Homotopy Invariance of Homology Groups

Script: Jian Zhang

December 30, 2015

1 Introduction

Given $f : X \to Y$ is a continuous map, we have an induced homomorphism $f_{\#} : C_n(X) \to C_n(Y)$ for all n:

$$\forall \sigma : \Delta^n \to X, \quad f_{\#}(\sigma) := f \circ \sigma, \tag{1}$$

$$\forall \sum_{i} n_i \sigma_i \in \mathcal{C}_n(X), \quad f_{\#}(\sum_{i} n_i \sigma_i) := \sum_{i} n_i f_{\#}(\sigma_i) \in \mathcal{C}_n(Y).$$
(2)

Our questions:

- 1. (*Naturality*) Is this a chain map on the chain complexes? If it is true, then it will induce an homomorphism over homologies.
- 2. (*Invariance*) Let *g* be another continuous map that is homotopic to *f*, does it have the same induced homomorphism over homologies?

2 Naturality

First, we state the concept of chain map in the following lemma:

Lemma 1. If $f : X \to Y$ is continuous, then $f_{\#}$ is a chain map, i.e., the following diagram is commutative:

Proof. By direct computation, let $[v_0, \dots, v_n]$ be a (n + 1)-simplex and $\sigma : [v_0, \dots, v_n] \to X$ be a continuous map, and we have

$$f_{\#}(\partial(\sigma)) = f_{\#}(\sum_{i=0}^{n} (-1)^{i} \sigma|_{[v_{0}, \dots \hat{v}_{i} \dots v_{n}]})$$
$$= \sum_{i=0}^{n} (-1)^{i} f(\sigma|_{[v_{0}, \dots \hat{v}_{i} \dots v_{n}]})$$
$$= \sum_{i=0}^{n} (-1)^{i} (f \circ \sigma)|_{[v_{0}, \dots \hat{v}_{i} \dots v_{n}]}$$
$$= \partial(f \circ \sigma) = \partial(f_{\#}(\sigma))$$

Let $B_n(X)$ be *n*-boundary of chain complex $C_n(X)$ and $Z_n(X)$ be the *n*-cycle. We have the following corollaries.

Corollary 1. If $f: X \to Y$ is continuous, then $f_{\#}(B_n(X)) \subset B_n(Y)$ and $f_{\#}(Z_n(X)) \subset Z_n(Y)$.

Proof. For any $b \in B_n(X)$, there exists some $c \in C_{n+1}(X)$ such that $\partial(c) = b$. Then by **Lemma.1**, $f_{\#}(b) = f_{\#} \circ \partial(c) = \partial(f_{\#}(c)) \in B_n(Y)$. Therefore, $f_{\#}(B_n(X)) \subset B_n(Y)$. For any $z \in Z_n(X)$, we know $\partial z = 0$. Then by **Lemma.1**, $\partial(f_{\#}(z)) = f_{\#}(\partial z) = 0$. Then $f_{\#}(z) \in Z_n(Y)$. Therefore, $f_{\#}(Z_n(X)) \subset Z_n(Y)$.

Define an induced map $f_* : H_n(X) \to H_n(Y)$ such that $f_*[\sigma] = [f_{\#}(\sigma)] \in H_n(Y)$ for any $[\sigma] \in H_n(X)$.

Corollary 2. If $f : X \to Y$ is continuous, then $f_* : H_n(X) \to H_n(Y)$ is a homomorphism and the following diagram is commutative:

$$\cdots \longrightarrow H_{n+1}(X) \xrightarrow{\partial} H_n(X) \longrightarrow \cdots$$
$$\downarrow^{f_*} \qquad \qquad \downarrow^{f_*}$$
$$\cdots \longrightarrow H_{n+1}(Y) \xrightarrow{\partial} H_n(Y) \longrightarrow \cdots$$

As for this induced map, we have the following properties:

Theorem 1. *Given continuous maps* $f : X \to Y$ *and* $g : Y \to Z$ *, we have*

- 1. $(g \circ f)_* = g_* \circ f_{*}$,
- 2. $(Id_X)_* = Id_{H_n(X)}$.

3 Invariance

According to **Theorem 1**, we can conclude the invariance of homologies under homeomorphism

Theorem 2. Homology groups are invariant under homeomorphism

Proof. If X and Y are homeomorphic, then there exists continuous maps $f : X \to Y$ and $g : Y \to X$ such that $g \circ f = Id_X$ and $f \circ g = Id_Y$. Then by **Theorem 1**, we can conclude f_*, g_* are bijective. Hence, $f_* : H_{-}(X) \to H_{-}(Y)$ is isomorphism.

<u>Question</u>: What happens under homotopy instead of homeomorphism? <u>Remark</u>: In this case, since we can construct homology from chain complexes, we can forget the topological space when comparing homologies.

Theorem 3. *Homology groups are invariant under homotopy.*

Assume continuous maps $f,g : X \to Y$ and $F : X \times I \to Y$ such that F(x,0) = f(x) and F(x,1) = g(x) for any $x \in X$. Then we <u>define</u> a map $P : C_{n-1}(X) \to C_n(Y)$ (Prism Operator) such that the following diagram is commutative.

$$\cdots \longrightarrow \mathcal{C}_{n+1}(X) \xrightarrow{\partial} \mathcal{C}_n(X) \xrightarrow{\partial} \mathcal{C}_{n-1}(X) \longrightarrow \cdots$$
$$\downarrow^{f_{\#},g_{\#}} \xrightarrow{p} \mathcal{C}_{n-1}(Y) \xrightarrow{\partial} \mathcal{C}_n(Y) \xrightarrow{\partial} \mathcal{C}_{n-1}(Y) \longrightarrow \cdots$$

To prove this theorem, we need the following lemma:

Lemma 2. $g_{\#} - f_{\#} = P \circ \partial + \partial \circ P$

Proof of theorem 3. Take any $\alpha = [\sigma] \in H_n(X)$, then $\partial \sigma = 0$. Then $[g_\# - f_\#](\sigma) = P(\partial \sigma) + \partial(P(\sigma)) = \partial(P(\sigma))$ is boundary in $C_n(Y)$. Therefore, $g_*\alpha = g_*[\sigma] = [g_\#(\sigma)] = [f_\#(\sigma)] = f_*[\sigma] = f_*\alpha$. Hence $g_* = f_*$. \Box

Now we define the operator *P* explicitly and prove **Lemma 2**. Consider any continuous map $\sigma : \Delta^n \to X$, let $\Delta^n \times I$ be a cylinder, $[v_0, v_1, \dots, v_n]$ be its lower surface $\Delta^n \times \{0\}$ and $[w_0, w_1, \dots, w_n]$ be its upper surface $\Delta^n \times \{1\}$. Then $\Delta^n \times I$ can be divided into n + 1 parts and each part is a (n + 1)-simplex, i.e.,

$$\Delta^n \times I = \bigcup_{i=0}^n [v_0, v_1, \cdots, v_i, w_i, \cdots, w_n].$$

For example, when n = 2, $\Delta^2 \times I$ is divided into 3 parts (see the following figure).

Then we <u>define</u> $P : C_n(X) \to C_n(Y)$ such that

$$\forall \sigma : \Delta^n \to X, P(\sigma) = \sum_{i=0}^n (-1)^i (F \circ (\sigma, Id)) \big|_{[v_0, v_1, \cdots, v_i, w_i, \cdots, w_n]} \in \mathcal{C}_n(Y).$$
$$\forall \sum_j n_j \sigma_j \in \mathcal{C}_n(X), P(\sum_j n_j \sigma_j) = \sum_j n_j P(\sigma_j)$$

Here, $F \circ (\sigma, Id)$ is the composite function $\Delta^n \times I \xrightarrow{(\sigma, Id)} X \times I \xrightarrow{F} Y$ and $F : X \times I \to Y$ is the homotopy between *f* and *g*.

Proof of Lemma 2. We only need to check $[g_{\#} - f_{\#}](\sigma) = P(\partial \sigma) + \partial P(\sigma)$ for any $\sigma : \Delta^n \to X$. Then we find

$$\partial(P(\sigma)) = \sum_{0 \le j \le i \le n} (-1)^{i+j} (F \circ (\sigma, Id)) \big|_{[v_0, v_1, \cdots, \hat{v}_j, \cdots v_i, w_i, \cdots, w_n]} \\ + \sum_{0 \le i \le j \le n} (-1)^{i+j+1} (F \circ (\sigma, Id)) \big|_{[v_0, v_1, \cdots, v_i, w_i, \cdots, \hat{w}_j, \cdots, w_n]}$$

In the summation of the first line, when i = j = 0, the term becomes $F \circ (\sigma, Id)|_{[w_0, w_1, \dots, w_n]} = g_{\#}(\sigma)$; When i = j > 0, it becomes $F \circ (\sigma, Id)|_{[v_0, w_1, \dots, v_{i-1}, w_i, \dots, w_n]}$. In the summation of the second line, when i = j = n, the term becomes $-F \circ (\sigma, Id)|_{[v_0, w_1, \dots, w_n]} = -f_{\#}(\sigma)$; When i = j < n, it becomes $-F \circ (\sigma, Id)|_{[v_0, \dots, v_i, w_{i+1}, \dots, w_n]}$. Note that

$$\sum_{i=1}^{n} F \circ (\sigma, Id)|_{[v_0 \cdots, v_{i-1}, w_i, \cdots, w_n]} + \sum_{i=0}^{n-1} -F \circ (\sigma, Id)|_{[v_0, \cdots, v_i, w_{i+1}, \cdots, w_n]} = 0$$

Therefore,

$$\begin{aligned} \partial(P(\sigma)) = &g_{\#}(\sigma) - f_{\#}(\sigma) \\ &+ \sum_{0 \leq j < i \leq n} (-1)^{i+j} (F \circ (\sigma, Id)) \big|_{[v_0, v_1, \cdots, \hat{v}_j, \cdots v_i, w_i, \cdots, w_n]} \\ &+ \sum_{0 \leq i < j \leq n} (-1)^{i+j+1} (F \circ (\sigma, Id)) \big|_{[v_0, v_1, \cdots, v_i, w_i, \cdots, \hat{w}_j, \cdots w_n]} \end{aligned}$$

On the other hand, we find

$$\partial \sigma = \sum_{j=0}^{n} (-1)^{j} \sigma|_{[v_0, \cdots, \hat{v}_j \cdots v_n]}$$

and thus

$$P(\partial\sigma) = \sum_{0 \le j < i \le n} (-1)^{i+j-1} (F \circ (\sigma, Id)) \big|_{[v_0, v_1, \cdots, \hat{v}_j, \cdots, v_i, w_i, \cdots, w_n]}$$
$$+ \sum_{0 \le i < j \le n} (-1)^{i+j} (F \circ (\sigma, Id)) \big|_{[v_0, v_1, \cdots, v_i, w_i, \cdots, \hat{w}_j, \cdots, w_n]}$$

Therefore, $\partial(P(\sigma)) + P(\partial \sigma) = g_{\#}(\sigma) - f_{\#}(\sigma)$.

<u>Remark:</u> Direct calculation when n = 2

Let
$$\sigma : [v_0, v_1, v_2] \to X$$
, then

$$P(\sigma) = F \circ (\sigma, Id)|_{[v_0, w_0, w_1, w_2]} - F \circ (\sigma, Id)|_{[v_0, v_1, w_1, w_2]} + F \circ (\sigma, Id)|_{[v_0, v_1, v_2, w_2]}$$

$$\partial(P(\sigma)) = \underbrace{F \circ (\sigma, Id)|_{[w_0, w_1, w_2]}}_{=g_{\#}} -F \circ (\sigma, Id)|_{[v_1, w_1, w_2]} + F \circ (\sigma, Id)|_{[v_1, v_2, w_2]}$$

$$-F \circ (\sigma, Id)|_{[v_0, w_1, w_2]} + F \circ (\sigma, Id)|_{[v_0, w_1, w_2]} - F \circ (\sigma, Id)|_{[v_0, v_2, w_2]}$$

$$+ F \circ (\sigma, Id)|_{[v_0, w_0, w_2]} - F \circ (\sigma, Id)|_{[v_0, v_1, w_1]} + F \circ (\sigma, Id)|_{[v_0, v_1, w_2]}$$

$$= 0$$

$$- F \circ (\sigma, Id)|_{[v_0, w_0, w_1]} + F \circ (\sigma, Id)|_{[v_0, v_1, w_1]} - F \circ (\sigma, Id)|_{[v_0, v_1, v_2]}$$

$$= 0$$

and

$$\partial \sigma = \sigma|_{[v_1, v_2]} - \sigma|_{[v_0, v_2]} + \sigma|_{[v_0, v_1]}$$

$$P(\partial \sigma) = (F \circ (\sigma, Id)|_{[v_1, w_1, w_2]} - F \circ (\sigma, Id)|_{[v_1, v_2, w_2]})$$
(3)
+ (F \circ (\sigma, Id)|_{[v_0, v_2, w_2]})
+ (F \circ (\sigma, Id)|_{[v_0, w_0, w_2]})
+ (F \circ (\sigma, Id)|_{[v_0, v_1, w_1]})
(6)

Therefore, $\partial(P(\sigma)) + P(\partial \sigma) = g_{\#}(\sigma) - f_{\#}(\sigma)$ holds for the case n = 2.