Math 751 Notes

Chun Gan, Weitong Wang

Theorem 1. Let E be path connected and let $p: E \to B$ be a covering map with $p(e_0) = b_o$. Then,

- $\gamma \in \Omega(B, b_0)$ lifts to a loop $\tilde{\gamma} \in \Omega(E, e_0)$ if and only if $\gamma \in p_*(\pi_1(E, e_0))$.
- $\Phi_{e_0}: \frac{\pi_1(B,b_0)}{p_*(\pi_1(E,e_0))} \to p^{-1}(b_0)$ is a bijection, where $[\gamma] \to \tilde{\gamma_{e_0}}(1)$. In particular, $\#p^{-1}(b_0) = [\pi_1(B,b_0): p_*(\pi_1(E,e_0))]$.

Proof. • First part is trivial.

• Φ_{e_0} is well defined; i.e., $\Phi_{e_0}([\delta][\gamma]) = \Phi([\gamma])$ for any $[\delta] \in p_*(\pi_1(E, e_0))$. Indeed, we have that $\Phi_{e_0}([\delta][\gamma]) = \tilde{\gamma}_{e_0}(1)$. Recall E path connected $\Longrightarrow \Phi_{e_0}$ is surjective. Let us check Φ_{e_0} is injective. If $\Phi_{e_0}([\gamma_1]) = \Phi_{e_0}([\gamma_2])$. Then $(\tilde{\gamma}_1)_{e_1} * (\tilde{\gamma}_2)_{e_2}^{-1}$ is a loop based at $e_0 \in E$. The loop $(\tilde{\gamma}_1)_{e_1} * (\tilde{\gamma}_2)_{e_2}^{-1}$ is a lift of $\gamma_1 * \tilde{\gamma}_2$. Then $\gamma_1 * \tilde{\gamma}_2 \in p_*(\pi_1(E, e_0))$. Finally $[\gamma_1] = [\gamma_1 * \gamma_2^{-1} * \gamma_2] = [\gamma_1 * \gamma_2^{-1}][\gamma_2]$. i.e. $[\gamma_1]$ and $[\gamma_2]$ are the same class in $\frac{\pi_1(B, b_0)}{p_*(\pi_1(E, e_0))} \to p^{-1}(b_0)$.

Theorem 2. (Lifting lemma) Let E,B and Y be path connected and locally path connected spaces. Let $p: E \to B$ be a covering map. Let $e_0 \in p^{-1}(b_0)$. Let $f: Y \to B$ be a continuous map such that $f(y_0) = b_0$, for some y_0 . Then, there exists $\tilde{f}: Y \to E$ continuous at $p \circ \tilde{f}$ and $\tilde{f}(y_0) = e_0$ if and only if $f_*(\pi_1(Y, y_0)) \subset p_*(\pi_1(E, e_0))$.

Proof. \Leftarrow

- Definition of $\tilde{f}(y)$ $\alpha : I \to Y$ continuous, $\alpha(0) = y_0$, $\alpha(1) = y$, $f \circ \alpha : I \to B$ continuous, $(f \circ \alpha)(0) = b_0$, these two facts tell us that there exists a unique $(f \circ \alpha)_{e_0} : I \to E$ s.t. $p \circ (f \circ \alpha)_{e_0}(0) = (f \circ \alpha)(t)$ and $\widetilde{(f \circ \alpha)}_{e_0}(0) = e_0$. We define $\tilde{f}(y)$ to be $\widetilde{(f \circ \alpha)}_{e_0}(1)$.
- \tilde{f} lifts f $(p \circ \tilde{f})(y) = p(\tilde{f}(y)) = p(\tilde{f} \circ \alpha)_{e_0} = p((\tilde{f} \circ \alpha)_{e_0}(1) = (f \circ \alpha)(1) = f(y).$
- \tilde{f} is well defined Assume $\beta : I \to Y$ continuous $\beta(0) = y_0, \beta(1) = y$. $\alpha * \bar{\beta}(0) = \alpha * \beta(1)$. By hypothesis: $f_*([\alpha * \bar{\beta}]) \in p_*(\pi_1(E, e_0))$; i.e. $(f \circ (\alpha * \bar{\beta}))_{e_0}$ is a loop in E at e_0 .
- f̃ is continuous, let U ⊂ E be a neighbourhood of f̃(y). We look for a neighbourhood V ⊂ Y such that f̃(V) ⊂ U. Take U' to be an evenly covered neighbourhood of f(y) in B such that U' ⊂ p(U).
 p⁻¹(U') = ∐_{α∈A} W_α. Call W the component of p⁻¹(W) that contains f̂(y). Take U" an evenly covered neighbourhood of f(y) in B such that U" ⊂ p(U ∩ W).
 p⁻¹(U") = ∐_{β∈B} W_β. Call W' the path connected component of p⁻¹(U") that continuous. There is V ⊂ Y neighbourhood of y such that f(V) ⊂ U". The neighbourhood V can be chosen to be path connected because Y is locally path connected. Finally f̃(V) ⊂ U.

Corollary 3. If Y is simply connected, then there always exists a lift $\tilde{f}: Y \to E$.

Proposition 4. Any two such liftings $\tilde{f}_i: Y \to E$ with i = 1, 2 coincide.

Proof. The set $A = \{y \in Y | \tilde{f}_1(y) = \tilde{f}_2(y)\}$ can be shown to be the whole Y.

- $A \neq \emptyset$ because $\tilde{f}_1(y_0) = \tilde{f}_2(y_0) = e_0$
- A is a closed set. Take y such that $\tilde{f}_1(y) \neq \tilde{f}_2(y)$. Let $U \subset B$ be an evenly covered neighbourhood of y. Then $U \subset B$ be an evenly covered neighbourhood of y. Then $p^{-1}(U) = \coprod_{\alpha} \tilde{U}_{\alpha}$. Let \tilde{U}_i contain $\hat{f}_i(y)$, since \tilde{f} are continuous, $\exists N \subset Y$ neghbourhood of y such that $\tilde{f}_i(N) \subset \tilde{U}_i$, i.e., $N \subset A^c$ or A closed.
- A is open. Analogously, if $\tilde{f}_i(y) = \tilde{f}_2(y)$, we have that $\tilde{f}_1 = \tilde{f}_2$ on N because $f = p \circ \tilde{f}_1 = p \circ \tilde{f}_2$ and p is injective on $\tilde{U}_1 = \tilde{U}_2$. Finally, A = Y because it is both open and closed and not empty.

Definition 5. Let $p: E \to B$ and $p': E' \to B$ be covering maps. A homomorphism of coverings $h: (E, p) \to (E', p')$ is a continuous map $h: E \to E'$ such that $p' \circ h = p$.

An isomorphism (or equivalence) of coverings is a homomorphism $h: (E, p) \to (E', p')$ such that $h: E \to E'$ is an homeomorphism.

Theorem 6. Let $p: E \to B$ and $p': E' \to B$ be covering maps with $p(e_0) = p'(e'_0) = b_0 \in B$. Then there is an isomorphism $h: (E,p) \to (E',p')$ with $h(e_0) = e'_0$, if and only if $H = p_*(\pi_1(E,e_0))$ and $H' = p'_*(\pi_1(E',e'_0))$ coincide.

Proof. \Rightarrow : $h_*(\pi_1(E, e_0)) \cong \pi_1(E', e'_0)$ and thus H = H'.

 \Leftarrow : Since $H \subset H'$, then there is a homomorphism $h : (E, e_0) \to (E', e'_0)$ because of the lifting lemma. Analogously $H' \subset H$ and there is a homomorphism $k : (E', e'_0) \to (E, e_0)$. Now we get the following commutative diagram

i.e., $p \circ (k \circ h) = (p \circ k) \circ h = p' \circ h = p$. $k \circ h$ and id_E are two lifts of p that agree at e_0 . By uniqueness of liftings $k \circ h = id_E$. Therefore h is an isomorphism.

Definition 7. Any equivalence between (E, p) and itself is called a deck transformation or an automorphism. Automorphisms of (E, p) form a group under deck transformations of (E, p) which is denoted by D(E, p).

Proposition 8. If $h \in D(E, p)$ and h(x) = x for some $x \in E$, then $h = id_E$.

Proposition 9. Let (E, p) be a covering map and let $e_0, e_1 \in E$ s.t. $p(e_0) = p(e_1)$. $\exists h \in D(E, p)$ s.t. $h(e_0) = e_1$ if and only if $p_*(\pi_1(E, e_0)) = p_*(\pi_1(E, e_1))$.

Theorem 10. Two covering maps (E, p) and (E', p') of B are equivalent if and only if for any $e_0 \in E$ and $e'_0 \in E'$ with $p(e_0) = p(e'_0) = b_0$ the subgroups $H = p_*(\pi_1(E, e_0))$ and $H' = p_*(\pi_1(E', e'_0))$ are conjugated.

Remark. Do not require equivalence maps e_0 to e'_0 .

Proof. ⇒: Let $h: E \to E'$ be an equivalence with $h(e_0) = e_0''$ (not necessarily $e_0'' = e_0'$). By previous Theorem we have that $H := p_*(\pi_1(E, e_0)) = H'' := p'_*(\pi_1(E'_1, e_0''))$. Check that $p'(e_0') = p'(h(e_0)) = p(e_0) = b_0$. i.e., $e_0'', e_0' \in (]')^{-1}(b_0)$ and therefore H'' and $H' := p'_*(\pi_1(E', e_0'))$ are conjugated. Hence H and H' are conjugated.

 \Leftarrow : We will use the following lemma

Lemma 11. If $p: E \to B$ is a covering, $p(e_0) = b_0$ and $H = p_*(\pi_1(E, e_0))$, then given any $K \subset \pi_1(B, b_0)$ conjugated to H, there is a point $e_1 \in p^{-1}(b_0)$ such that $K = H_1 = p_*(\pi_1(E, e_1))$.

proof of lemma. $\exists \alpha : I \to B$ continuous, $\alpha(0) = \alpha(1) = b_0$ such that

$$H = [\alpha] \cdot K \cdot [\bar{\alpha}].$$

Let $e_1 = \tilde{\alpha}_{e_0}(1)$. Then $H = [p \circ \tilde{\alpha}_{e_0}]H_1[\overline{p \circ \tilde{\alpha}_{e_0}}]$, hence $K = H_1$.

By the lemma, there is $e_1 = p^{-1}(b_0)$ such that

$$p'_*(\pi_1(E', e'_0)) = H' = p_*(\pi_1(E, e_1))$$

By the lifting theorem, there is an equivalence

$$h: E \to E'.$$

Example. Let B be the Mobius band. Recall $\pi_1(B) \cong \mathbb{Z}$. Subgroups of \mathbb{Z} are of the form $n\mathbb{Z}$ for $n \in \mathbb{N}$. Hence we have a covering

$$S^1 \times I \to B(z,t) \qquad \mapsto (z^k,t)$$

for each $k \in \mathbb{N}$, with k even. And

$$S^1 \times I \to B(z,t) \qquad \mapsto (z^k,t)$$

for each $k \in \mathbb{N}$ odd.

Definition 12. $p: E \to B$ covering map is called a universal covering if E is simply connected.

Corollary 13. If a universal cover $p: E \to B$ exists, then it is unique up to equivalence of coverings.

Proof. Follow from the previous theorem. Since $p_*(\pi_1(E, e_0))$ is the trivial subgroup and its conjugacy class has a unique element.

Definition 14. *B* is semi-locally simply connected if for any $b \in$ there is a neighbourhood $U \subset B$ of *b* such that the inclusion map $i: U \to B$ induces the trivial map

$$i_A: \pi_1(U,b) \to \pi_1(B,b).$$

Example. 1) B simply connected \Rightarrow semi-locally simply connected.

2) Let C_n be the circle of center (1/n, 0) and radius 1/n. Let $X = \bigcup_{n \in \mathbb{N}} C_n$. X is not semi-locally simply connected. Take $U \subset \mathbb{R}^2$ neighbourhood of $(0, 0) \in \mathbb{R}^2$ and n large enough s.t. $C_n \subset U$.

$$\begin{array}{rcc} r: X & \to C_n \ retraction \\ x & \mapsto \begin{cases} x \ if \ x \in C_n \\ 0 \ if \ x \notin C_n \end{cases}$$

The following diagram commutes:

$$\mathbb{Z} \cong \pi_1(C_n, 0) \xrightarrow{j_*} \pi_1(X, 0) \xrightarrow{r_*} \pi_1(C_n, 0) \cong \mathbb{Z}$$

where $j_* = i_*k_*$, $r_* \circ j_* = id_{\mathbb{Z}}$, i_* can't be trivial.

Theorem 15. Let B path connected, locally path connected and semilocally simply connected. Let $b_0 \in B$ and $H \subset \pi_1$. Then there is a covering map $p: E \to B$ and $e_0 \in p^{-1}(b_0)$ s.t. $p_*(\pi_1(E, e_0)) = H$.

Proof. Let $P = \{ \alpha : I \to B \text{ continuous, } \alpha(0) \in b_0 \}$, $\alpha, \beta \in P$. $\alpha \sim \beta$ if and only if $\alpha(1) = \beta(1)$ and $\alpha * \overline{\beta} \in H$.

$$p: E = \{ \tilde{\alpha} \mid \alpha \in P \} \to B$$
$$\tilde{\alpha} \mapsto \alpha(1)$$

p is surjective because B is apth connected. Consider the following topology in $E: \mathcal{U} = \{U \subset B | \text{open and} path-connected, <math>\pi_1(U) \to \pi_1(B)$ trivial} is a basis of topology in B. Given $U \in \mathcal{U}$ and $\gamma: I \to B$ continuous, $\gamma(0) = b_0, \gamma(1) \in \mathcal{U}$. Consider $U_{[\gamma]} = \{\widetilde{\gamma*\eta} \mid \eta: I \to U \text{ continuous } \eta(0) = \gamma(1)\}$. Remark: $\pi_1(U) \to \pi_1(B)$ trivial $\Rightarrow U_{[\gamma]}$ well defined, i.e., only depends on the class of γ , $p: U_{[\gamma]} \to U$ surjective and injective. $U_{[\gamma]} = U_{[\gamma']}$ if $[\gamma'] \in U_{[\gamma]}$,

 $\Rightarrow U_{[\gamma]}$ is a basis of a topology in E and $p: E \to B$ continuous. Finally $p_*(\pi_1(E, e_0)) = H$.

Theorem 16. *B* has a universal covering if and only if *B* is path-connected, locally path-connected, semilocally simply connected.

Definition 17. Let *E* be path-connected. Let $p: E \to B$ be a covering map. $p: E \to B$ is called regular if $p_*\pi_1(E, e_0) \triangleleft \pi_1(B, b_0)$.

Let X be a topological space and denote by Hom(X) the set of homeomorphisms of X. Let $G \subset \text{Hom}(X)$. The group G acts on X as follows

$$\begin{aligned} G \times X &\to X \\ (g, x) &\mapsto gx := g(x) \end{aligned}$$

Definition 18. We say that G acts freely on X if whenever x = gx for some $x \in X$, then $g = e_G$.

Definition 19. We say that G acts properly discontinuous on X if for all $x \in X$ there is a neighbourhood U_x such that

 $U_x \cap U_{ax} = \emptyset$

for all $g \in G - \{e_G\}$. Equivalently, $gU_x \cap hU_x = \emptyset$ for all $g, h \in G, g \neq h$.

Definition 20. We say that G acts transitively on X if for every pair of points $x_1, x_2 \in X$ there exists $g \in G$, s.t. $gx_1 = x_2$.

Proposition 21. $p: E \to B$ regular $\iff D(X,p)$ acts transitively on the fibre.

Proposition 22. Let X be a Hausdorff topological space and let G be a finite subgroup of Hom(X). Then $p: X \to X/G$ is a covering if and only if the action of G on X is properly discontinuous.

Theorem 23. Let X be path connected and locally path connected and let G be a subgroup of Hom(X). Then $p: X \to X/G$ is a covering if and only if G acts properly discontinuous on X. Moreover, in this case, the covering map $p: X \to X/G$ is regular and $D(X, p) \cong G$.

Proof. We first show that p is an open map. If U is open in X, then $p^{-1}p(U)$ is the union of the open sets g(U) of X, for $g \in G$. Hence $p^{-1}p(U)$ is open in X, so that $\pi(U)$ is open in X/G by definition. Thus p is open.

- Step 1: We suppose that the action of G is properly discontinuous and show that p is a covering map. Given $x \in X$, let U be a neighbourhood of x such that $g_0(U)$ and $g_1(U)$ are disjoint whenever $g_0 \neq g_1$. Then p(U) is evenly covered by p. Indeed, $p^{-1}p(U)$ is the disjoint union of open sets g(U), for $g \in G$. Therefore, the map $g(U) \rightarrow p(U)$ obtained by restricting p is bijective; begin continuous and open, it is a homeomorphism. Therefore, p is a covering.
- Step 2: We suppose now that p is a covering map and show that the action of G is properly discontinuous. Given $x \in X$, let V be a neighbourhood of p(x) that is evenly covered by p. That is, $p^{-1}(V) = \coprod_{\alpha \in A} U_{\alpha}$ where U_{α} is open and the restriction of π on each U_{α} is a homeomorphism. Now assume that $x \in U_{\alpha}$, we want to show that $g(U_{\alpha}) \cap U_{\alpha} \neq \emptyset$ if and only if $g = Id_x$. Suppose not, then there exists some $g \neq Id_x$ and $y, z \in U_{\alpha}$ such that g(y) = z. Clearly, if we restrict p to U_{α} , this will not be injective, which violates our assumption. Therefore, G acts properly discontinuous on X.

Step 3: Finally, we show that if p is a covering map, then G is its group of covering transformation and p is regular. We need to show that $G \cong D(E, p)$. The homomorphism is naturally defined.

First, we show that $G \subset D(E, p)$: this is because, $\forall g \in G$, we have $p \circ g = g$ by definition.

Next, we show that $G \supset D(E, p)$: this is because, $\forall h \in D(E, p)$ with $h(x_1) = x_2$, we could find a $g \in G$ such that $g(x_1) = x_2$, then the uniqueness of lifting tells us that h = g since both $h \circ g$ and $g \circ h$ are liftings of themselves.

It therefore follows that p is regular because for any p(y) = x, we have y = g(x) for some g. Then consider $p_*(\pi_1(X, y))$, since $[b^{-1}]p_*(\pi_1(X, y))[b] = p_*(\pi_1(X, y))$ for all $[b] \in \pi_1(X/G)$, p is regular by definition.