Covering Spaces

Shengyuan Huang

1 Definition of Covering spaces

Definition 1.1 Let E and B be topological space. A map $p \in E \mapsto B$ is called a covering map if:

(1) p is surjective and continous;

(2) For all $b \in B$, there exists an open neighborhood U of b which is evenly covered.(i.e. $p^{-1}(U) = \coprod_{\alpha} V_{\alpha}$, where V_{α} are disjoint and open sets in E and $p|_{V_{\alpha}}: V_{\alpha} \mapsto U$ is a homeomorphism)

Remark 1.1 $p: E \mapsto B$ is a covering map, then p is open and is a local homeomorphism.

Remark 1.2 Not all local homeomorphisms gives covering maps.

Remark 1.3 $p^{-1}(b)$ is discrete. Let X be a topological space. $M \subset X$ is discrete if for any point $m \in M$, there is a open subset U of X s.t. $m \in U$ and $(M - \{m\}) \cap U = \emptyset$

Example 1.1 $p: \mathbb{R} \mapsto S^1, t \mapsto (\cos 2\pi t, \sin 2\pi t).$

Example 1.2 p: $Helix = \{(\cos 2\pi s, \sin 2\pi s, s) | s \in \mathbb{R}\} \subset \mathbb{R}^3 \mapsto S^1, (\cos 2\pi s, \sin 2\pi s, s) \mapsto (\cos 2\pi s, \sin 2\pi s).$

Example 1.3 $Id_X : X \mapsto X$.

Example 1.4 $p: S^1 \mapsto S^1, z \mapsto z^n$.

Example 1.5 $p: S^n \mapsto \mathbb{PR}^n, x \mapsto [x] = \{\pm x\}.$

Example 1.6 If $p_i: E_i \mapsto B_i$ for i = 1, 2 are covering maps, then $p_1 \times p_2: E_1 \times E_2 \mapsto B_1 \times B_2$, $(x, y) \mapsto (p_1(x), p_2(x))$ is a covering map.

Definition 1.2 Let $p_i: E_i \mapsto B$ for i = 1, 2 be covering maps, we say p_1 and p_2 are equivalent if there is a homeomorphism $f: E_1 \mapsto E_2$ s.t. $p_2 \circ f = p_1$.

Lemma 1.1 If $p: E \mapsto B$ is a covering map, $B_0 \subset B$ and $E_0 = p^{-1}(B_0)$, then $p|_{E_0}: E_0 \mapsto B_0$ is a covering map.

Example 1.7 Let $p: \mathbb{R}^2 \to \mathbb{T}^2$ be a covering map. Take $p_0 = (1,0)$. Let $B_0 = \{p_0\} \times S^1 \cup S^1 \times \{p_0\}$, then $p^{-1}(B_0) = (\mathbb{Z} \times \mathbb{R}) \cup (\mathbb{R} \cup \mathbb{Z})$.

2 Lifting properties

Theorem 2.1 (Path lifting) Let $p: E \mapsto B$ be a covering map, $b_0 \in B$, and $e_0 \in p^{-1}(b_0)$. If $\gamma: I \mapsto B$ is a path in B with starting point $b_0 = \gamma(0)$. Then there is a unique path lifting $\tilde{\gamma}: I \mapsto E$, s.t. $\tilde{\gamma}(0) = e_0$.

Theorem 2.2 (Homotopy lifting) Let $F: I \times I \mapsto B$ be a homotopy with $b_0 = F(t, 0)$. Then there is a unique lifting $\widetilde{F}: I \times I \mapsto E$, s.t. $\widetilde{F}(t, 0) = e_0$.

Corollary 2.1 If $\gamma_1, \gamma_2: I \mapsto B$ are two loops with $\gamma_1(0) = \gamma_2(0) = b_0$ and homotopic by some F, then $\tilde{\gamma}_{1e_0} \sim \tilde{\gamma}_{2e_0}$ by \tilde{F} . In particular, the lifting $\tilde{\gamma}_{1e_0}$ and $\tilde{\gamma}_{2e_0}$ have the same end points. i.e. $\tilde{\gamma}_{1e_0}(1) = \tilde{\gamma}_{2e_0}(1)$.

Definition 2.1 Let $b_0 \in B$, and for $e_0 \in p^{-1}(b_0)$. We define:

$$\Phi_{e_0}: \pi_1(B, b_0) \mapsto p^{-1}(b_0), \ by \ [\gamma] \mapsto \widetilde{\gamma}_{e_0}(1)$$

Remark 2.1 Φ_{e_0} is well-defined by previous corollary.

Theorem 2.3 If E is path connected, then Φ_{e_0} is surjective.

Proof: Let e_0 , $e_1 \in p^{-1}(b_0)$ and $e_0 \neq e_1$. Let δ : $I \mapsto E$ be a path with $\delta(0) = e_0$, $\delta(1) = e_1$ (δ exists because E is path connected). Then $p \circ \delta$: $I \mapsto B$ is a path with $(p \circ \delta)(0) = p(0) = b_0$, $(p \circ \delta)(1) = p(e_1) = b_0$.

Obviously, δ is a lift of $p \circ \delta$. By uniqueness of lift of paths $p \circ \delta_{e_0} = \delta$. So $\Phi_{e_0}([p \circ \delta]) = \widetilde{p \circ \delta_{e_0}}(1) = \delta(1) = e_0$.

This implies that Φ_{e_0} is surjective.

Theorem 2.4 If $\pi_1(E, e_0)$ is trivial, then Φ_{e_0} is injective.

Proof: Let γ_1 : $I \mapsto B$ and γ_2 : $I \mapsto B$ loops with $\gamma_1(0) = \gamma_2(0) = b_0 = \gamma_1(1) = \gamma_2(1)$ s.t.

$$\Phi_{e_0}([\gamma_1]) = \Phi_{e_0}([\gamma_2])$$

Equivalently,

$$(\tilde{\gamma}_1)_{e_0}(1) = (\tilde{\gamma}_2)_{e_0}(1) = e_1$$

and by definition

$$(\tilde{\gamma}_1)_{e_0}(0) = (\tilde{\gamma}_2)_{e_0}(0) = e_0$$

 $(\widetilde{\gamma_1})_{e_0} * (\widetilde{\gamma_1})_{e_0}^{-1}$ is a loop in E. $\pi_1(E, e_0)$ is trivial, then

$$(\widetilde{\gamma_1})_{e_0} \sim (\widetilde{\gamma_1})_{e_0}$$

by some F. So we have

 $\gamma_1 \sim \gamma_2$

by $p \circ F$.

Example 2.1 $p: S^n \mapsto \mathbb{RP}^n$ be the covering with $p^{-1}([x]) = \{\pm x\}$.

$$\#p^{-1}([x]) = 2$$

for all $[x] \in \mathbb{RP}^2$. S^n is simply connected when $n \neq 0, 1$. So Φ_{e_0} is injective and surjective. This implies

$$\pi_1(\mathbb{RP}^n) = \mathbb{Z}/2\mathbb{Z}$$

for $n \geq 2$.

Example 2.2 $p: \mathbb{R} \mapsto S^1, t \mapsto e^{2\pi i t}$. This induces a bijection $\Phi_{e_0}: \pi_1(S^1, b_0) \mapsto \mathbb{Z}$ (fiber of any point).

Proposition 2.1 If $p \to B$ is a covering map with B path connected and b_0 , $b_1 \in B$, then there exists a bijection between $p^{-1}(b_0)$ and $p^{-1}(b_1)$.

Proof: $\delta: I \mapsto B$ with $\delta(0) = b_0, \ \delta(1) = b_1$.

Define

$$f_{\delta}: p^{-1}(b_0) \mapsto p^{-1}(b_1), e_i \mapsto (\widetilde{\delta})_{e_i}(1)$$

 f_{δ} is a bijection because $f_{\overline{\delta}}$ is its inverse.

Proposition 2.2 Let E be path connected and let $p: E \mapsto B$ be a covering map with $p(e_0) = b_0$. Then $p_*: \pi_1(E, e_0) \mapsto \pi_1(B, b_0)$ is injective. Moreover if $e_1 \in p^{-1}(b_0)$ and $e_0 \neq e_1$, we have that the images $p_*(\pi_1(E, e_0))$ and $p_*(\pi_1(E, e_1))$ are conjugated.

Proof: Take $[\gamma_1], [\gamma_2] \in \pi_1(E, e_0).$

$$p_*([\gamma_1]) = p_*([\gamma_2])$$

we have

$$p \circ \gamma_1 \sim p \circ \gamma_2$$

by F, then

$$(\widetilde{p \circ \gamma_1})_{e_0} \sim (\widetilde{p \circ \gamma_2})_{e_0}$$

By the uniqueness of lifting

$$\gamma_1 = (\widetilde{p \circ \gamma_1})_{e_0} \sim (\widetilde{p \circ \gamma_2})_{e_0} = \gamma_2$$

so p_* is injective.

Let $\delta: I \mapsto E$ be a path with $\delta(0) = e_0$ and $\delta(1) = e_1$. Then we have the following commutative diagram:

$$\begin{array}{c} \pi_1(E, e_0) \xrightarrow{\delta_{\#}} \pi_1(E, e_1) \\ p_* & \downarrow \\ \pi_1(B, b_0) \xrightarrow{(p \circ \delta)_{\#}} \pi_1(B, b_0) \end{array}$$

So $p_*(\pi_1(E, e_0))$ and $p_*(\pi_1(E, e_1))$ are conjugated.