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Theorem 1. Let E be path connected and let p : E — B be a covering map with p(eq) = b,. Then,
o v € Q(B,by) lifts to a loop ¥ € Q(E, ep) if and only if v € p.(m1(E, ep)).

o D, : % — p~Y(bo) is a bijection, where [y] — vz, (1). In particular, #p~1(by) = [m1(B,bo) :

p«(m1(E, €0)))-
Proof. e First part is trivial.

o &, is well defined; i.e., . ([0][7]) = D([y]) for any [§] € p.(7m1(E, ep)). Indeed, we have that
D, ([0][7]) = Aeo(1). Recall E path connected = ®., is surjective. Let us check ®., is injective.
If ®ey([11]) = Pey([v2]). Then (F1)e, * (32)o," is a loop based at eg € E. The loop (51)e, * (32),' is a
lift of 71 % J2. Then 7 * 32 € pu(m1(E, e0)). Finally [y1] = [y1 %75 ' ¥ 2] = [y1 %75 '[12). ie. [71] and
[y2] are the same class in % — p~1(bo).

O

Theorem 2. (Lifting lemma) Let E,B and Y be path connected and locally path connected spaces. Let
p: E — B be a covering map. Let eq € p~1(by). Let f:Y — B be a continuous map such that f(yo) = bo,
for some yo. Then, there exists f : Y — E continuous at po f and f(yo) = eg if and only if f.(m (Y,y0)) C
pu(m(E, o).

Proof. <
Y. yo

af\

E€0*>Bb()

e Definition of f(y)
a : I — Y continuous , a(0) = yo, a(l) =y, foa : I — B continuous, (f o a)(0) = by, these

two facts tell us that there exists a unique (foa)e, : I — E s.t. po (f 0)e(0) = (f o a)(t) and
(foa), (0) =eo. We define f(y) tobe (fo )., (1).

o flifts f
(o /)W) =p(f) =p(f o @)y = P((f 0 a)eo(1) = (f o) (1) = f(y).

° f is well defined
Assume §: I — Y continuous B(0) = yo, 8(1) = y. a*
o (o

By hypothesis: f.([a * §]) € p.(m1(E, e0)); ie. (f

_( ) =ax*f((1).
), ¢y 15 2 loop in E at eq.

e [ is continuous, let U C E be a neighbourhood of f(y)
We look for a neighbourhood V' C Y such that f(V') C U. Take U’ to be an evenly covered neighbour-
hood of f(y) in B such that U’' C p(U).
p ' (U") = Haca Wa. Call W the component of p~*(W) that contains fy).
Take U” an evenly covered neighbourhood of f(y) in B such that U” C p(U N W).
p Y U") = Hsen W[; Call W’ the path connected component of p~1(U”) that continuous. There is
V C Y neighbourhood of y such that f(V) C U”. The neighbourhood V can be chosen to be path
connected because Y is locally path connected.
Finally f(V) c U.



Corollary 3. If Y is simply connected, then there always exists a lift f Y - F.
Proposition 4. Any two such liftings f; : Y — E with i = 1,2 coincide.
Proof. The set A= {y € Y|fi(y) = f2(y)} can be shown to be the whole Y.

e A+ () because fl(yo) = fz(yo) =ep

e A is a closed set. Take y such that f; (y) # fg(y) Let U C B be an evenly covered neighbourhood of y.
Then U C B be an evenly covered neighbourhood of y. Then p~'(U) = [[,, Ua. Let U; contain f;(y),
since f are continuous, 3N C Y neghbourhood of y such that f;(N) C U;, i.e., N C A° or A closed.

e Ais open. Analogously, if fi(y) = fa(y), we have that f; = f on N because f = po fi =po fo and p
is injective on U; = Usy. Finally, A =Y because it is both open and closed and not empty.

O

Definition 5. Let p: E — B and p’ : E' — B be covering maps. A homomorphism of coverings h : (E,p) —
(E’,p') is a continuous map h : E — E’ such that p’ o h = p.

An isomorphism (or equivalence) of coverings is a homomorphism h : (E,p) — (E’,p’) such that h: E — FE’
is an homeomorphism.

Theorem 6. Let p : E — B and p' : E' — B be covering maps with p(eg) = p'(ey) = bg € B. Then
there s an isomorphism h : (E,p) — (E',p') with h(eo) = ey, if and only if H = p(m1(E,e0)) and
H' =pl (m(F,ep)) coincide.

Proof. =: h.(m1(E,ep)) =2 m(F,ep) and thus H = H'.

«: Since H C H’, then there is a homomorphism h : (E,ep) — (E',¢() because of the lifting lemma.
Analogously H' C H and there is a homomorphism & : (E’,ej) — (E,ep). Now we get the following
commutative diagram

(Bvb())

ie,po(koh)=(pok)oh=p oh=p. koh and idg are two lifts of p that agree at eg. By uniqueness of
liftings k£ o h =idg. Therefore h is an isomorphism. O

Definition 7. Any equivalence between (E, p) and itself is called a deck transformation or an automorphism.
Automorphisms of (F,p) form a group under deck transformations of (E,p) which is denoted by D(E,p).

Proposition 8. If h € D(E,p) and h(x) = x for some x € E, then h =idg.

Proposition 9. Let (E,p) be a covering map and let ey, ey € E s.t. p(eg) = p(er). Ih € D(E,p) s.t.
h(eo) = e1 if and only if p.(m1(E, e0)) = p«(m1(E, €1)).

Theorem 10. Two covering maps (E,p) and (E',p’) of B are equivalent if and only if for any eg € E and
ep € B with p(eg) = pley) = by the subgroups H = p.(m1(E, e0)) and H' = p.(m1(E’,e()) are conjugated.

Remark. Do not require equivalence maps eg to ej,.

Proof. =: Let h : E — E' be an equivalence with h(eg) = e, (not necessarily e, = €)). By previous Theorem
we have that H := p,(m(E,e0)) = H = p.(m1(E},ep)). Check that p'(ey) = p/(h(eg)) = pleo) = bo.
ie., ey, eg € (') (bo) and therefore H and H' := pl(mi(F',€))) are conjugated. Hence H and H' are
conjugated.

<: We will use the following lemma

Lemma 11. Ifp: E — B is a covering, p(eg) = by and H = p.(m1(F,ep)), then given any K C w1 (B, bg)
conjugated to H, there is a point e; € p~1(bo) such that K = Hy = p.(m1(E, e1)).



proof of lemma. 3o : I — B continuous, «(0) = (1) = by such that
H=l[a] - K-la]
Let €1 = ée,(1). Then H = [po Gy |H1[p © e, ], hence K = Hj. O
By the lemma, there is e; = p~1(bg) such that
Pi(mi(E',ep)) = H = p.(mi(E, e1)).
By the lifting theorem, there is an equivalence
h:E— FE.

O

Example. Let B be the Mobius band. Recall 71 (B) = Z. Subgroups of Z are of the form nZ for n € N.
Hence we have a covering

S' x I — B(z,t) = (241)
for each k € N, with k even. And
St x I — B(z,t) > (2F0t)
for each k € N odd.
Definition 12. p: E — B covering map is called a universal covering if F is simply connected.
Corollary 13. If a universal cover p: E — B exists, then it is unique up to equivalence of coverings.

Proof. Follow from the previous theorem. Since p.(m1(FE, eg)) is the trivial subgroup and its conjugacy class
has a unique element. O

Definition 14. B is semi-locally simply connected if for any b € there is a neighbourhood U C B of b such
that the inclusion map i : U — B induces the trivial map

ia:m(U,b) = m(B,D).
Example. 1) B simply connected=semi-locally simply connected.

2) Let Cy be the circle of center (1/n,0) and radius 1/n. Let X = J, .y Cn. X is not semi-locally simply

connected. Take U C R? neighbourhood of (0,0) € R? and n large enough s.t. C,, C U.

r: X — C, retraction

xif x € Cy
Tr
0ifxé¢C,

The following diagram commutes:

72 711 (Cy, 0) - (X, 0) — 711(C,, 0) 2 Z
7T1(U, 0)

where J, = tyky, Ty 0 Ju =idg, is can’t be trivial.

Theorem 15. Let B path connected, locally path connected and semilocally simply connected. Let by € B
and H C w1. Then there is a covering map p: E — B and ey € p~*(bo) s.t. p«(m1(E,eq)) = H.



Proof. Let P = {a : I — B continuous, «(0) € b}, o, B € P. a ~ f if and only if (1) = 8(1) and
axfp e H.

p:E={alaec P} - B
a— al)

p is surjective because B is apth connected. Consider the following topology in E: U = {U C B |open and
path-connected, m1 (U) — w1 (B) trivial} is a basis of topology in B. Given U € U and « : I — B continuous,
v(0) = bo, (1) € U. Consider Up,) = {y%7n | n: 1 — U continuous n(0) = (1)}. Remark:m (U) — m(B)
trivial = U},) well defined, i.e., only depends on the class of 7,

p : U — U surjective and injective.

Upy = Uy if [y'] € Upy,

= Ul is a basis of a topology in E and p: E — B continuous. Finally p.(m1(E,eo)) = H. O

Theorem 16. B has a universal covering if and only if B is path-connected, locally path-connected, semilo-
cally simply connected.

Definition 17. Let F be path-connected. Let p: E — B be a covering map. p : ' — B is called regular if
p«m1(E, e0) <1 (B, bo).

Let X be a topological space and denote by Hom(X) the set of homeomorphisms of X. Let G CHom(X).
The group G acts on X as follows

GxX—X
(9,%) = g := g(x)
Definition 18. We say that G acts freely on X if whenever x = gz for some x € X, then g = eg.

Definition 19. We say that G acts properly discontinuous on X if for all x € X there is a neighbourhood
U, such that
UpNUge =0

for all g € G — {eg}. Equivalently, gU, N hU, = 0 for all g, h € G, g # h.

Definition 20. We say that G acts transitively on X if for every pair of points x1, o € X there exists
g € G, s.t. g1 = 9.

Proposition 21. p: E — B reqular <= D(X,p) acts transitively on the fibre.

Proposition 22. Let X be a Hausdorff topological space and let G be a finite subgroup of Hom(X). Then
p: X = X/G is a covering if and only if the action of G on X is properly discontinuous.

Theorem 23. Let X be path connected and locally path connected and let G be a subgroup of Hom(X). Then
p: X — X/G is a covering if and only if G acts properly discontinuous on X. Moreover, in this case, the
covering map p : X — X/G is regular and D(X,p) =2 G.

Proof. We first show that p is an open map. If U is open in X, then p~!p(U) is the union of the open sets
g(U) of X, for g € G. Hence p~tp(U) is open in X, so that m(U) is open in X/G by definition. Thus p is
open.

Step 1: We suppose that the action of G is properly discontinuous and show that p is a covering map. Given
z € X, let U be a neighbourhood of x such that go(U) and ¢;(U) are disjoint whenever gg # g¢;.
Then p(U) is evenly covered by p. Indeed, p~!p(U) is the disjoint union of open sets g(U), for g € G.
Therefore, the map g(U) — p(U) obtained by restricting p is bijective; begin continuous and open, it
is a homeomorphism. Therefore, p is a covering.

Step 2: We suppose now that p is a covering map and show that the action of G is properly discontinuous.
Given x € X, let V be a neighbourhood of p(z) that is evenly covered by p. That is, p~*(V) = HocaUa
where U, is open and the restriction of © on each U, is a homeomorphism. Now assume that x € U,,
we want to show that g(U,) N U, # 0 if and only if ¢ = Id,. Suppose not, then there exists some
g # Id, and y, z € U, such that g(y) = z. Clearly, if we restrict p to Uy, this will not be injective,
which violates our assumption. Therefore, G acts properly discontinuous on X.



Step 3: Finally, we show that if p is a covering map, then G is its group of covering transformation and p is
regular. We need to show that G = D(E,p). The homomorphism is naturally defined.
First, we show that G C D(E,p): this is because, Vg € G, we have p o g = g by definition.
Next, we show that G D D(E, p): this is because, Vh € D(E,p) with h(z1) = x2, we could find a g € G
such that g(z1) = z2, then the uniqueness of lifting tells us that h = g since both ho g and g o h are
liftings of themselves.
It therefore follows that p is regular because for any p(y) = x, we have y = g(z) for some g. Then
consider p,(m1(X,y)), since [b~p. (71 (X, y))[b] = p«(71(X,y)) for all [b] € 71(X/G), p is regular by
definition.

O



