Math 751 Week 5~6 Notes Randi Wang 10/07/2015~10/14/2015

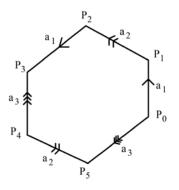
Review: Yuqing Li

Classification of surfaces

Definition An n-dimensional manifold with no boundary is a T_2 topological space X such that every $x \in X$ has a neighborhood U_x homeomorphic to the open ball $B^n \subset R^n$

Definition A surface is a two dimensional connected manifold with no boundary. (A surface is a compact topological space)

Let P a polygonal region in the plane with vertices P_0, P_1, \dots, P_{m-1} and labeled oriented edges.



Starting at P_0 and going along the perimeter of P in counter clockwise direction gives us a labeling scheme

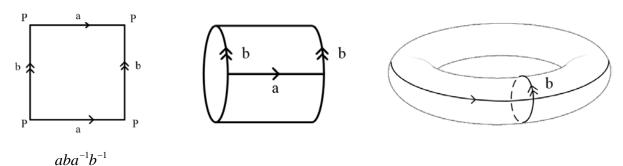
$$a_1 a_2 a_1 a_3^{-1} a_2 a_3^{-1}$$

From *P* and the labelling scheme we get an identification space as follows:

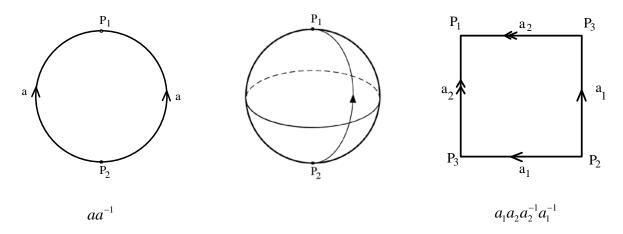
- Points in the interior of *P* are identified to themselves
- Two edges of the same label are identified by an orientation preserving linear homeomorphism

Examples:

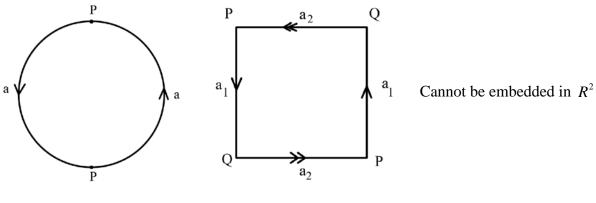
1. The torus $T^2 \cong S^1 \times S^1$



2. The sphere S^2

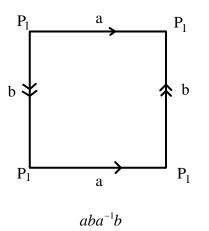


3. The real projective plane RP^2



aa

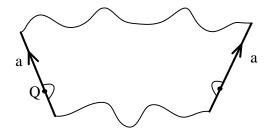
4. The Klein bottle K



Cannot be embedded in R^3

Definition Regular labelling scheme : even number of edges which are identified in pairs.

Theorem If *P* is a polygonal region with a regular labelling scheme then the corresponding identification space is a compact connected 2-dimensional manifold



Remark: Note that in this case, any point Q in the sides of P has a neighborhood homeomorphic to the open ball B^2 . See figure.

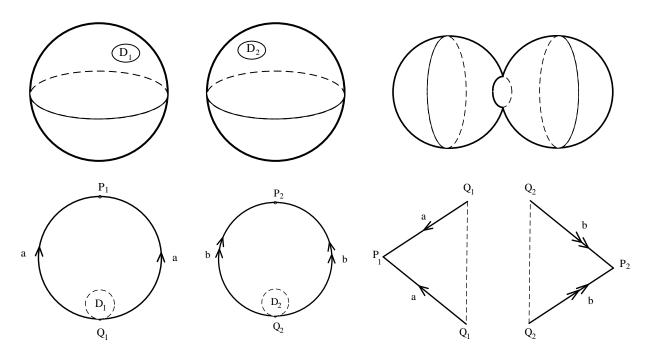
Definition (connected sum) Let M and N be two surfaces. We define the connected sum of M and N, denoted as M # N, as

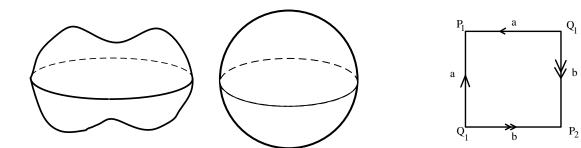
$$(M \setminus D_1) \cup (N \setminus D_2) / (\partial D_1 \sim \partial D_2)$$

where, D_1 is a disk in M and D_2 is a disk in N and the circles ∂D_1 and ∂D_2 are identified by a homeomorphism.

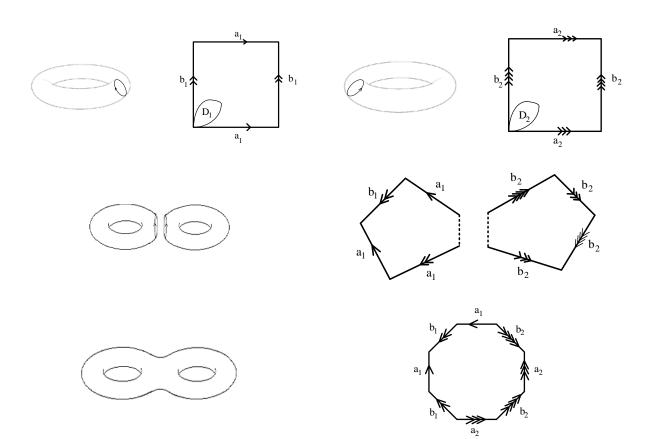
Example

 $1. \quad S^2 \# S^2 \simeq S^2$

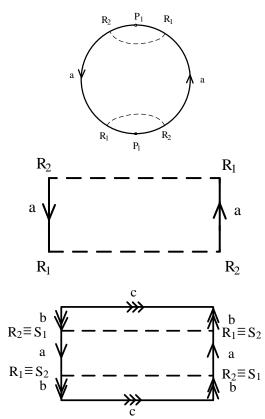


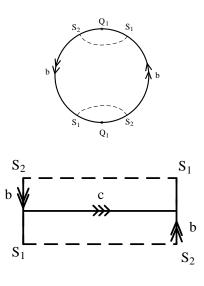


- 2. $M # S^2 \cong M$
- $3. \quad T^2 \# T^2 \cong 2T^2$



$$4. \quad RP^2 \, \# \, RP^2 \cong K$$



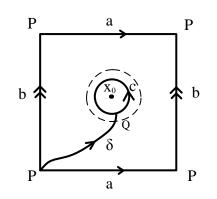


Notation:

 $nT^{2} := T^{2} \# T^{2} \# \cdots \# T^{2} (n \text{ summands})$ $nRP^{2} := RP^{2} \# RP^{2} \# \cdots \# RP^{2} (n \text{ summands})$

Theorem: Any surface is homeomorphic to S^2 , nT^2 or nRP^2 for some $n \in N$. Fundamental groups of surfaces

- 1. $\pi_1(S^2) \simeq \{1\}$ (S² is simply connected)
- 2. $\pi_1(T^2)$ Let us use Van Kampen Theorem



$$U = T^{2} - \{x_{0}\} \sim S^{1} \vee S^{1}$$

$$V = B_{\varepsilon}(x_{0}) \quad contractible$$

$$U \cap V = B_{\varepsilon}(x_{0}) - \{x_{0}\} \sim S^{1}$$

a and *b* are generators of $\pi_1(U, P) \cong Z * Z$

c generator of $\pi_1(C,Q) \cong Z$ for $Q \in B_{\varepsilon}(x_0) - \{x_0\}$

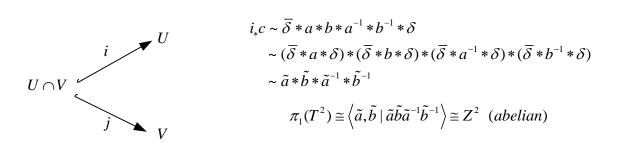
 $\delta: I \longrightarrow T^2$ continuous with $\delta(0) = P$ and $\delta(1) = Q$

 $\delta_{\#}: \pi_1(U, P) \longrightarrow \pi_1(U, Q)$ is an isomorphism given by

 $[\gamma] \mapsto [\overline{\delta} * \gamma * \delta]$

Denote $\tilde{a} = \delta_{\#}(a)$ and $\tilde{b} = \delta_{\#}(b)$

Van Kampen's theorem $\pi_1(T^2) \cong \left\langle \tilde{a}, \tilde{b} \mid i_*c \right\rangle$



Theorem If X is the identification space of a polygon P and a labelling scheme $a_1^{\varepsilon_1} a_2^{\varepsilon_2} \cdots a_n^{\varepsilon_n}$ with $\varepsilon_i = \pm 1$, such that all the vertices of P are identified by the projection $\pi : P \longrightarrow X$ then

$$\pi(x) = \left\langle a_1 a_2, \cdots a_n \mid a_1^{\varepsilon_1} a_2^{\varepsilon_2} \cdots a_n^{\varepsilon_n} = 1 \right\rangle$$

Examples:

$$\pi(nT^{2}) = \left\langle a_{1}a_{2}, \cdots, a_{n}, b_{1}b_{2}, \cdots, b_{n} \mid a_{1}b_{1}a_{1}^{-1}b_{1}^{-1}a_{2}b_{2}a_{2}^{-1}b_{2}^{-1}\cdots, a_{n}b_{n}a_{n}^{-1}b_{n}^{-1} = 1 \right\rangle$$

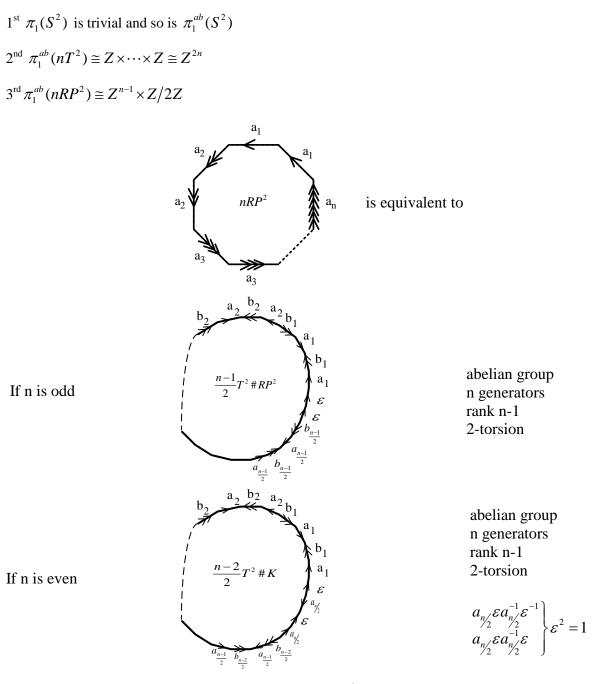
$$\pi(nRP^{2}) = \left\langle a_{1}a_{2}, \cdots, a_{n} \mid a_{1}^{2}a_{2}^{2}\cdots, a_{n}^{2} = 1 \right\rangle$$

Theorem The surfaces S^2 , nT^2 and nRP^2 have all non isomorphic fundamental group but are neither homotopy equivalent homeomorphic.

Proof Let us consider the abelianized fundamental group

$$\pi_1^{ab}(x) \coloneqq \frac{\pi_1(x)}{[\pi_1(x), \pi_1(x)]}$$

where [G,G] denotes the commutator of group G defined as $\{aba^{-1}b^{-1} | a, b \in G\}$



Corollary If a surface X is simply connected then $X \cong S^2$

Remarks: $X \cong S^4$ and $S^2 \times S^2$ are non homeomorphic simply connected 4-manifolds.

For n = 3, Theorem (Poincare/Perelman)

If X is a closed, simply connected. 3-manifold then X is homeomorphic to S^3 .

For n = 5, Theorem

Any simply connected n-manifold homotopy equivalent to S^n is homeomorphic to S^n .