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Classification of surfaces
Definition An n-dimensional manifold with no boundary is a T, topological space X such that every

X € X has a neighborhood U  homeomorphic to the open ball B" < R"

Definition A surface is a two dimensional connected manifold with no boundary. (A surface is a compact
topological space)
Let P apolygonal region in the plane with vertices P),P,---, P

m-1

and labeled oriented edges.

Starting at P, and going along the perimeter of P in counter clockwise direction gives us a labeling
scheme
38,33, a,8;"
From P and the labelling scheme we get an identification space as follows:
e Points in the interior of P are identified to themselves

e Two edges of the same label are identified by an orientation preserving linear homeomorphism

Examples:
1. Thetorus T? = S'xS!
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2. The sphere S°
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3. The real projective plane RP?

! P a Q
<<
a a a Y A 4 Cannot be embedded in R
Q >> P
p 4
aa

4. The Klein bottle K
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Definition Regular labelling scheme : even number of edges which are identified in pairs.



Theorem If P is a polygonal region with a regular labelling scheme then the corresponding identification
space is a compact connected 2-dimensional manifold
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Remark: Note that in this case, any point Q in the sides of P has a neighborhood homeomorphic to the
open ball B?. See figure.

Definition (connected sum) Let M and N be two surfaces. We define the connected sum of M and N,

denoted as M #N , as
(M\D,))U(N\D,)
(D, ~ oD,)

where, D, is a disk in M and D, is a disk in N and the circles 0D, and 0D, are identified by a
homeomorphism.

Example

1. S?#S?=8°?
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4. RP?*#RP?=z=K
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Notation:

NT2:=T2#T?#---#T%(n summands)
NRP? := RP*#RP’*#---#RP*(n summands)

Theorem: Any surface is homeomorphic to S? , nT?ornRP?for some ne N .
Fundamental groups of surfaces

1. m(S%)={1} (S”is simply connected)

2. =,(T?) LetususeVan Kampen Theorem
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aand b are generators of 7,(U,P) =Z *Z

c generator of 7,(C,Q) =Z for Q € B_(x,) —{X,}

81 ——T? continuous with §(0) =P and 5(1) =Q

0, :m,(U,P)—— 7, (U,Q) is an isomorphism given by
[1 [0 %y 5]

Denote 4 =5,(a) and b=3,(b)

Van Kampen’s theorem 7, (T ?) = <é,6 | i*c>

i.c~&xaxbxalxblxs

/ ~(Frax6)* (5 xbxd)*(Fra+5) (8 xbx5)
UnvVv ~&axb*atxph
\jA y 7(T?)=(a,b|aba6)= 2 (abelian)

Theorem If X is the identification space of a polygon P and a labelling scheme a;*a,?---a’" with

&, = x1,such that all the vertices of P are identified by the projection 7z : P—— X then

7(X) :<a1a2""an latay” -ay = >

Examples:

7(NT?)=(a,a,,--a,.bb,,--b, |aba b 'ab,a,'; --ab,a b, =1)

H(ORPY) = (32,3, | afaj a7 =1)

Theorem The surfaces S*,nT? and nRP? have all non isomorphic fundamental group but are neither

homotopy equivalent homeomorphic.

Proof Let us consider the abelianized fundamental group

ab — 72'1(X)
e (X) = 4;1(x), 7, (X)]

where [G, G] denotes the commutator of group G defined as {aba’lb’1 |a,be G}



1% 7,(S?) is trivial and so is 7{°(S?)
2" 2P(NT?)=Zx-xZ=Z"

3"z (NRP?)=Z"*xZ2/2Z

a is equivalent to
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Corollary If a surface X is simply connected then X = S?

Remarks: X = S*and S? x S®are non homeomorphic simply connected 4-manifolds.

For n=3,Theorem (Poincare/Perelman)

If X is a closed, simply connected. 3-manifold then X is homeomorphic to S°.

For n=5,Theorem

Any simply connected n-manifold homotopy equivalent to S"is homeomorphicto S".



