
FREE GROUPS

Definition: Let G be a group and let S = {x
j

| j 2 J be a set of elements of G. We say that
S generates the group G if every element of G can be written as a finite product of elements of
S (i.e. given g 2 G there exists i1, ..., in 2 J not necessarily distinct and e1, ..., en 2 Z such that
g = ie11 ...ien

n

. This expression is not necessarily unique.)

Given a set X, we want to define a group F (X) such that
· S generates F (X), and
· F (X) is the freest group containing X (i.e. there are no nontrivial relations between the elements
of X).
Definition: The set of words in X is the set

W (X) = {xe11 ...xen
n

|x
i

2 X, e
i

= ±1, n 2 N}

If w 2 W (X), we call w a word in X and 1 is called the empty word. We can endow W (X) with a
binary operation of concatenation.

Definition: Let w and w0 be two words in X. We say that w can be elementarily reduced to
w0 (or vice versa) and denote by w ⇠

e

w0 if the word w (resp. w0) contains a subword xx�1 or x�1x
and the word w�1 (resp. w) is obtained from it by deleting this subword.

Definition: Let w and w0 be two words in X. We say that w ⇠ w0 if and only if there is a
unique finite sequence of words w1, ..., wn

in X such that w ⇠
e

w1 ⇠e

... ⇠
e

w
n

⇠
e

w0.
Obviously ⇠ is an equivalence relation.

Definition: We define F (X) to be the set of equivalence classes of words in X; i.e. F (X) :=
W (X)/ ⇠.
Note that the relation ⇠ is consistent with concatenation of words; i.e. if w1, w

0
1, w2, w

0
2 2 X and

w1 ⇠ w0
1 w2 ⇠ w0

2, then w1w2 ⇠ w1, w
0
1.

Theorem: F (X) together with the operation induced by concatenation of words in W (X) is
called the free group on X.

Proposition: (Universal mapping property) Let X be a set and G be a group.
Let i : X ! F (X) : x 7! [x] and let j : X ! G, then there is a unique group homomorphism
f : F (X) ! G such that f � i = j where f([xe11 ...xen

n

]) = [j(x1)
e1 ...j(x

n

)en ].

X F (X) [xe11 , ..., xen
n

]

G [j(x1)
e1 · · · j(x

n

)en ]

i

j

9!fhomo

Example: Let X = {x}. Then F (X) = {xn | n 2 Z} ' Z. Let G =< a | an = 1 > be the group of
order n and let j : X ! G be the map j(x) = a. By the UMP, we get an epimorphism f : F (X) ⇣
f([x]) = n and we get G = F (X)/ker(f) ' Z/nZ.
More generally, if G is a group generated by a set X, we have an epimorphism

f : F (X) ⇣ G

and therefore G ' F (X)/ker(f) which gives us a presentation of G by generators and relations;
i.e. < x 2 X | r 2 ker(f) >.



FREE PRODUCT

Let H and K be two groups. We want to define a new group from them, the free group H ⇤K.
Consider the set of the words

W (H,K) = {g1g2...gn | g
i

2 H or g
i

2 K} [ {1}

together with the operation of concatenation.

Definition: Let w and w0 be two words in W (H,K). We say that w is an elementary reduc-
tion of w0 (or vice versa) if w contains a subword of the form ab with a, b 2 H or a, b 2 K and w0

is obtained from w by
· substituting ab by a single element in H (or K) which is the product a, b if a 6= b�1;
· erasing the subword ab if a = b�1.

Definition: We say that two words w and w0 in W (H,K) are equivalent if and only if there
exists a finite sequence w1, w2, ..., wn

in W (H,K) such that
w ⇠

e

w1 ⇠e

w2 ⇠e

... ⇠
e

w
n

⇠
e

w0.
Obviously ⇠ is an equivalence relation.

Definition: We define H ⇤ K as the equivalence classes of words in W (H,K); i.e. H ⇤ K :=
W (H,K)/ ⇠

Remark: Any equivalence class contains a unique reduced word satisfying h1k1h2k2...hrkr
·h

i

2 H for all i = 1, ..., r
·k

i

2 K for all i = 1, ..., r
·h

i

6= 1 for all i = 2, ..., r
·k

i

6= 1 for all i = 1, ..., r � 1
Equivalence relation is consistent with concatenation.

Theorem: H ⇤K is a group, called the free group of H and K.

Proposition: (Universal Mapping Property) Let H,K and G be groups. Let i : H ! H ⇤K,
j : K ! H ⇤K be inclusion maps and p : H ! G, q : K ! G be homomorpshims, then there is a
unique group homomorphism f : H ⇤K ! G such that f � i = p and f � j = q.

H

H ⇤K G

K

i

p

9!f

j

q

Corollary 2.1 H ⇤K is the unique group satisfying the UMP up to isomorphism.

Examples:
1. Let X = {x1, ..., xn} be a set of elements and define F

i

:= F (x
i

) ' Z for i = 1, ..., n. Then

F (X) ' F1 ⇤ F2 ⇤ ... ⇤ Fn

' Z ⇤ ... ⇤ Z =: Z⇤n



2. If H =< h | r
h

> and K =< k | r
k

> are presentations by generators and relations of the groups
H and K then

H ⇤K =< h, k | r
h

, r
k

>

3. Z2 ⇤ Z2 =< a, b | a2, b2 >'< x, y | x2, xyx�1 = y�1 >= Zo Z2

Define ! : Z2 ⇤ Z2 ! Z2 : x 7! the length of x mod 2. Then ker(!) =< ab > and it is a normal
subgroup of Z2 ⇤ Z2 that is isomorphic to Z.

Remark: Each factor H
↵

of a free product ⇤
↵2AH↵

is identified by a subgroup of ⇤
↵2AH↵

; the
subgroups formed by the empty word 1 and one letter words h 2 H

↵

. We have that

{1} =
\

↵2A
H

↵

and (H
↵

\ {1}) \ (H
�

\ {1}) = ; if ↵,� 2 A and ↵ 6= �.



1 Fundamental Theorem of Algebra

Let f(z) = z

n
+ a1z

n�1
+ · · ·+ an�1z+ an be complex polynomial. Then f(z) = 0 has at least a

root in C.

Proof. If an = 0, then z = 0 is a root.

Assume an 6= 0. Let us show that the only complex polynomials with roots are the constant ones.

We will use a combination of two homotopies.

Let Cr = {z 2 C : kzk = r}. Fr : I ⇥ Cr ! C⇤
a homotopy of maps between

· f : Cr ! C⇤
and

· pn : Cr ! C⇤
given by pn(z) = z

n
for r � 0.

The homotopy Fr is defined by Fr(t, z) = z

n
+ t(a1z

n�1
+ · · ·+ an�1z + an).

Note that for r > (|a1|+ · · ·+ |an|) we have that

z

n
> (|a1|+ · · ·+ |an|)zn�1

> |a1zn�1
+ · · ·+ an�1z + an|.

· Consider the homotopy of maps

Gr : Cr⇥I ! C⇤
defined by (z, s) 7! (sz). Now Gr(z, 0) = an constant map and Gr(z, 1) = f(z).

Let � : I ! C⇤
be a path from �(0) = r

n 2 C⇤
to �(1) = an 2 C⇤

. � satisfies that ��(an)⇤ = (pn)⇤.

2 Seifert van Kampen Theorem

Theorem 2.1 (van Kampen). Let X be a path connected space and X = U [V , where U and V

are open sets whose intersection is non empty and path-connected. Let x0 2 U \ V and consider

the inclusion maps:

U

U \ V X

V

↵i

j �

Then,

⇡1(X,x0) = ⇡1(U, x0) ⇤ ⇡1(V, x0)
�
N

where ‘⇤’ denotes the free product and N = N(i⇤(⇣)j⇤(⇣) | ⇣ 2 ⇡1(U \ V, x0)) is the normal

subgroup of the free product ⇡1(U, x0)⇤⇡1(V, x0) generated by elements of the form i⇤(⇣)j⇤(⇣) with
⇣ 2 ⇡1(U \ V, x0).

The above theorem is useful for computing the fundamental groups of various spaces.

Note: van Kampen’s theorem can be generalized to the case when X =

S
↵ A↵, where the

A↵’s are open sets satisfying certain conditions. The details of this will be given later.

Corollary 2.1. Let X,U and V be as above. If U \ V is simply connected, then ⇡1(X,x0) =

⇡1(U, x0) ⇤ ⇡1(V, x0).

Proof. The proof follows directly by the definition of being simply connected (i.e. ⇡1 is trivial)

Corollary 2.2. The union of two simply connected spaces is simply connected provided their

intersection is non empty and path connected.
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Note: The hypothesis that U \ V be path connected is essential for the theorem to hold.

For instance, let X = S

1
and let P and Q be two distinct points on it. Let U = X \ {P} and

V = X \{Q}. Then U \V is not path connected. Clearly, X = U [V fails to be simply connected

even though U and V are.
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