FREE GROUPS

Definition: Let G be a group and let S = {z; | j € J be a set of elements of G. We say that
S generates the group G if every element of G can be written as a finite product of elements of
S (i.e. given g € G there exists i1, ...,1, € J not necessarily distinct and ey, ..., e, € Z such that
g = i§'...i% . This expression is not necessarily unique.)

Given a set X, we want to define a group F(X) such that

- S generates F'(X), and

- F(X) is the freest group containing X (i.e. there are no nontrivial relations between the elements
of X).

Definition: The set of words in X is the set

W(X) = {zf"..xy"|z; € X,e; = £1,n € N}

If we W(X), we call w a word in X and 1 is called the empty word. We can endow W (X) with a
binary operation of concatenation.

Definition: Let w and w’ be two words in X. We say that w can be elementarily reduced to
w’ (or vice versa) and denote by w ~, w’ if the word w (resp. w’) contains a subword zz ! or 2!z
and the word w™! (resp. w) is obtained from it by deleting this subword.

Definition: Let w and w’ be two words in X. We say that w ~ w’ if and only if there is a
unique finite sequence of words w1, ..., w, in X such that w ~, wq ~¢ ... ~e Wy ~e w'.
Obviously ~ is an equivalence relation.

Definition: We define F(X) to be the set of equivalence classes of words in X; i.e. F(X) :=
W(X)/ ~.

Note that the relation ~ is consistent with concatenation of words; i.e. if wy,w], we,w) € X and
wy ~ wj we ~ wh, then wyws ~ wy, wi.

Theorem: F(X) together with the operation induced by concatenation of words in W (X) is
called the free group on X.

Proposition: (Universal mapping property) Let X be a set and G be a group.
Let i : X — F(X) : 2+ [z] and let j : X — G, then there is a unique group homomorphism
f: F(X) — G such that foi=j where f([z{"...25]) = [j(z1)®"...5(an)"].
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Example: Let X = {z}. Then F(X) ={2" |n€ Z} ~7Z. Let G =< a | a™ =1 > be the group of
order n and let j : X — G be the map j(z) = a. By the UMP, we get an epimorphism f : F(X) —
f([z]) = n and we get G = F(X)/ker(f) ~Z/nZ.

More generally, if G is a group generated by a set X, we have an epimorphism

f:F(X)—>G

and therefore G ~ F(X)/ker(f) which gives us a presentation of G' by generators and relations;
ie. <z e X |reker(f)>.



FREE PRODUCT

Let H and K be two groups. We want to define a new group from them, the free group H * K.
Consider the set of the words

W(H,K) ={g192.--9n | gi € H or g; € K} U {1}

together with the operation of concatenation.

Definition: Let w and w’ be two words in W (H, K). We say that w is an elementary reduc-
tion of w’ (or vice versa) if w contains a subword of the form ab with a,b € H or a,b € K and v’
is obtained from w by

- substituting ab by a single element in H (or K) which is the product a,b if a # b~ !;

- erasing the subword ab if a = b1,

Definition: We say that two words w and w’ in W(H, K) are equivalent if and only if there
exists a finite sequence wy, wa, ..., w, in W(H, K) such that

W e W] ~e W ~e e ~e Wy ~e W

Obviously ~ is an equivalence relation.

Definition: We define H * K as the equivalence classes of words in W(H, K); i.e. Hx K :=
W(H,K)/ ~

Remark: Any equivalence class contains a unique reduced word satisfying hikihoks...h, -k,
h; € Hforalli=1,...,r

ke Kforalli=1,..,r

hi £ 1foralli=2,....r

ki #1lforalli=1,...,r—1

Equivalence relation is consistent with concatenation.

Theorem: H x K is a group, called the free group of H and K.
Proposition: (Universal Mapping Property) Let H, K and G be groups. Leti: H - H * K,

j: K — H * K be inclusion maps and p: H — G, ¢ : K — G be homomorpshims, then there is a
unique group homomorphism f: H * K — G such that foi=pand foj=gq.

Corollary 2.1 H * K is the unique group satisfying the UMP up to isomorphism.

Examples:
1. Let X = {z1,...,x,} be a set of elements and define F; := F(z;) ~Z for i = 1,...,n. Then

FX)~Fi«Fox..xFy~ZLx.xZ=17"



2. If H=<h|r, >and K =< k | r;, > are presentations by generators and relations of the groups
H and K then

HxK=<h,k|rp,rg>

3. ZoxZy=<abl|a®b?>~<z,y|a®ayr =yt >=7Z xZ
Define w : Zg * Zo — Zg : x + the length of x mod 2. Then ker(w) =< ab > and it is a normal
subgroup of Zsy * Zs that is isomorphic to Z.

Remark: Each factor H, of a free product x,caH, is identified by a subgroup of x,c4Hy; the
subgroups formed by the empty word 1 and one letter words h € H,. We have that

{1} = (| Ha and (Ho \ {1}) N (Hs\ {1}) =0 if o, 8 € A and a # 8.

a€cA



1 Fundamental Theorem of Algebra

Let f(2) = 2"+ a12" '+ +a,_12 + a, be complex polynomial. Then f(z) = 0 has at least a
root in C.

Proof. If a, =0, then z = 0 is a root.

Assume a,, # 0. Let us show that the only complex polynomials with roots are the constant ones.

We will use a combination of two homotopies.

Let C, ={z € C:|z|]| =r}. F.:IxC,— C* ahomotopy of maps between

- f:C. — C*" and

- pp : C. — C* given by p,(z) = 2™ for r > 0.

The homotopy F, is defined by F,.(t,2) = 2" +t(a12" 1 + -+ an_12 + an).

Note that for r > (lai| + - - + |a,|) we have that

2" > (lar] 4+ |an])z" 7 > a1z 4+ an—12 + ag.

- Consider the homotopy of maps

G, : C,. x I — C* defined by (z, s) — (sz). Now G,(z,0) = a,, constant map and G,(z,1) = f(z).

Let 0 : I — C* be a path from §(0) = 7™ € C* to §(1) = a,, € C*. ¢ satisfies that do(an)« = (Pn)«-
O

2 Seifert van Kampen Theorem
Theorem 2.1 (van Kampen). Let X be a path connected space and X = U UV, where U and V

are open sets whose intersection is non empty and path-connected. Let xo € U NV and consider
the inclusion maps:

i
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T (X, mo) = m (U, o) * 1 (V, 20) /N

U
unv X
J V
1%
Then,

where %’ denotes the free product and N = N (i,({)j«({) | ¢ € m (U NV, xp)) is the normal
subgroup of the free product w1 (U, zo) *x71(V, o) generated by elements of the form i.(()j. () with
Cem(UnNV,x).

The above theorem is useful for computing the fundamental groups of various spaces.
Note: van Kampen’s theorem can be generalized to the case when X = |J, Ao, where the
Ay’s are open sets satisfying certain conditions. The details of this will be given later.

Corollary 2.1. Let X, U and V be as above. If UNV is simply connected, then m (X, xz¢) =
w1 (U, o) * m1(V, z0)-

Proof. The proof follows directly by the definition of being simply connected (i.e. 7y is trivial) O

Corollary 2.2. The union of two simply connected spaces is simply connected provided their
intersection is non empty and path connected.



Note: The hypothesis that U NV be path connected is essential for the theorem to hold.
For instance, let X = S* and let P and Q be two distinct points on it. Let U = X \ {P} and
V = X\{Q}. Then UNV is not path connected. Clearly, X = UUYV fails to be simply connected
even though U and V are.



