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A SEMILINEAR MODEL FOR EXPONENTIAL
DYNAMICS AND TOPOLOGY

ROBERT L. DEVANEY AND MONICA MORENO ROCHA

ABSTRACT. We present a model over the plane that recre-
ates the same dynamics involved for the complex exponential
family. This model is based on a one parameter family of
continuous, semilinear maps. Under certain assumptions over
the parameter value, we show the continuum obtained from
the semilinear map resembles the one obtained for Ex(z).

1. INTRODUCTION

The complex exponential family E)(z) = Ae* exhibits both rich
topology and interesting dynamics. It is known that if A is real and
A > 1/e, then E) admits an invariant set in the strip 0 < Imz < =
that is an indecomposable continuum [3]. This is a closed connected
set which cannot be decomposed into two (not necessarily distinct)
closed, connected sets. Such sets have a complicated topological
structure (1], [5], [6], [7].

In contrast to this rich topology, the dynamics on this invariant
set are quite tame. There is a unique repelling fixed point in the
set. All other orbits either eventually land on the real line and then
tend to oo, or else they accumulate on both the orbit of 0 and a
point at oc.

Similar invariant indecomposable continua have been found in a
variety of complex exponentials with A complex [8]. There is also an
uncountable collection of different, non-invariant indecomposable
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continua in the Julia sets of these maps [4]. Unfortunately, very
little is known about the actual topology of these invariant sets.
Also, how this topology depends on the parameter A is an open
question.

In an effort to simplify some of these questions, we propose in
this paper a simpler family of maps that shares many of the topo-
logical and dynamical properties of the complex exponential family.
Our map is a piecewise semilinear map of the strip 0 < Im z < 1.
This map mimics the behavior of Ey, A > 1/e in that there is
an invariant indecomposable continuum in this strip on which our
map behaves dynamically like E) (see Figure 1). Because of the
semilinearity, our map is significantly easier to work with in many
respects. We illustrate this by computing a type of kneading invari-
ant for this family of maps. This has allowed the second author to
show that each member of this family is not topologically conjugate
to any other member, despite the fact that their gross dynamical
properties are the same (see [8]). Another advantage of our model
is the fact that we can construct an uncountable number of curves
homeomorphic to the real line that belong to the continuum. These
curves are in fact composants. We conjecture that every point in
the continuum that is not accessible from the exterior of the strip
lies in such a curve.

2. DEFINITION OF THE MAP

Let S denote the strip {(z,y) € R? |0<y<1}. Let L; C S be
the open half strip

Ly ={(z,y) €S| z>0, 1/3<y<2/3}.

Let A > 0 (later we will further restrict A). We define a family of
homeomorphisms hy : § — L; — § — {(A,0)} as follows. We first
decompose S — L, into three subregions:

H = {(z,9)|z>0,0<y<1/3}
Hy = {(z,y)|z>0, 2/3<y<1}
Hy3 = {(z,y)|z <0}.



SEMILINEAR MODEL ... EXPONENTIAL DYNAMICS & TOPOLOGY 155

parameter 2

08|

0B

Dal

ozr

02 L L i s I L L i
-4 -3 =2 -1 o 1 2 3 a

FIGURE 1. A partial picture of the continuum that
corresponds to the semilinear family.

We further subdivide Hj into 3 substrips of equal height:

A = {(z,9)[z<0,0<y<1/3}
Ay = {(z,y)|z <0, 1/3<y<2/3}
Ay = {(z,9)]z<0, 2/3<y <1}

Finally, we define

(A + €%,3y) if (z,y) € Hy
(A—¢€%,3(1-y)) if (z,y) € Hz
h)\('r: y} = ez(ls Sy) 3+ (’\|0) if (xay) € Al

e*(3 — 6y,1) + (A, 0) if (z,y) € A2
e*(=1,3(1 —y)) + (A,0) if (z,y) € As.
One checks easily the following facts:
(1) hy maps H; onto the half strip {(z,y) € S|z > A+ 1}.
(2) hy maps Ha onto the half strip {(z,y) € S|z < A -1}

(3) hy is an expansion on H) U Hj (strict expansion if z > 6 >
0).
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FIGURE 2. Domain and range for h)

(4) hx maps Hj onto the rectangle {(z,y) € S|A-1<z <
A + 1}, missing only the point (), 0).

(5) Note that hy is not a contraction on Hz. However, if z is
sufficiently negative, then h, is a strong contraction. By a
slight abuse of language we will call the image hy(H3) =
{(z,y) € S|A—1 <z < X + 1} the contracting rectangle.

(6) hy maps S — L; homeomorphically onto S — {(A,0)}.

(7) On the real axis, hy is given by the function z — €% + A.
This function is conjugate to z — e* - €% via the conjugacy
T—z—A

(8) hy maps y = 1 to the half line (—oo, \) on the real axis,
and maps the boundary of L; onto the line y = 1.

In Figure 2, we display the domain and range of h). Note that
the image of Hj3 consists of three triangular regions: on the right,
T}, the image of A;; in the center, T, the image of As; and on the
left, Ty, the image of A3. This is one aspect of the linearity of our
map: E) would map this region to a semicircular region.

The map h) is similar to a complex exponential map of the form
E,(z) = pe*, u > 1/e, on the strip 0 < y < . E, maps this
strip onto the upper half plane (minus the origin) with a region
analogous to our L; mapped above y = m. Thus, we think of L,
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as the set of points in S whose orbit leaves S after one iteration,
although we do not define hy on L;.
For later use, note that the image of a vertical line z = v in H3 is

a linear horseshoe curve. This curve is the portion of the boundary
of a rectangle formed by the three straight lines:

(1) z=¢e"+A, O<y<e

(2 y=¢€, A—-e"<z<A+e”

(3) 2=¢e"=-A, 0<y <.
We call a region bounded by two such linear horseshoe curves a
linear horseshoe region.

3. THE INDECOMPOSABLE CONTINUUM

For each j > 2, let L; = h;l(Lj_l). Each L; is an open simply
connected subset of S that contains the half-strip z > 0, 1/37 <
y < 2/3/, among (many) other points. Note also that the L; are
disjoint, since hy(L;+1) = L;. We think of L; as the set of points
that “escape from S” after j iterations of hy. _

Let L, denote the boundary of L;. If (z,y) € 8L;, then h}(z,y)
lies on the line y = 1; hi“(:c,y) lies on the real axis to the left of
X; and k] *?(z,y) lies to the right of A. Any point on 8L; thus has
orbit that eventually tends to oo along the real axis.

Let Ay denote the closure of U;8L;. Our main result in this
paper is:

Theorem 3.1. A, is an indecomposable continuum.

To prove this, we will show that there exists a simply connected
domain U whose boundary is Ay and we will exhibit a prime end
of U whose impression contains Ay. Hence, by a result of Rutt (9],
A, is either indecomposable or the union of two indecomposable
continua !. The proof of Theorem 3.1 will rule out the latter case.

Denote by v the union of the boundaries of the L;. Now obvi-
ously, this choice of vy is neither continuous nor compact. However,
we may compactify the set as in [3] by first compressing the strip
S to a bounded horizontal strip and then by identifying points on
the “backward” orbit of (A,0). That is, we identify the point corre-
sponding to (—o0,0) with (—o0,1), (00, 1) with (o0, 2/3), (c0,1/3)

Ie thank J. C. Mayer for showing us this argument using prime ends.
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with (o0, 2/9), and so forth. Then we must show that the union of
the preimages of y = 0 accumulates everywhere on itself.

Proposition 3.2. The curve v accumulates everywhere on itself.

Proof: Note first that the boundaries of the L; accumulate every-
where on y = 0. Indeed, the boundary of L; contains a horizontal
line segment of the form z = ¢, y = 1/3 with t > 0. Hence,
the boundaries accumulate on z > 0. Consider any vertical line
c=v<0,0<y<rT, where 0 < 7 < 1/3. Then h) maps this
line to a vertical line of the form (e¥ + A, 3ye”) which crosses in-
finitely many of the horizontal lines above. Hence, the boundaries
accumulate everywhere on y = 0. Now apply h;k. It follows that
the boundaries of the L; accumulate everywhere on each dL. In
fact, we have shown more: Let (z,y) € 8Lk and let VV be a neigh-
borhood of (z,y). Then there exists ko such that, if & > kg, then
8L, meets N. O

It follows that the closure of 7 is Ay. There is a natural embed-
ding of the curve + into the Riemann sphere that places its unique
endpoint at infinity. The last Proposition implies that the points in
7 are the only points accessible from the “exterior” of Ay. Denote
by U the exterior region of the curve. Clearly, U is an open simply
connected region of the plane whose boundary is 4. Define by { Ax}
a chain of crosscuts such that Ax lies in the interior of U and the
endpoints of each Ay are the point at infinity and the kth iterate
of the backward orbit of (A,0). It is easy to see that {Ax} is a
fundamental chain having Nj as the component of U — A, bounded
by Ax and v minus the arc [h=%(),0), 0]

Let n be the prime end associated to this fundamental chain. As
v accumulates everywhere on itself, the impression of n given by

I(n) =M,
k

must contain . But I(n) is by definition a compact set; hence, it
contains the closure of .

By Rutt’s result, ¥ is either indecomposable or the union of two
indecomposable continua. Assume 5 = AU B, where A and B are
indecomposable. Without loss of generality, assume that the point
at infinity belongs to A and there is a point p € « for which the arc
[p,o0) of v is also contained in A. If no such point exists, B must
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contain the arc [p,oc). But since B is a closed set in the topology
inherited from the Riemann sphere, we must have co € B. In this
case, we choose B.

If yN B # 0, then for any ¢ € v N B there exists an open
neighborhood W of g, such that WN A = §. By Proposition 3.2,
there exists kg > 0 such that, if k > ko, L, meets W. Using
the interior of Ly and W, we can construct an open annulus that
bounds the arc [p, 00} away from infinitely many points in 7. Since
A is connected, then A is completely contained inside the open
annulus.

But A is indecomposable and contains a ray of the form [z, o0}, z €
R. Then there is a point in z € A that lies above the real line and
below AL, (otherwise, A would be decomposable).

Then, there exists n > k > kp for which L, lies in between 2z
and R*, and moreover, L, enters the neighborhood W. We can
construct a second annular region that will bound the point z away
from the arc [p,00]. But this contradicts the fact that A is con-
nected.

Hence, yNB = @ and y C A. Since A is closed, it follows that B =
¢ and 7 is indecomposable. This ends the proof of Theorem 3.1. [

Proposition 3.3. The curve v is a composant of Aj.

Proof: Assume otherwise. Denote by x the composant of the
point at infinity. Let 2 € kK — v and H be a proper subcontinuum
that contains both z and co. Clearly, ¥ N H # 0. Without loss of
generality, assume there exists a point z on the real line such that
the arc [z, oc] is the maximal arc that contains the point at infinity
and belongs to y N H. Let A= H — [z,00]. Since H is connected,
A must accumulate on z. But as the regions Ly accumulate on the
real line, there exists N > 0 for which A also accumulates on 8L,
for all Kk > N. Since H is closed, it follows that

| oLc c H.
k>N

By Proposition 3.2, |,y 0Lk = 7, which contradicts the fact that
H is a proper subcontinuum. O
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4. DYNAMICS OF h)

For the remainder of this paper, we will consider only \-values
larger than Mg, where Ap is given by the following proposition.

Proposition 4.1. There ezists a unique A\g > 1 that solves the
equation

A —exp(A — 1) =1n(2/3).

The proof is straightforward calculus.

If A > Ag > 1, it follows that the contracting rectangle lies to the
right of z = 0 in S. For convenience, we introduce the real valued
functions fi(z) = A + € and gx(z) = A — e*. Note that f) and g,
are the real parts of hy on H; and Hj, respectively. In this section
we will prove:

Theorem 4.2. The map hy has a unique repelling fived point py
in §. All other orbits have a-limit set given by {p)}. The w-limit
set is either

(1) the point at oo given by z = oo,y = 0, in which case the
orbit eventually lands on the real azis, or

(2) the orbit of (A,0) together with points at oo to the left and
right in S, in which case the orbit eventually cycles through
H,, Hy and H3, accumulating on the orbit of (A,0).

Before proving this theorem, consider the rectangle R = {(z,y) €
S|10 <z < A+1}. Note that R contains the contracting rectangle
since A > Ag > 1. There are certain points in R whose orbit leaves
S. For example, if (z,y) € R with 1/3 < y < 2/3 and = > 0, then
(z,y) € Ly. Similarly, if 1/3F < y < 2/3F and z > 0, then (z,y) €
L. Let W denote R with all the open strips 1/3* < y < 2/3%
removed. Then W is a union of closed rectangles Ry, k = 0,1,2,...
where Ry = {(z,y) € R|2/3%*! < y < 1/3*}. Note that Ry C Hy
but R; C Hj for j > 1.

We define the first return map ¢, : W — R, by éa(z,y) =
h% (z,y) where h&(z,y) € W, but hi(z,y) W fori=1,...,k—1.
Note that the first iterate under h) of the left-hand boundary of Ry,
k > 1, is the right-hand boundary of Rx_;. For technical reasons
we will not consider these points as the first return points; rather,
we will consider the next return as the first return points.
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Proposition 4.3. For any k > 1, ¢)(Rk) is a linear horseshoe
region that is located strictly below Ry in W.

Proof: If (z,y) € R, k > 1, then hf\(:c, y) € Hyfori=0,...,k-1,
and h§(z,y) € H,. We claim that h5*!(z,y) € Hs. Indeed, if k =
1, h2(R,) is the rectangle bounded on the right by z = g5(f»(0)) =
A — exp(A + 1) which is negative for A > 0. On the left, this
rectangle is bounded by = = g)(fa(A+1)). It follows similarly that
h’;"'l(Rk] is also a rectangle in H3 whose right boundary is given
by z = gy o f§(0). It follows that the image of h§+I(Rk) is a linear
horseshoe region that lies in the contracting rectangle, hence in R.
The maximal y-coordinate in h§*?(Ry) is given by the y-coordinate
of the image of the right hand boundary of h’;*l(Rk) N As. This
y-coordinate is exp(gy o f¥(0)). Thus, we need to show that

exp(gx © f§(0)) < 2/3%+1.

Notice first that the map gy o f¥(0) = X — exp(f¥(0)) is a de-
creasing function of A when A > 0. One checks easily that g o
f¥(0) < — exp**1(0), which in turn implies that exp(gx o f¥(0)) <
1/ exp**2(0). Since 35! < 2exp**2(0) holds for all k, the required
inequality holds for A = 0 and hence for all A > 0. O

It follows from the above Proposition that any point in Ry, k >
1, whose forward orbit remains for all time in S, must repeatedly
visit W, and each time this orbit returns to W it does so in an Ry
with strictly larger k-value. This is not true in Rp, since the image
of Ry is the rectangle A — exp(A+ 1) < £ < A + 1 which contains
Rp. Indeed we have:

Proposition 4.4. There is a repelling fized point py in Rp.

Proof: The real function gx(z) = A — €* has a fixed point z)
in the interval 0 < z < A+ 1 since gy is decreasing. Indeed,
g2 (0) =A—-1>0, and ga(A+ 1) = A —exp(A + 1) < 0 when
A > 1. Similarly, y — 3(1 —y) has a fixed point at y = 3/4. Hence,
pa = (z),3/4) is fixed for hy and

—eTx 0
Dhy(z»,3/4) = ( E _3 ) ,

so p) is repelling. O
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Proposition 4.5. If (z,y) € Ry and (z,y) # py, then the orbit of
(z,y) must eventually leave Ry and enter either L, or Hj.

Proof: We divide Ry into two rectangles: _
Uo = {(z,y) € Rolz2>2A-1}
U = {(z.y) €Rolz<A-1}
i.e., Up lies in the contracting rectangle, U; does not.
The image of Uy is the rectangle
A—exp(A+1)<z<A-exp(A-1)<0

contained in H3. We claim that, since A > )q, the image of this
rectangle, i.e., h(Up), lies below y = 2/3 in the contracting rec-
tangle. To see this, note that the vertical line z = A —exp(A — 1) is
mapped to a linear horseshoe curve of height exp(A — exp(A — 1)).
Hence, h%(Up) lies below y = 2/3 provided

exp(A —exp(\ — 1)) < 2/3.

But this is precisely the condition that determines \g. Hence,
hi(Ug) meets only L; and Hip, not Hj, and so we are done in this
case.

Now suppose (z,y) € Uy. If hy(z,y) € L1UH}, then we are done.
If ha(z,y) € Hs, then h3(z,y) lies in the contracting rectangle,
and hence, in one of Uy, Ly, or H;. In all three cases we are done.
Finally, if hy(z,y) remains in Hy, then there is a positive integer
n such that h%(z,y) & U (for otherwise (z,y) is the fixed point).
Then h%(z,y) lies in one of Hy, H3, or Uy and we are again done. O

5. DYNAMICS OF ¢,

In this section we describe the set of points in Ay whose orbits
under the return map ¢, have the same “itinerary.” The itinerary
of (z,y) is a sequence of integers (sps153...) with s; > 1 such that
qﬁf{ (z,y) € R, for each k. Note that we do not define the itinerary
of points in Ry.

Recall that ¢, maps each R for k > 1 to a linear horseshoe
region inside the contracting rectangle that lies strictly below Rj.
In particular, ¢)(Ri) meets infinitely many R; with j > k in a pair
of rectangles. ¢)(Rx) may intersect other R; with smaller indices,
but this intersection will not be a pair of rectangles (see Figure 3).
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FIGURE 3. The image of ¢,(Rx) meets infinitely
many of the R; in a pair of rectangles.

In this case, ¢)(Rx) meets R; in the two triangular regions 7; and
T, lying below the diagonals in the contracting rectangle. We say
that ¢, (Rx) cuts completely across R; in this case. Note that, if
¢»(Rx) meets R; in Ty or T;, then ¢, maps vertical line segments
in ¢;1(R}-) N Ry to vertical line segments in R;. Indeed, the only
region where vertical lines are not preserved by ¢ is A3, and such
an orbit does not visit As before returning to W.

For any k > 1, let £(k) denote the smallest integer such that
¢a(Rk) cuts completely across Ryyy. Clearly, £(k) > k, and, in
fact, £(k) >> k for k large.

Let v be a continuous curve lying in some Rx. We say that
v is a horizontal curve if v meets each vertical line z = v with
0 < v € X+ 1 exactly once. A horizontal strip is a region in Rj
between two nonintersecting horizontal curves.

Now let t = (¢1,12,13,...) be a sequence of positive integers that
satisfy tgy1 > €(tx) for k > 1. Such a sequence is called admissible
for ¢). We have

Theorem 5.1. Suppose t is an admissible sequence for ¢5. Then

{(z,y) € Ry, | the itinerary of (z,y) is (t1,%2,%3,...)}
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is a Cantor set of horizontal curves in A,.

Proof: Let V;, ., denote the set of points whose itinerary begins
with t;...tx. We have that Vi;4, = Ry, N é;l(Rgz) is a pair of
horizontal strips in R;,. Inductively, Vii..tey, consists of 2% hor-
izontal strips in Ry, and V4, ¢,,, C V4.4, It follows that the
nested intersection of the V;, ., is a Cantor set of horizontal com-
ponents in R;,. Since ¢, maps and contracts vertical vectors to
vertical vectors, it follows that each of these components is actu-
ally a horizontal curve. Since each of these horizontal curves is an
accumulation of horizontal curves that lie in L, for some n, it
follows that these curves lie in Aj. O

We now turn to the construction of a second curve u that accu-
mulates everywhere on itself and on v. This curve is constructed
by “connecting” various pieces of the Cantor set of curves that cor-
respond to a given admissible sequence. The admissible sequence
(s0s182...) involved will have the property that the digits s; tend
to oo extremely rapidly.

For concreteness, and to begin the construction, we choose sg =
1. So our sequence will be (1sys7...). We will specify the s; in-
ductively. Now ¢(R1) = h3(R1) is a linear horseshoe region that
cuts completely across Ry for any k > £(1). Choose any s; > £(1).
Then, for any choice of admissible sequence that begins 1s;, there
is a Cantor set of horizontal curves in R; corresponding to this
itinerary. For any such choice, we may select one such horizontal
curve, say T;. The curve h}(n) is a horizontal segment lying in R,
inside one of the horizontal curves whose itinerary is (s182s3...).
Call this horizontal curve 7;,. Now the preimage of 7, under h3
is a curve that crosses R; in two horizontal curves, one of which is
71. Let 715, denote the preimage of 7,, under h‘:’\. Note that 75,
extends beyond the boundaries of R; and is mapped in one-to-one
fashion onto 75, by h3 (see Figure 4).

We now continue this procedure inductively. For any sy > £(s;),
the image of Rs, under ¢, is again a linear horsehoe region that
cuts completely across R;,, and there is a Cantor set of horizontal
curves in this strip that corresponds to any admissible itinerary
(828384 ...). Note that ¢y = hi""z in Rs,. As above, ¢)(7s,) lies in
one of these curves, say 7,,. Now pull back this horizontal curve by

hz("l"'z). As above, we get a new curve 7y, 5, that cuts completely
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FIGURE 4. The curve 75, is the extension of 7 ob-
tained by pulling back the curve 7, under qb;l.

across R,, twice and extends 7;,. If we now pull 74,5, back by
the original map, h;3, we obtain a new curve which we call 714, ,.
This curve crosses the strip R; in at least four horizontal curves
and extends 7y, .

We now put additional restrictions on s; to control the behavior
of Ty14,5,- Toward that end, we break up the right hand portion of
the strip S into countably many rectangles Q;,7 =0,1,... where

Q; = {(z,y) € S|M}(0) <z < KT(0)}.
Note that Qo contains all of the rectangles R;, while Q; contains
the images of R; under h}, provided that i > j. In particular, note
that h3(Rs,+3) is contained in Q3 far to the right of Rj,.

We now choose s3 so that not only ¢, (Rs,) cuts completely across
R,,, but also ¢, (Rs,+3) does as well. Equivalently, the four linear
horseshoe regions @x(Rs,+:) for i = 0,1,2,3 cut completely across
Rs,. It follows that 74,4, is a curve that cuts twice completely
across not only R,,, but also across the horizontal extensions of
this rectangle in @; for j = 1,2,3. Now consider the pull back of
this curve to 715,5,. This curve meets R as above, but it must also
cut completely across Rs,+3 (see Figure 5). That is, the extended
curve Tis,s, meets both R, and the much lower R;, 43.
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FIGURE 5. Two steps in the construction of p.

By choosing s, larger so that many more linear horshoe regions
of the form ¢)(Rs,+k) cross Rs,, we may guarantee that the ex-
tended curve crosses not only R;, +3, but also the extensions of this
rectangle to the right into Q1,Q3,... Qn.

Continuing in such fashion, we may choose the s; so that the
CUIves Tjs;s,...s, accumulate everywhere on the positive real axis as
n — oo. If we choose i to be the countable union of such extensions,
we find a curve that accumulates everywhere on the positive reals.
It is not hard to see that, in fact, u accumulates on all of v and,
hence, on itself. Since u is dense in A, a similar argument as in
Proposition 3.3 shows that u is a composant of A,.
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