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Theorem 1. Let E be path connected and let p : E → B be a covering map with p(e0) = bo. Then,

• γ ∈ Ω(B, b0) lifts to a loop γ̃ ∈ Ω(E, e0) if and only if γ ∈ p∗(π1(E, e0)).

• Φe0 : π1(B,b0)
p∗(π1(E,e0))

→ p−1(b0) is a bijection, where [γ] → γ̃e0(1). In particular, #p−1(b0) = [π1(B, b0) :

p∗(π1(E, e0))].

Proof. • First part is trivial.

• Φe0 is well defined; i.e., Φe0([δ][γ]) = Φ([γ]) for any [δ] ∈ p∗(π1(E, e0)). Indeed, we have that
Φe0([δ][γ]) = γ̃e0(1). Recall E path connected =⇒ Φe0 is surjective. Let us check Φe0 is injective.
If Φe0([γ1]) = Φe0([γ2]). Then (γ̃1)e1 ∗ (γ̃2)−1e2 is a loop based at e0 ∈ E. The loop (γ̃1)e1 ∗ (γ̃2)−1e2 is a

lift of γ1 ∗ γ̃2. Then γ1 ∗ γ̃2 ∈ p∗(π1(E, e0)). Finally [γ1] = [γ1 ∗ γ−12 ∗ γ2] = [γ1 ∗ γ−12 ][γ2]. i.e. [γ1] and

[γ2] are the same class in π1(B,b0)
p∗(π1(E,e0))

→ p−1(b0).

Theorem 2. (Lifting lemma) Let E,B and Y be path connected and locally path connected spaces. Let
p : E → B be a covering map. Let e0 ∈ p−1(b0). Let f : Y → B be a continuous map such that f(y0) = b0,
for some y0. Then, there exists f̃ : Y → E continuous at p ◦ f̃ and f̃(y0) = e0 if and only if f∗(π1(Y, y0)) ⊂
p∗(π1(E, e0)).

Proof. ⇐
Y, y0

E, e0 B, b0

p
∃f̃

f

• Definition of f̃(y)
α : I → Y continuous , α(0) = y0, α(1) = y, f ◦ α : I → B continuous, (f ◦ α)(0) = b0, these

two facts tell us that there exists a unique ˜(f ◦ α)e0 : I → E s.t. p ◦ ˜(f ◦ α)e0(0) = (f ◦ α)(t) and

(̃f ◦ α)e0(0) = e0. We define f̃(y) to be (̃f ◦ α)e0(1).

• f̃ lifts f

(p ◦ f̃)(y) = p(f̃(y)) = p(f̃ ◦ α)e0 = p( ˜(f ◦ α)e0(1) = (f ◦ α)(1) = f(y).

• f̃ is well defined
Assume β : I → Y continuous β(0) = y0, β(1) = y. α ∗ β̄(0) = α ∗ β(1).

By hypothesis: f∗([α ∗ β̄]) ∈ p∗(π1(E, e0)); i.e. ˜(f ◦ (α ∗ β̄))e0 is a loop in E at e0.

• f̃ is continuous, let U ⊂ E be a neighbourhood of f̃(y).
We look for a neighbourhood V ⊂ Y such that f̃(V ) ⊂ U . Take U ′ to be an evenly covered neighbour-
hood of f(y) in B such that U ′ ⊂ p(U).

p−1(U ′) =
∐
α∈AWα. Call W the component of p−1(W ) that contains f̂(y).

Take U” an evenly covered neighbourhood of f(y) in B such that U ′′ ⊂ p(U ∩W ).
p−1(U ′′) =

∐
β∈BW

′

β . Call W ′ the path connected component of p−1(U ′′) that continuous. There is
V ⊂ Y neighbourhood of y such that f(V ) ⊂ U ′′. The neighbourhood V can be chosen to be path
connected because Y is locally path connected.
Finally f̃(V ) ⊂ U .
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Corollary 3. If Y is simply connected, then there always exists a lift f̃ : Y → E.

Proposition 4. Any two such liftings f̃i : Y → E with i = 1, 2 coincide.

Proof. The set A = {y ∈ Y |f̃1(y) = f̃2(y)} can be shown to be the whole Y.

• A 6= ∅ because f̃1(y0) = f̃2(y0) = e0

• A is a closed set. Take y such that f̃1(y) 6= f̃2(y). Let U ⊂ B be an evenly covered neighbourhood of y.

Then U ⊂ B be an evenly covered neighbourhood of y. Then p−1(U) =
∐
α Ũα. Let Ũi contain f̂i(y),

since f̃ are continuous, ∃N ⊂ Y neghbourhood of y such that f̃i(N) ⊂ Ũi, i.e., N ⊂ Ac or A closed.

• A is open. Analogously, if f̃i(y) = f̃2(y), we have that f̃1 = f̃2 on N because f = p ◦ f̃1 = p ◦ f̃2 and p
is injective on Ũ1 = Ũ2. Finally, A = Y because it is both open and closed and not empty.

Definition 5. Let p : E → B and p′ : E′ → B be covering maps. A homomorphism of coverings h : (E, p)→
(E′, p′) is a continuous map h : E → E′ such that p′ ◦ h = p.
An isomorphism (or equivalence) of coverings is a homomorphism h : (E, p)→ (E′, p′) such that h : E → E′

is an homeomorphism.

Theorem 6. Let p : E → B and p′ : E′ → B be covering maps with p(e0) = p′(e′0) = b0 ∈ B. Then
there is an isomorphism h : (E, p) → (E′, p′) with h(e0) = e′0, if and only if H = p∗(π1(E, e0)) and
H ′ = p′∗(π1(E′, e′0)) coincide.

Proof. ⇒: h∗(π1(E, e0)) ∼= π1(E′, e′0) and thus H = H ′.
⇐: Since H ⊂ H ′, then there is a homomorphism h : (E, e0) → (E′, e′0) because of the lifting lemma.
Analogously H ′ ⊂ H and there is a homomorphism k : (E′, e′0) → (E, e0). Now we get the following
commutative diagram

(E, e0) (E′, e′0)

(B, b0)

p

h

p′

k

i.e., p ◦ (k ◦ h) = (p ◦ k) ◦ h = p′ ◦ h = p. k ◦ h and idE are two lifts of p that agree at e0. By uniqueness of
liftings k ◦ h =idE . Therefore h is an isomorphism.

Definition 7. Any equivalence between (E, p) and itself is called a deck transformation or an automorphism.
Automorphisms of (E, p) form a group under deck transformations of (E, p) which is denoted by D(E, p).

Proposition 8. If h ∈ D(E, p) and h(x) = x for some x ∈ E, then h =idE.

Proposition 9. Let (E, p) be a covering map and let e0, e1 ∈ E s.t. p(e0) = p(e1). ∃h ∈ D(E, p) s.t.
h(e0) = e1 if and only if p∗(π1(E, e0)) = p∗(π1(E, e1)).

Theorem 10. Two covering maps (E, p) and (E′, p′) of B are equivalent if and only if for any e0 ∈ E and
e′0 ∈ E′ with p(e0) = p(e′0) = b0 the subgroups H = p∗(π1(E, e0)) and H ′ = p∗(π1(E′, e′0)) are conjugated.

Remark. Do not require equivalence maps e0 to e′0.

Proof. ⇒: Let h : E → E′ be an equivalence with h(e0) = e
′′

0 (not necessarily e
′′

0 = e′0). By previous Theorem
we have that H := p∗(π1(E, e0)) = H

′′
:= p′∗(π1(E′1, e

′′

0 )). Check that p′(e
′′

0 ) = p′(h(e0)) = p(e0) = b0.
i.e., e

′′

0 , e
′

0 ∈ (]′)−1(b0) and therefore H
′′

and H ′ := p′∗(π1(E′, e′0)) are conjugated. Hence H and H ′ are
conjugated.
⇐: We will use the following lemma

Lemma 11. If p : E → B is a covering, p(e0) = b0 and H = p∗(π1(E, e0)), then given any K ⊂ π1(B, b0)
conjugated to H, there is a point e1 ∈ p−1(b0) such that K = H1 = p∗(π1(E, e1)).
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proof of lemma. ∃α : I → B continuous, α(0) = α(1) = b0 such that

H = [α] ·K · [ᾱ].

Let e1 = α̃e0(1). Then H = [p ◦ α̃e0 ]H1[p ◦ α̃e0 ], hence K = H1.

By the lemma, there is e1 = p−1(b0) such that

p′∗(π1(E′, e′0)) = H ′ = p∗(π1(E, e1)).

By the lifting theorem, there is an equivalence

h : E → E′.

Example. Let B be the Mobius band. Recall π1(B) ∼= Z. Subgroups of Z are of the form nZ for n ∈ N.
Hence we have a covering

S1 × I → B(z, t) 7→ (zk, t)

for each k ∈ N, with k even. And

S1 × I → B(z, t) 7→ (zk, t)

for each k ∈ N odd.

Definition 12. p : E → B covering map is called a universal covering if E is simply connected.

Corollary 13. If a universal cover p : E → B exists, then it is unique up to equivalence of coverings.

Proof. Follow from the previous theorem. Since p∗(π1(E, e0)) is the trivial subgroup and its conjugacy class
has a unique element.

Definition 14. B is semi-locally simply connected if for any b ∈ there is a neighbourhood U ⊂ B of b such
that the inclusion map i : U → B induces the trivial map

iA : π1(U, b)→ π1(B, b).

Example. 1) B simply connected⇒semi-locally simply connected.

2) Let Cn be the circle of center (1/n, 0) and radius 1/n. Let X =
⋃
n∈N Cn. X is not semi-locally simply

connected. Take U ⊂ R2 neighbourhood of (0, 0) ∈ R2 and n large enough s.t. Cn ⊂ U .

r : X → Cn retraction

x 7→

{
x if x ∈ Cn
0 if x /∈ Cn

The following diagram commutes:

Z ∼= π1(Cn, 0) π1(X, 0) π1(Cn, 0) ∼= Z

π1(U, 0)

j∗

k∗

r∗

i

where j∗ = i∗k∗, r∗ ◦ j∗ =idZ, i∗ can’t be trivial.

Theorem 15. Let B path connected, locally path connected and semilocally simply connected. Let b0 ∈ B
and H ⊂ π1. Then there is a covering map p : E → B and e0 ∈ p−1(b0) s.t. p∗(π1(E, e0)) = H.
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Proof. Let P = {α : I → B continuous, α(0) ∈ b0}, α, β ∈ P . α ∼ β if and only if α(1) = β(1) and
α ∗ β̄ ∈ H.

p : E = {α̃ | α ∈ P} → B

α̃ 7→ α(1)

p is surjective because B is apth connected. Consider the following topology in E: U = {U ⊂ B |open and
path-connected, π1(U)→ π1(B) trivial} is a basis of topology in B. Given U ∈ U and γ : I → B continuous,
γ(0) = b0, γ(1) ∈ U. Consider U[γ] = {γ̃ ∗ η | η : I → U continuous η(0) = γ(1)}. Remark:π1(U) → π1(B)
trivial ⇒ U[γ] well defined, i.e., only depends on the class of γ,
p : U[γ] → U surjective and injective.
U[γ] = U[γ′] if [γ′] ∈ U[γ],
⇒ U[γ] is a basis of a topology in E and p : E → B continuous. Finally p∗(π1(E, e0)) = H.

Theorem 16. B has a universal covering if and only if B is path-connected, locally path-connected, semilo-
cally simply connected.

Definition 17. Let E be path-connected. Let p : E → B be a covering map. p : E → B is called regular if
p∗π1(E, e0) / π1(B, b0).

Let X be a topological space and denote by Hom(X) the set of homeomorphisms of X. Let G ⊂Hom(X).
The group G acts on X as follows

G×X → X

(g, x) 7→ gx := g(x)

Definition 18. We say that G acts freely on X if whenever x = gx for some x ∈ X, then g = eG.

Definition 19. We say that G acts properly discontinuous on X if for all x ∈ X there is a neighbourhood
Ux such that

Ux ∩ Ugx = ∅
for all g ∈ G− {eG}. Equivalently, gUx ∩ hUx = ∅ for all g, h ∈ G, g 6= h.

Definition 20. We say that G acts transitively on X if for every pair of points x1, x2 ∈ X there exists
g ∈ G, s.t. gx1 = x2.

Proposition 21. p : E → B regular⇐⇒ D(X, p) acts transitively on the fibre.

Proposition 22. Let X be a Hausdorff topological space and let G be a finite subgroup of Hom(X). Then
p : X → X/G is a covering if and only if the action of G on X is properly discontinuous.

Theorem 23. Let X be path connected and locally path connected and let G be a subgroup of Hom(X). Then
p : X → X/G is a covering if and only if G acts properly discontinuous on X. Moreover, in this case, the
covering map p : X → X/G is regular and D(X, p) ∼= G.

Proof. We first show that p is an open map. If U is open in X, then p−1p(U) is the union of the open sets
g(U) of X, for g ∈ G. Hence p−1p(U) is open in X, so that π(U) is open in X/G by definition. Thus p is
open.

Step 1: We suppose that the action of G is properly discontinuous and show that p is a covering map. Given
x ∈ X, let U be a neighbourhood of x such that g0(U) and g1(U) are disjoint whenever g0 6= g1.
Then p(U) is evenly covered by p. Indeed, p−1p(U) is the disjoint union of open sets g(U), for g ∈ G.
Therefore, the map g(U) → p(U) obtained by restricting p is bijective; begin continuous and open, it
is a homeomorphism. Therefore, p is a covering.

Step 2: We suppose now that p is a covering map and show that the action of G is properly discontinuous.
Given x ∈ X, let V be a neighbourhood of p(x) that is evenly covered by p. That is, p−1(V ) =

∐
α∈A Uα

where Uα is open and the restriction of π on each Uα is a homeomorphism. Now assume that x ∈ Uα,
we want to show that g(Uα) ∩ Uα 6= ∅ if and only if g = Idx. Suppose not, then there exists some
g 6= Idx and y, z ∈ Uα such that g(y) = z. Clearly, if we restrict p to Uα, this will not be injective,
which violates our assumption. Therefore, G acts properly discontinuous on X.
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Step 3: Finally, we show that if p is a covering map, then G is its group of covering transformation and p is
regular. We need to show that G ∼= D(E, p). The homomorphism is naturally defined.
First, we show that G ⊂ D(E, p): this is because, ∀g ∈ G, we have p ◦ g = g by definition.
Next, we show that G ⊃ D(E, p): this is because, ∀h ∈ D(E, p) with h(x1) = x2, we could find a g ∈ G
such that g(x1) = x2, then the uniqueness of lifting tells us that h = g since both h ◦ g and g ◦ h are
liftings of themselves.
It therefore follows that p is regular because for any p(y) = x, we have y = g(x) for some g. Then
consider p∗(π1(X, y)), since [b−1]p∗(π1(X, y))[b] = p∗(π1(X, y)) for all [b] ∈ π1(X/G), p is regular by
definition.
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