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1 Introduction

Given f : X → Y is a continuous map, we have an induced homomorphism f# : Cn(X)→ Cn(Y) for all n:

∀σ : ∆n → X, f#(σ) := f ◦ σ, (1)

∀∑
i

niσi ∈ Cn(X), f#(∑
i

niσi) := ∑
i

ni f#(σi) ∈ Cn(Y). (2)

Our questions:

1. (Naturality) Is this a chain map on the chain complexes? If it is true, then it will induce an homomorphism
over homologies.

2. (Invariance) Let g be another continuous map that is homotopic to f , does it have the same induced homomor-
phism over homologies?

2 Naturality

First, we state the concept of chain map in the following lemma:

Lemma 1. If f : X → Y is continuous, then f# is a chain map, i.e., the following diagram is commutative:

· · · Cn+1(X) Cn(X) · · ·

· · · Cn+1(Y) Cn(Y) · · ·

∂

f# f#

∂

Proof. By direct computation, let [v0, · · · , vn] be a (n + 1)-simplex and σ : [v0, · · · , vn] → X be a continuous map,
and we have

f#(∂(σ)) = f#(
n

∑
i=0

(−1)iσ|[v0,···v̂i ···vn ])

=
n

∑
i=0

(−1)i f (σ|[v0,···v̂i ···vn ])

=
n

∑
i=0

(−1)i( f ◦ σ)|[v0,···v̂i ···vn ]

= ∂( f ◦ σ) = ∂( f#(σ))

Let Bn(X) be n-boundary of chain complex C·(X) and Zn(X) be the n-cycle. We have the following corollaries.

1



Corollary 1. If f : X → Y is continuous, then f#(Bn(X)) ⊂ Bn(Y) and f#(Zn(X)) ⊂ Zn(Y).

Proof. For any b ∈ Bn(X), there exists some c ∈ Cn+1(X) such that ∂(c) = b. Then by Lemma.1, f#(b) = f# ◦ ∂(c) =
∂( f#(c)) ∈ Bn(Y). Therefore, f#(Bn(X)) ⊂ Bn(Y).
For any z ∈ Zn(X), we know ∂z = 0. Then by Lemma.1, ∂( f#(z)) = f#(∂z) = 0. Then f#(z) ∈ Zn(Y). Therefore,
f#(Zn(X)) ⊂ Zn(Y).

Define an induced map f∗ : Hn(X)→ Hn(Y) such that f∗[σ] = [ f#(σ)] ∈ Hn(Y) for any [σ] ∈ Hn(X).

Corollary 2. If f : X → Y is continuous, then f∗ : Hn(X)→ Hn(Y) is a homomorphism and the following diagram is
commutative:

· · · Hn+1(X) Hn(X) · · ·

· · · Hn+1(Y) Hn(Y) · · ·

∂

f∗ f∗

∂

.

As for this induced map, we have the following properties:

Theorem 1. Given continuous maps f : X → Y and g : Y → Z, we have

1. (g ◦ f )∗ = g∗ ◦ f∗,

2. (IdX)∗ = IdHn(X).

3 Invariance

According to Theorem 1, we can conclude the invariance of homologies under homeomorphism

Theorem 2. Homology groups are invariant under homeomorphism

Proof. If X and Y are homeomorphic, then there exists continuous maps f : X → Y and g : Y → X such that
g ◦ f = IdX and f ◦ g = IdY. Then by Theorem 1, we can conclude f∗, g∗ are bijective. Hence, f∗ : H.(X) → H.(Y)
is isomorphism.

Question: What happens under homotopy instead of homeomorphism?
Remark: In this case, since we can construct homology from chain complexes, we can forget the topological space
when comparing homologies.

Theorem 3. Homology groups are invariant under homotopy.

Assume continuous maps f , g : X → Y and F : X × I → Y such that F(x, 0) = f (x) and F(x, 1) = g(x) for
any x ∈ X. Then we define a map P : Cn−1(X) → Cn(Y) (Prism Operator) such that the following diagram is
commutative.

· · · Cn+1(X) Cn(X) Cn−1(X) · · ·

· · · Cn+1(Y) Cn(Y) Cn−1(Y) · · ·

∂

P
f#,g#

∂

P
∂ ∂

To prove this theorem, we need the following lemma:

2



Lemma 2. g# − f# = P ◦ ∂ + ∂ ◦ P

Proof of theorem 3. Take any α = [σ] ∈ Hn(X), then ∂σ = 0. Then [g# − f#](σ) = P(∂σ) + ∂(P(σ)) = ∂(P(σ)) is
boundary in Cn(Y). Therefore, g∗α = g∗[σ] = [g#(σ)] = [ f#(σ)] = f∗[σ] = f∗α. Hence g∗ = f∗.

Now we define the operator P explicitly and prove Lemma 2. Consider any continuous map σ : ∆n → X, let
∆n × I be a cylinder, [v0, v1, · · · , vn] be its lower surface ∆n × {0} and [w0, w1, · · ·wn] be its upper surface ∆n × {1}.
Then ∆n × I can be divided into n + 1 parts and each part is a (n + 1)-simplex, i.e.,

∆n × I =
n⋃

i=0

[v0, v1, · · · , vi, wi, · · · , wn].

For example, when n = 2, ∆2 × I is divided into 3 parts (see the following figure).

v0

v1

v2

w0

w1

w2

Then we define P : Cn(X)→ Cn(Y) such that

∀σ : ∆n → X, P(σ) =
n

∑
i=0

(−1)i(F ◦ (σ, Id)
)∣∣

[v0,v1,··· ,vi ,wi ,··· ,wn ]
∈ Cn(Y).

∀∑
j

njσj ∈ Cn(X), P(∑
j

njσj) = ∑
j

njP(σj)

Here, F ◦ (σ, Id) is the composite function ∆n × I X× I Y
(σ,Id) F and F : X × I → Y is the homotopy

between f and g.

Proof of Lemma 2. We only need to check [g# − f#](σ) = P(∂σ) + ∂P(σ) for any σ : ∆n → X. Then we find

∂(P(σ)) = ∑
0≤j≤i≤n

(−1)i+j(F ◦ (σ, Id)
)∣∣

[v0,v1,··· ,v̂j ,···vi ,wi ,··· ,wn ]

+ ∑
0≤i≤j≤n

(−1)i+j+1(F ◦ (σ, Id)
)∣∣

[v0,v1,···vi ,wi ,··· ,ŵj ,···wn ]

In the summation of the first line, when i = j = 0, the term becomes F ◦ (σ, Id)|[w0,w1,···wn ] = g#(σ); When i = j > 0,
it becomes F ◦ (σ, Id)|[v0··· ,vi−1,wi ,···wn ]. In the summation of the second line, when i = j = n, the term becomes
−F ◦ (σ, Id)|[v0,v1,···vn ] = − f#(σ); When i = j < n, it becomes −F ◦ (σ, Id)|[v0,···vi ,wi+1,···wn ]. Note that

n

∑
i=1

F ◦ (σ, Id)|[v0··· ,vi−1,wi ,···wn ] +
n−1

∑
i=0
−F ◦ (σ, Id)|[v0,···vi ,wi+1,···wn ] = 0.

Therefore,

∂(P(σ)) =g#(σ)− f#(σ)

+ ∑
0≤j<i≤n

(−1)i+j(F ◦ (σ, Id)
)∣∣

[v0,v1,··· ,v̂j ,···vi ,wi ,··· ,wn ]

+ ∑
0≤i<j≤n

(−1)i+j+1(F ◦ (σ, Id)
)∣∣

[v0,v1,···vi ,wi ,··· ,ŵj ,···wn ]
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On the other hand, we find

∂σ =
n

∑
j=0

(−1)jσ|[v0,··· ,v̂j ···vn ]

and thus

P(∂σ) = ∑
0≤j<i≤n

(−1)i+j−1(F ◦ (σ, Id)
)∣∣

[v0,v1,··· ,v̂j ,···vi ,wi ,··· ,wn ]

+ ∑
0≤i<j≤n

(−1)i+j(F ◦ (σ, Id)
)∣∣

[v0,v1,···vi ,wi ,··· ,ŵj ,···wn ]

Therefore, ∂(P(σ)) + P(∂σ) = g#(σ)− f#(σ).

Remark: Direct calculation when n = 2

Let σ : [v0, v1, v2]→ X, then

P(σ) = F ◦ (σ, Id)|[v0,w0,w1,w2]
− F ◦ (σ, Id)|[v0,v1,w1,w2]

+ F ◦ (σ, Id)|[v0,v1,v2,w2]

∂(P(σ)) = F ◦ (σ, Id)|[w0,w1,w2]︸ ︷︷ ︸
=g#

−F ◦ (σ, Id)|[v1,w1,w2]
+ F ◦ (σ, Id)|[v1,v2,w2]

−F ◦ (σ, Id)|[v0,w1,w2]
+ F ◦ (σ, Id)|[v0,w1,w2]︸ ︷︷ ︸

=0

−F ◦ (σ, Id)|[v0,v2,w2]

+ F ◦ (σ, Id)|[v0,w0,w2]
−F ◦ (σ, Id)|[v0,v1,w1]

+ F ◦ (σ, Id)|[v0,v1,w2]︸ ︷︷ ︸
=0

− F ◦ (σ, Id)|[v0,w0,w1]
+ F ◦ (σ, Id)|[v0,v1,w1]

−F ◦ (σ, Id)|[v0,v1,v2]︸ ︷︷ ︸
=− f#

and
∂σ = σ|[v1,v2]

− σ|[v0,v2]
+ σ|[v0,v1]

P(∂σ) =
(

F ◦ (σ, Id)|[v1,w1,w2]
− F ◦ (σ, Id)|[v1,v2,w2]

)
(3)

+
(

F ◦ (σ, Id)|[v0,v2,w2]
(4)

− F ◦ (σ, Id)|[v0,w0,w2]

)
(5)

+ (F ◦ (σ, Id)| − [v0, w0, w1]− F ◦ (σ, Id)|[v0,v1,w1]
) (6)

Therefore, ∂(P(σ)) + P(∂σ) = g#(σ)− f#(σ) holds for the case n = 2.
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