MATH 751: HOMEWORK 5

Due on December 9th (23:59 pm).

Problem 1 (a) Show that if X is a path-connected topological space and $f : X \to X$ is a continuous function, then the induced map $f_* : H_0(X) \to H_0(X)$ is the identity map. (b) Show that $H_0(X, A) = 0$ iff A meets each path-component of X. (c) Show that $H_1(X, A) = 0$ iff $H_1(A) \to H_1(X)$ is surjective and each path-component of X contains at most a path-component of A.

Problem 2 A graded abelian group is a sequence of abelian groups $A_{\bullet} := (A_n)_{n \geq 0}$. We say that A_{\bullet} is of finite type if rank $A_n < \infty$ for all $n \geq 0$. The Euler characteristic of a finite type graded abelian group A_{\bullet} is the integer $\chi(A_{\bullet}) := \sum_{n \geq 0} (-1)^n \operatorname{rank} A_n$. A short exact sequence of graded groups A_{\bullet} , B_{\bullet} , C_{\bullet} , is a sequence of short exact sequences

$$0 \to A_n \to B_n \to C_n \to 0, \qquad n \ge 0.$$

Prove that if

$$0 \to A_{\bullet} \to B_{\bullet} \to C_{\bullet} \to 0$$

is a short exact sequence of graded abelian groups of finite type, then

$$\chi(B_{\bullet}) = \chi(A_{\bullet}) + \chi(C_{\bullet}).$$

Problem 3 A pair (X, A) with X a space and A a nonempty closed subspace that is a deformation retract of some neighborhood in X is called a good pair. Show that for a good pair (X, A), the quotient map $q: (X, A) \to (X/A, A/A)$ obtained by collapsing A to a point, induces isomorphisms $q_*: H_n(X, A) \to H_n(X/A, A/A) \cong$ $H_n(X/A)$, for all n.

Problem 4 (a) Show that $S^1 \times S^1$ and $S^1 \vee S^1 \vee S^2$ have isomorphic homology groups in all dimensions. Are these spaces homeomorphic? (b) Show that the quotient map $S^1 \times S^1 \to S^2$ collapsing the subspace $S^1 \vee S^1$ to a point is not nullhomotopic by showing that it induces an isomorphism on H_2 . (c) On the other hand, show that any map $S^2 \to S^1 \times S^1$ is nullhomotopic.

Problem 5 For ΣX the suspension of X, show by a Mayer-Vietoris argument that there are isomorphisms $H_{n+1}(\Sigma X) \cong H_n(X)$ for all n.

Problem 6 For the case of the inclusion $f: (D^n, S^{n-1}) \to (D^n, D^n - \{0\})$, show that f is not a homotopy equivalence of pairs, i.e., there is no $g: (D^n, D^n - \{0\}) \to (D^n, S^{n-1})$ so that $g \circ f$ and $f \circ g$ are homotopic to the identity through maps of pairs.

Problem 7 (1) Construct a surjective map $S^n \to S^n$ of degree zero, for each $n \ge 1$. (2) Let $f: S^n \to S^n$ be a map of degree zero. Show that there exist points $x, y \in S^n$ with f(x) = x and f(y) = -y. (3) Let $f: S^{2n} \to S^{2n}$ be a continuous map. Show that there is a point $x \in S^{2n}$ so that either f(x) = x or f(x) = -x.

Problem 8 Describe a cell structure on $S^n \vee S^n \vee \cdots \vee S^n$ and calculate its homology groups.

Problem 9 Describe the CW structure of T_n (the connected sum of n tori) and respectively P_n (the connected sum of n projective planes), then use the cellular homology to calculate the homology of these spaces.

Problem 10 For finite CW complexes X and Y, show that

- $\chi(X \times Y) = \chi(X) \cdot \chi(Y).$
- χ(X) = χ(A) + χ(B) χ(A ∩ B) if X is a union of subcomplexes A and B.
 χ(Y) = n ⋅ χ(X) if p : Y → X is an n-sheeted covering space.

Problem 11 Show that the closed orientable surface $T_g := T_2 \# \cdots \# T_2$ (g times) is a covering space of T_h if and only if g = n(h-1) + 1 for some non-negative integer n.