)→ π1(Y, y)

[γ] 7→ [f#(γ)]

is well-defined.
Also, if γ, δ ∈ Ω(X,x), then

f#(γ ∗ δ)(t) =

{
f(γ(2t)) 0 ≤ t ≤ 1

2

f(δ(2t− 1)) 1
2 ≤ t ≤ 1

= (f#(γ) ∗ f#(δ))(t).
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Taking equivalence classes gives

f∗(γ ∗ δ)
def
= [f#(γ ∗ δ)]
= [f#(γ) ∗ f#(δ)]

= [f#(γ)] · [f#(δ)]

def
= f∗(γ) · f∗(δ).

Therefore, f∗ : π1(X,x)→ π1(Y, y) is a group homomorphism.

The above results can be summarized as follows:

Theorem. A continuous map f : X → Y induces a group homomorphism

f∗ : π(X,x)→ π(Y, f(x))

[γ] 7→ [f ◦ γ].

Here are some basic properties of the induced homomorphism:

Proposition. Let X,Y, Z be topological spaces, and f : X → Y , g : Y → Z be continuous maps.

(i) (g ◦ f)∗ = g∗ ◦ f∗;

(ii) (idX)∗ = idπ1(X,x).

2 Functoriality

Definition. A category C consists of the following things:

(i) A class of objects, denoted by Obj(C);

(ii) A set of morphisms Hom(A,B) for every pair objects A,B in Obj(C);

(iii) An identity morphism idA ∈ Hom(A,A) for every object A;

(iv) A composition rule Hom(A,B) × Hom(B,C) → Hom(A,C) for every triple A,B,C of
objects, such that (f ◦ g) ◦ h = f ◦ (g ◦ h) and id ◦f = f = f ◦ id.

Example. Sets is a category. The objects are sets, and the morphisms are maps between sets.

Example. Grp is a category. The objects are groups, and the morphisms are group homomor-
phisms.

Example. Top is a category. The objects are topological spaces, and the morphisms are continuous
maps.

Example. Pointed topological spaces (pairs (X,x), where x ∈ X) form a category. The morphisms
in Hom((X,x), (Y, y)) are continuous maps sending x to y.

Definition. A functor F : C → D from a category C to a category D is a rule that associates
an object A of C with an object F(A) of D, and a morphism f ∈ Hom(A,B) with a morphism
F(f) ∈ Hom(F(A),F(B)), such that F(id) = id and F(f ◦ g) = F(f) ◦ F(g).
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If you want a thorough introduction to category theory, I recommend Categories for the Working
Mathematician by Mac Lane.

We can now restate our results from the previous section in the language of category theory:

Theorem. The fundamental group π1 is a functor from the category of pointed topological spaces
to the category of groups.

3 Invariance

In this section, we shall see that homeomorphic topological spaces “share the same fundamental
group.” We will also work towards establishing a similar result when the condition “homeomor-
phism” is replaced by “homotopy equivalence.”

Theorem. π1(X,x) is homeomorphism-invariant. In other words, if f : X → Y is a homeomor-
phism with f(x) = y, then f∗ : π1(X,x)→ π1(Y, y) is an isomorphism.

Proof. Let g : Y → X be the inverse of f . By functoriality of π1, we have

f∗ ◦ g∗ = (f ◦ g)∗ = (idY )∗ = idπ1(Y,y),

g∗ ◦ f∗ = (g ◦ f)∗ = (idX)∗ = idπ1(X,x) .

Thus, f∗ : π1(X,x)→ π1(Y, y) is an isomorphism (whose inverse is g∗.)

Remark. The homeomorphism assumption is overkill. In fact, the fundamental group is invariant
under homotopy equivalence (so long as our spaces are path connected.)

Definition. Let f, g : X → Y be continuous maps. We say that f and g are homotopic if there is
a continuous map H : [0, 1]×X → Y such that H(0, x) = f(x) and H(1, x) = g(x) for all x ∈ X.

Definition. Let A ⊂ X be a subspace, and assume that f = g on A. We say that f and g are
homotopic relative to A if there is a homotopy H as before, which satisfies the additional condition
H(t, a) = f(a) = g(a) for all t ∈ [0, 1] and all a ∈ A.

Example. A path is a continuous map γ : [0, 1]→ X. Our usual notion of path homotopy γ ∼ γ′
is equivalent to homotopy relative to {0, 1} ⊂ [0, 1].

Definition. Let f : X → Y and g : Y → X be continuous maps. We say that f and g are
homotopic equivalences if g ◦ f ∼ idX and f ◦ g ∼ idY . In this case, X and Y are said to have the
same homotopy type.

Theorem. Let X,Y be path connected spaces. If f : X → Y is a homotopy equivalence. Then
f∗ : π1(X,x)→ π1(Y, f(x)) is an isomorphism.

To prove this theorem, we first give a technical lemma:
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Lemma. Let h, k : X → Y be two continuous maps. Let x0 ∈ X, and denote y0 = h(x0),
y1 = k(x0). If h ∼ k, then there is a path α : [0, 1] → Y with α(0) = y0, α(1) = y1 such that the
following diagram commutes:

π1(Y, y0)

π1(X,x0)

π1(Y, y1)

α#

h∗

k∗

The proof is very involved, so we shall omit it. (For reference, see Munkres, Lemma 58.4.)

Proof of Theorem. Fix x0 ∈ X and let g : Y → X be so that g ◦ f ∼ idX . By the previous lemma,
there is a path α : [0, 1] → X with α(0) = x0, α(1) = g(f(x0)), such that the diagram below
commutes:

π1(X,x0)

π1(X,x0)

π1(X, g(f(x0)))

α#

idX∗

(g◦f)∗

By functoriality, g∗ ◦ f∗ = α# ◦ idπ1(X,x0). But we know that α# : π1(X,x0) → π1(X, g(f(x0))) is
an isomorphism. So f∗ is mono (the categorical way of saying that f∗ is injective.), and g∗ is epi
(which means surjective.) Reversing the roles of f and g, one can show that f∗ is mono, and g∗ is
epi. Therefore, f∗, g∗ are isomorphisms.

4 Deformation Spaces

Definition. A topological space X is called contractible if the identity map idX : X → X is
homotopic to the constant map.

Example. {x}, Rn, Dn are contractible.

Example. Sn (n ≥ 1) is not contractible.

One can show that a contractible space is always path connected. Also, if X is contractible, then
π1(X) is trivial.

Remark. If X is contractible, then it is simply connected. The converse is false: take Sn, n ≥ 2
for example.

Proposition. X is simply connected if and only if there is a unique homotopy class of paths
connecting every pair of points in X.

4



Proof. (⇒) Let x, y ∈ X. Since X is path connected, there is a path α : [0, 1]→ X with α(0) = x,
α(1) = y. Also assume that there is a second path β : [0, 1] → X with β(0) = x, β(1) = y. But
now

α ∼ α ∗ ey ∼ α ∗ β ∗ β ∼ ex ∗ β ∼ β.

(⇐) Since there is a class of paths connecting every pair of points, X is path connected. If we
consider the pair (x, x), then π1(X,x) is trivial by assumption.

Definition. A subspace A ⊂ X is called a retraction of X if there is a continuous map r : X → A
with r|A = idA. (Equivalently, if we denote the inclusion A ↪→ X by i, then r ◦ i = idA.

Definition. A subspace A ⊂ X is called a (weak) deformation retract if A is a retraction of X
(under r : X → A) and i ◦ r ∼ idX .

Definition. A subspace A ⊂ X is called a strong deformation retract if A is a (weak) definition

retract and id ◦r relA∼ idX .

Exercise. If X is contractible, then it deformation retracts to any of its points. However, it does
not strongly deformation retracts to any of its points.
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