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In this paper we describe several new types of invariant sets that appear in the Julia sets of
the complex exponential functions Ey(z) = Ae® where A € C in the special case when A is a
Misiurewicz parameter, so that the Julia set of these maps is the entire complex plane. These
invariant sets consist of points that share the same itinerary under iteration of Ey. Previously,
the only known types of such invariant sets were either simple hairs that extend from a definite
endpoint to oo in the right half plane or else indecomposable continua for which a single hair
accumulates everywhere upon itself. One new type of invariant set that we construct in this
paper is an indecomposable continuum in which a pair of hairs accumulate upon each other,
rather than a single hair having this property. The second type consists of an indecomposable
continuum together with a completely separate hair that accumulates on this continuum.

Keywords: Complex exponential map, Julia set; indecomposable continuum; Misiurewicz point.

1. Introduction

In this paper we describe several new types of invari-
ant sets that appear in the Julia sets of complex
exponential functions Fy(z) = Ae® where A € C.
These invariant sets consist of points that share the
same ilinerary under iteration of Ey. Since these
exponential functions are 2mi periodic, there are
several “natural” ways (described below) to decom-
pose the plane into countably many strips of vertical
height 27 which are then indexed in the natural way
by the integers according to the increasing imagi-
nary parts of the strips. The itinerary of a point
is then the sequence of integers that describes how
the orbit of that point passes through these various
strips. Thus we investigate the sets of points whose
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orbits make the transit through these strips in the
same fashion.

For complex analytic maps, the Julia set con-
sists of all points at which the family of iterates of
the map fails to form a normal family in the sense of
Montel. Equivalently, the Julia set may be described
as either the closure of the set of repelling periodic
points or else as the set of points on which the map
behaves chaotically. For Ey, the Julia set is also the
closure of the set of points whose orbits tend to oo
[Goldberg & Keen, 1986]. We denote the Julia set
of the exponential map by J(E)). It is well known
that, if J(FE)) contains an open set, then in fact the
Julia set must be the entire plane. Otherwise, J(E) )
is a nowhere dense subset of the plane.
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In the latter case, it is known [Bodelén et al.,
1999; Devaney & Krych, 1984] that the set of points
that share the same itinerary must lie on hairs
in the plane. A hair is a simple, continuous curve
extending to oo in the right half plane and having
a distinguished endpoint. All nonendpoints of these
curves are points whose orbits tend to oo in the right
half plane. Hence all points with bounded orbits
must lie at the endpoints of these curves. In partic-
ular, since the repelling periodic points are dense in
the Julia set, it follows that the endpoints of these
curves must be dense in J(E) ). In the case where E
admits an attracting fixed point. it is known that
the Julia set is a Cantor bouquet [Devaney & Krych,
1984; Mayer, 1990], an extremely rich type of topo-
logical space, [Aarts & Oversteegen, 1993]. When
the Julia set is nowhere dense but E) does not
have an attracting fixed point, the Julia set is still
a type of Cantor bouquet, but now distinct hairs
may share the same endpoint. These structures have
been described in [Bhattacharjee & Devaney, 2000].

The situation is quite different when the Julia
set of E is the entire plane. This may occur in a
number of ways. For example, if the orbit of the
asymptotic value 0 tends to oo, then we must have
J(E)\) = C. This situation occurs when 0 lies on a
(nonendpoint of a) hair. In this case, it is known
[Devaney, 1993; Devaney & Jarque, 2002; Moreno
Rocha, 2002] that the sets of points corresponding
to certain itineraries are no longer a hair but rather
an indecomposable continuum. An indecomposable
continnum is another example of a complicated
topological space which is defined as a continuum
that cannot be written as the union of two proper
subcontinua. These indecomposable continua arise
when a hair in the Julia set becomes so entangled
that it accumulates everywhere on itself.

There is another way that J(E)) may be the
entire plane. If the orbit of 0 eventually lands on
a repelling periodic orbit, then it is known that
J(E)) = C. Such a A-value is called a Misiurewicz
parameter. In this case it is known that many of
the hairs share the same endpoint (see [Devaney &
Jarque, 1997]).

It is here, when A is preperiodic, that we
find several new types of sets that share the
same itinerary. Schliecher [2000], pointed out that
Theorem 3.3 (and consequently Theorem 3.6) of
[Devaney & Jarque, 1997] cannot be applied to
certain dynamic sequences for which an inde-
composable continua would arise. The subject of
this paper is to provide the construction and

to characterize the sets that give rise to such
sequences. Precisely, one new type is an indecom-
posable continuum that differs from the continuum
described above in that we have a pair of hairs
that accumulate upon each other, rather than a
single hair having this property. The second type
consists of an indecomposable continnum together
with a completely separate hair that accumulates
on this continuum. We note that this special kind
of indecomposable continua with more than one
curve involved is not new in dynamics since such
sets can be constructed by using homoclinic and
heteroclinic connections of hyperbolic saddles for
diffeomorphisms of the plane.

Rather than deal with the general Misiurewicz
case, we shall deal in this paper only with the very
special case where A = 2mi. In this case, the orbit
of z =0 lands at z = 2w, which is a repelling fixed
point for the map.

2. Preliminaries

In this section we introduce the basic definitions and
notation that we shall use in following sections. We
also summarize some well-known facts concerning
the construction of “hairs” in the dynamical plane.
The dynamics of the exponential family are well
understood if A is real. See [Bodelén et al., 1999;
Devaney & Jarque, 2002], and [Devaney & Krych,
1984]. There are no Misiurewicz parameters in the
case of real A-values; hence we shall restrict our
attention in this paper to the case where A € C\R.

For such a A-value, the horizontal lines given by
y=ux+1i2k—1)r —i arg\, x € R, are mapped
to the negative real axis by E\. These lines parti-
tion the plane into a collection of open horizontal
strips called fundamental domains which we denote
by Ry, k € Z. Since ) is not real, the asymptotic
value z = 0 always belongs to one of these strips
which we choose to call Ry. The R are then indexed
in the natural way with increasing imaginary parts.

Using the above partition, we say that the
sequence of integers s = (sg, s1,...) is the itinerary
of the point z € C if E}(z) € R,, for each j. In
the sequel we use the words itinerary and sequence
interchangeably. For a fixed positive integer M we
define the set ¥,/ to be

Xm = {s = (s0,51,...)| |sj| £ M for each j},
and denote by I(s) the set of points sharing a given
itinerary s € ¥). Among all sequences in Xy,
the so-called regular sequences, i.e. those for which
5; # 0 for all j will play an important role.
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Fix M > 1. For x > 0, define the half strip

H,={z|Rez>z, —(2M +1)7 —arg A <Imz
< (2M + 1) — arg A}.

We say that the orbit of z tends directly to oo in H
if the entire orbit of z lies in H, and Re Ey*!(z) >
Re E%(z) for all n. Let wy(x) denote the set of points
in H, whose orbits tend directly to co with itinerary
s € ¥y It follows from [Bodeldn et al., 1999] that
there exists ( € R* such that ws; = w,(() is a con-
tinuous curve of the form (¢, hs(t)) with ( <t < oc.
The value ¢ depends only on M, not the particular
sequence s € Y. We call wy the tail of I(s). Note
that, by definition, if z € wy, then EY(2) € H for
alln>0.

By choosing ¢ larger if necessary, we may
assume that E) maps the vertical line Rez = ¢ to
a circle that crosses both horizontal boundaries of
H; at points with real parts strictly larger than ¢.
That is, the circle of radius |\|e¢ intersects H¢ to
the right of the line Re z = (. Hence we define the
fundamental domain for the tails as

F; = {z € H¢||z| < |}

The portion of w = w;(() contained in F, denoted
here by ay = a((), is called the base of the tail. See
Fig. 1. It is well known (see [Bodelén et al., 1999])
that {as|s € ¥y} is homeomorphic to the product
of a Cantor set and the interval [0, 1).

Ry : Wy

Ry Qg |

{ We
L

!

@ 5
Ry e & Wy

|

]
R

Fig. 1. The set Hg, the tail ws and the base as for some
sequence s € L.
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We now fix s. To determine the set I(s), we
pull back the curve wg to produce a longer curve
(that will not in general be a graph of the form
(t,hs(t)) as is wg), each point of which will have
itinerary s € Yps. To accomplish this, we use the
shift map o : Xy — Xas defined as o(sps182-++) =
(s18283 - -). Hence w,,) is a tail that properly con-
tains the curve E)(ws) since F)(w,) misses the base
@y (s)- Consider L, (wo(s)), Where Ly, is the branch
of the logarithm taking values in R,. This is a
continuous curve that lies in Ry, and extends w;.
Clearly, any z € Lgy(wq(s)) has itinerary s.

Inductively, consider

Lgyo:--0 L-"'n.—l (wﬂr"(s))-

This backward induction is well defined unless this
curve meets z = 0; however, as long as s is a regular
sequence, this backward process is far from z = 0.
Hence this curve, by construction, contains points
with itinerary s, and each such curve extends its
predecessor. Let

v(s) = U Lgyo---0Ls, , (wa"(s})-
n=0

We call v(s) the hair associated to s. Of course v(s)
C I(s). The following result for regular sequences is
proved in [Bodelén et al., 1999].

Theorem 2.1. Let s be a reqular sequence. Then
set I(s) is the union of v(s) (the hair) and a single
point z, (the end point of the hair) whose orbit is
bounded.

The above theorem fully characterizes the set
I(s) for any A in C and any regular sequence s, and
shows that the pullbacks of the curve w; described
above lands on a unique point with bounded orbit
and itinerary s.

For most nonregular sequences, this situation
is not true. On one hand, we may have, by choos-
ing convenient ‘new” fundamental domains, more
than one tail following the sequence s and tending
directly to infinity. On the other hand, the pullback
process described above may not land at a particu-
lar end point but may become quite entangled and
topologically very rich. The aim of the paper is to
show that this occurs in the case of Misiurewicz
parameters, and precisely for A = 2mi.

3. The Dynamical Plane for A = 2w

For the remainder of this paper, we restrict atten-
tion to the case where A = 2mi. Note that
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E:i(0) = 2mi, which is a repelling fixed point for
Esqi. Hence this is a Misiurewicz parameter value.
From now on we denote Es; by E.

The point 27i is a repelling fixed point with reg-
ular sequence s = (111...) with respect to the fun-
damental domains Ry, k € Z. Consequently, from
Theorem 2.1, there is a unique hair, denoted by Y2,
corresponding to this sequence which lands at the
endpoint z = 2mi.

Since 0 maps onto 27 after one iteration of E,
there is a preimage of y2,; which is a hair attached
to 0. We denote this curve by . The preimage of
7o consists of infinitely many disjoint curves, each
of which extends from left to right across the entire
plane. We denote these curves by t;, j € Z. We
again index the ¢; so that j increases with increas-
ing imaginary part (note that t;,, = t; + 2mi for
each j). In particular, we choose t; so that 0 lies in
the region bounded by ¢ and ;. Therefore 27i lies
in the strip bounded by t; and t5.

We remark that ¢ is asymptotic to the horizon-
tal line y = —m/2 in the far right-hand plane. Con-
sequently, ¢; is asymptotic to y = —(7/2) + 27j for
each j. We also remark that, since E'(2wi) = 2mi,
it can be shown that ~9,; spirals around 27i in the
clockwise direction. Therefore, ¢; are curves whose
imaginary parts decrease in the far left half plane
as depicted in Fig. 2.

Yeri

Fig. 2. The two families of fundamental domains R; and T
and the hairs vg and ~2,;. Under the action of E, the bound-
aries of the domains Tj are mapped to g, 70 is mapped to
Yaxi and yor; is mapped to itself.

The curves ¢; provide us with a new set of fun-
damental domains in which we can define, as before,
itineraries for E. We denote by 7}, j € Z, the open
strip bounded above by t;,1 and below by t;. Note
that E maps T; onto C — {7} in one-to-one fash-
ion. The itinerary of z in these new fundamental
domains given by the T}'s is defined as in the above
case of R;’s. In particular, the points z lying on
the curves t; have itinerary (j — 1)011.... The T;
fundamental regions are more natural (and useful)
for coding itineraries than the previous Ry regions
since the boundaries of the strips are now dynam-
ically defined. In [Devaney & Jarque, 1997 it is
shown that the topological structure of the set of
all points sharing a specific itinerary with respect
to the T} partition, depends only on the symbols of
the itinerary.

To do so, we split the symbols 0 and 1 to 0!, 02
and 1,12, respectively. Precisely, the symbols 0
and 0% specify when the orbit of a point passes
through Ty below or above 7, respectively. Sim-
ilarly, the symbols 1' or 1% specify that, far to
the right, a point passes through 77 below or
above 7. respectively. As a consequence, far to
the right, we consider the augmented partition 'Tj,
§ € {=M,.y =1;0%,0%1%,1%,2, ... M)

Further, we say that s = (sg,s;,...) is an A-
sequence (respectively B-sequence) if it contains
infinitely many (respectively, finitely many) sym-
bols s; € {—-M,...,0,1,...,M}, different from
0 and 1. Similarly, we say that § = (sg,s1,...)
is an A-sequence (respectively B-sequence) if
it contains infinitely many (respectively, finitely
many) augmented symbols s; € {—M, ... ot 1.
12,..., M}, different from 0%,02,1' and 12. Note
that, by taking preimages, we may reduce the
study of B- (and B-) sequences to sequences with
(only) {0,1} (and {0%,0%,1',12}) symbols, respec-
tively. In what follows, we will only consider this
case.

Finally, we use the notation s = (sg, $1,...) €
Yo when referring to either an A- or B-
sequence without the augmented symbols, and 5 =
(30,31,...) € Lpr when referring to either an A- or

B-sequence with the augmented symbols.

Remark 3.1. There is a major difference between
the A- and B-sequences and A- and B-sequences.
Indeed, not every augmented sequence is “admissi-
ble”, that is, for some § there are no points z € C
whose orbit tends directly to oo following such
sequence. The transition matrix for B-sequences is
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given by

01 10

1 0 0 1
L=

01 10

1 0 0 1

where the rows and columns of L correspond in
order to 0',0%,1" and 1%, so l;; = 1 if and only
if i — j. For example, lgigt = 0 since 0' /4 0 but
lgigz = 1 since 0! — 0%. The (non) admissibility of
A- and B-sequences make sense when looking for
points in € whose orbit tends directly to infinity in
the asymptotic direction. In subsequent sections we
will see that there are points following “non admis-
sible” sequences but not tending directly to infinity.

Remark 3.2. A sequence s and its augmentation §
are related as follows. Let 7 : La — Xar be the
projection map given by simply erasing the super-
scripts. If s is an A-sequence, then there exists a
unique admissible A-sequence, 8, such that 7(3) =
s, while if s is a B-sequence, then there exist exactly
two admissible B-sequences, 5; and 3 such that
7(5;) = s, i = 1,2. For instance, the two admis-
sible B-sequences corresponding to the B-sequence
s = (1,0,1,0,...) are 5 = (11,0%,1%,0',...) and
F = (12,0',1',0%,...), while the unique admis-
sible A-sequence corresponding to the A-sequence
s=(0,1,2,0,1,2,...) is = (0%,1%,2,0%,12,2,...).

3.1.

We redefine as in the previous section the set H,
with respect to the new partition T; where the top
and bottom horizontal boundaries are now given
by tar+1 and t_(pr41). By choosing ¢ large enough,
E maps the vertical line Rez = ( to a circle that
crosses these boundaries at points with real parts
strictly larger than (.

In [Devaney & Jarque, 1997] it is shown that
the set of points in H; whose orbit tends directly to
oo with itinerary s has a different structure depend-
ing upon the sequence s. More precisely, we have

Hairs in T;

Lemma 3.1. Choose ¢ > 0 large enough.

(a) If s is an A-sequence, then the set of points,
ws, lying in H¢ whose orbit tends directly to
o (inside H¢) with itinerary s is a continuous
curve extending to infinity.

(b) If s is a B-sequence (31 and 33 are the two cor-
responding B-sequences), then the set of points

in He whose orbits tend directly to oo (inside
H.) with itinerary s is the union of two disjoint
continuous curves extending to infinity, denoted
by ws, and ws, and following, respectively, the
B-sequences 51 and Sy.

In particular, if s starts with 1 (respectively 0) then
ws, lies below ~yor; (respectively yo) and ws, lies
above of yori (respectively o).

As in Sec. 2, the w-curves are called tails and
the set Fy = {z € H¢||z| < 2met} is the fundamen-
tal domain of the tails. Finally, the portions of the
w-curves lying in F are called bases of the tails.
We let ay denote the base of the tail wy when s
is an A-sequence, and we let ag, and ag, denote
the bases of the tails ws, and ws, when s is a
B-sequence.

By definition, for a fixed s, the tail w, for A-
sequences and the tails ws, and wg, for B-sequences
belong to I(s). To characterize the entire set I(s),
we need to pull these tails backward. The fact that
the orbit of the asymptotic value z = 0 lands in
one iteration at z = 2mi ensures that this backward
iteration process is well defined for any s that does
not end in all 1's.

From the discussion above, it seems natural
that this pullback procedure will produce different
topological structures depending upon whether s is
an A- or a B-sequence. Indeed, as in Sec. 2, if s is an
A-sequence, we denote by 7, the hair associated to s
(that is, the limit of the backward iteration process
applied to w,), and, if s is a B-sequence, we denote
by vs, and 75, the hairs associated to s (that is, the
limit of the backward iteration processes applied to
wg, and wg, ).

The following result characterizes the set I(s)
for a large collection of A- and B-sequences (see
[Devaney & Jarque, 1997]).

Proposition 3.2. Let s = (sp,51,...) be an A- or
B-sequence for which there exists K € N such that
s contains no string of consecutive 1’s whose length
is greater than K. Then

(a) If s is an A-sequence, then the set I(s) is a hair,
i.e. the union of the continuous curve y(s) and
a single point zs (the endpoint) whose orbit is
bounded and has itinerary s.

(b) If s is a B-sequence then the set I(s) is the
union of two disjoint conlinuous curves 7g
and vs,, with 7(5;) = s, i = 1,2. Each of these
curves meet at a common endpoint zs whose
orbit is bounded with itinerary s.
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From the above result we conclude that, in
order to complete the characterization of the sets
I(s), we must consider sequences with strings of
I’s with arbitrarily (but finite) large length. As a
preliminary observation we show that, with a sin-
gle exception, the set I(s) is always bounded to
the left.

Lemma 3.3. Suppose that s € Xy and s # (k,0,
1,1,1,...) for some k. Then I(s) lies in Re (2) > z

Jor some & > —oc.

Proof. Assume that s = (k,0,1,...,1,s;...),
where s; # 1 denotes the Ith term of the sequence.
The proof now follows by noting that points arbi-
trarily far to the left have sequences with an arbi-
trarily long string of 1's after the 0 entry. W

4. Indecomposable Continua for
A= 2mi

Our main goal in this section is to show that if the
lengths of the strings of 1's in a given sequence
grows exponentially fast, then the set I(s) is no
longer a hair but rather contains an indecomposable
continnum. The following theorem due to Curry
[1991] gives a useful criterion for the existence of
an indecomposable continuum.

Theorem 4.1.  Suppose that X is a one-
dimensional nonseparating plane continuum which
is the closure of a ray that limits upon itself. Then
X is indecomposable.

4.1.

We now set up targets around the nth images of the
bases a; (s, and ag, if s is a B-sequence) of each
tail wy (ws, and ws, if s is a B-sequence). The con-
struction is similar to the one in [Devaney & Jarque,
2002]. Let

V(€n)={2€ H|E-1<Rez<n+1}.

By definition V(£,7) is a “rectangle” bounded
above and below by segments of #3741 and t_p;_1,
respectively.

Targets in H,

Proposition 4.2. Let ¢ be large enough. The fol-
lowing statements hold.

(a) Given any n € Z%, there exist &,,m, € Rt
such that the nth iterate of all bases of the tails
belongs to the interior of V(&,,m,). called the
nth target for E.

(b) Letl > 0. Then, for any n >0,

E(V(‘E??.‘! :"?nﬂ)) o) V(En-ﬁ-] y T}n+1+1’}-

The following proof is quite similar to the proof
of Propositions 3.1 and 3.2 in [Devaney & Jarque,
2002], although, in our case, we must substitute
the map z — e* by Fari. Also, note that when
considering B-sequences, ay is substituted by ag,
and ag,. We provide the proof of the above propo-
sition for completeness.

Proof. First we prove (a). Since the fundamen-
tal domain for the tails F; is contained inside
{z||z| = 2meS}, we let & = ¢ and 7y = 2meS.
Then ay C V(&,no), for A-sequences, and also
{as,, a5} C V(&,n), for B-sequences. We also
have |[E™(z)| < E™Y(¢) for each z in any base of
the tails. So we set 1, = E""1(({). Since the closure
of the union of «a; for all s € X;; is compact (here
we also include the bases whose itinerary ends in
all ones), and all orbits of points in this union move
to the right under E7, it follows that there exists a
maximal &, such that Re E"(z) > &, for each z in
the union of the bases of the tails.

Therefore we choose &, to be the maximal value
for which the nth iterate of all the bases of the tails
lies to the right of Rez = &,,.

Next we prove (b). We consider the case | = 0
(the case I > 0 follows similarly). We choose ¢ large
enough so that the image of the vertical line Rez =
¢ meets the strip H¢ in an arc whose real part is
never less than ¢ —1. Because of this, if w and E(w)
lie in He¢, then we have Re E(w) > |E(w)| — 1. This
follows since the image of this line is an “even more
vertical” arc in He.

Take V' (&,,7n) to be the region bounded on
the left by & — 1 and to the right by n, + 1.
From the above discussion, &,,, is bigger than
2metn — 1. Hence the left-hand side boundary of
V(&n+1:Mnt1) is bigger than 2mefn — 2, In contrast,
el = 2me~lebn, 50 2melefn < 2mefn — 2, as
desired.

Turning our attention to the right-hand side
inequality, notice that 7,.7 = 27e™. In contrast
the exponential of the right-hand side boundary
of V(&41,Mn+1) has real part much bigger than
2mee™ — 1 > 2we'™ | as desired. N

Let s be an A-sequence. We next enlarge
the base «, inductively to obtain an increasing
sequence of curves ag, that satisfy the following
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(i) aso = as (the base),
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where
I 2 11
p(m ) - {2 '-"f Sm;+2 % {0 vk }:
4] = e
1 if Spyqe = {0%,11}

(i) @sn+1 D asn, and

n

To construct ag 1, consider the bases Qg-1(5)- This
is a finite collection of bases, one in each T}, j €
{—M,...,M}. The set E(a,-1(5)) maps into an arc
of ws and to the right of a. Let

(g1 = Qg U E(ﬂc—l(s))=

so this is a subset of wy that extends a, to the right.
It we write

mn
Qgn = Qg n—1 UFE ((Io.—-n(s))-.

it is easy to check that the g, have the above three
properties. We call the oy, the n-initial portions of
the tail.

Similarly, we expand the bases as, and as,
when s is a B-sequence, w(s;) = s, i = 1,2
In this case, the above inductive procedure allows
to define as, , and as, . respectively. Note that,
for example, o—1(11,02,12,0',...) consists of the
two B-sequences (0%, 1%,02,12, [}1 .) and (11,1%,
02%,1%,01,...). Similarly, ‘1(12‘01,11,()2} ...) con-
sists of the two augmented sequences given by
(0%, 1%,0% 1%, 0%,....) spd (12,22, 0 4. 0%....).

By construction, the targets V(&,,m,41) cut
across the fundamental domains Ty and T for
any n € Z%. Consequently, we may denote
by W& tnet), ¢ = 1,2, the compact con-
nected regions V(&,,mn41) N T, lying below and
above von¢, respectively. The next step is to show
that, by considering appropriate preimages of the
sets W' (&, Mntt), we end up with a nested sequence
of neighborhoods of either ay  if s is an A-sequence,
or, either ag, or ag, if s is a B-sequence. We note
that, because of Proposition 3.2, we may assume
that s € s has infinitely many 1's.

The next lemma is a restatement of
Corollary 3.4 in [Devaney & Jarque, 2002].

Lemma 4.3. Let £ > 0 and s = (79,1,71,1, 72,

1,...) € Xpr, where 1, i =0,1,2,... are blocks of

symbols in {—M,...,0,1,..., M} of length n;. Let

mj=j+no+n1+--+n4 j=0.

(a) If s is an A-sequence and 5 is its unique
augmentation, then the sets

L-'50 Qisnie @ L-"“mj- (WTP('”H )(gmj ? 7}'7:1J+I)) (l)

form a nested sequence of subsets of V(C,ne).
As mj — oo these neighborhoods tend to a por-
tion of the curve w, that contains at least o .

(b) If s is a B-sequence and 5, and S3 are the two
augmentations of s, then

LS:] 0 L.:-m ( i(gm_,s”mj—}—ﬂ))! i1=1,2,

(2)
form two mnested sequences of subsets of
V(&o:ne). As mj — oo these two families of
neighborhoods tend to the portions of the curves
ws; and ws, that contains at least as, ¢ and
g, f-

Proof. We first prove (a). Since s is an A-sequence,
there is a unique augmentation §. Note that the
superscript corresponding to 5;,, 41 depends on the
next symbol, 8, 12. More precisely, this superscript
is 1if 5,42 = 0% or 1!, or 2 otherwise.

Hence, from Proposition 4.2(b), the sets given
by (1) form a nested sequence in V(C, ). Notice
that [E'| > 1 in H¢ and the only points in H
whose orbits tend directly to oo with A-itinerary
s are those in wy (which is a unique curve because
s is an A-sequence).

We claim that such a nested sequence of sub-
sets contains a ¢, | > 0. The claim is straightfor-
ward for I = 0, since E™(a;) € V(&n,fn), n > 0
(i.e. E™(as) € ‘W"’{”}(Em ), n = 0 for the suitable
n and p( 1)). So, when considering the k-preimages
with k& = 1,...,n of the W-boxes, following the
sequence s, we found inside E" *(ay). The process
finishes at ay itself, as desired.

For the claim [ > 0, we notice that in V(&,,
Tn+t) We have a connected segment of wy including
E"(as)U---UE™(ay). So, the preimage argument
above only shows that we finish at some portion of
asy (remember that ag; is constructed by adding
the union of the successives images of all sequences
o7(s),i=1,...,1). To finish the proof we use the
same preimages argument not only to the sequence
s but to all sequences of the form o="(s),i = 1,...,1
(that is, we take preimages of E"(a,-i(5)) U+ U
ETHI(QU—J(S)), gi= ]._. - ,I).

Now we prove statement (b). Since s is a B-
sequence, there are exactly two augmentations, 5,
and Sy, corresponding to s. Therefore, at each j-step
in (2), we get two subsets of V((, ) depending on
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i being equal to 1 or 2. The rest of the argument
is similar to the previous case. W

Remark 4.1. In Lemma 4.3(b), each step gives two
subsets of V((,n¢) depending on 7 = 1,2. It is not
true in general that, as m; — oo, for i = 1 (respec-
tively ¢ = 2) we get a nested sequence of subsets
that contains precisely agz, ¢ (respectively ag, ¢), or
vice versa. The lemma only states that, as m; — oc,
and according to the B-sequences 5, and 5y, we end
up with two disjoint nested sequences of subsets in

V(C‘ nﬁ’)

In the next section we use the above results to
show the existence of different types of indecom-
posable continua when the sequence has strings of
1-symbols that grow exponentially fast.

4.2. Indecomposable continua for
B-sequences

The first step in our construction is to find special
B-sequences (that is, sequences with only 0’s and 1’s
as entries) for which the extended tails lie arbitrar-
ily far into the left-hand half plane. We say that two
continuous curves parametrized by (z, hi(z)), =z >
xg, 1 = 1.2 are e-close if |hi(z) — ha(z)| < e,
for all z.

We start the construction by considering B-
sequences of the form 1;t where 1; denotes a string
of 1’s of length k&, and t = (tg,t1,t2,...) is any B-
sequence not ending in all 1's. So, l;icfl and lﬁfg
denote the two admissible augmentations corre-
sponding to 1;t. Finally Wi, and wy2, denote the
two tails corresponding to the B-sequence 1;t.

Let € > 0 and let DJ_; be the disk surrounding
z = 2mi with radius 0 > 0. For k large enough we
may assume that Wi, i = 1,2 are e-close curves
in [(,00), one below and one above woy;, the tail of
the hair yo.;. If we pull back these two curves by
applying L, (the inverse function of E taking values
in 71) we obtain two new curves CT 1 =12
whose points have itinerary 1 1¢. These curves are
e-close over the domain [log ¢, oc0]. Continuing the
pull back via successive applications of L, we find
a first positive integer r such that the two curves
CT i = 1,2 are e-close to each other (and to
~Yari), extend to oo to the right, and their left-hand
end lies inside DJ_,.

At this stage, we pull back the curves CT
once more but now using Ly (the inverse function
of E taking values in Tj). We get two new curves,

denoted by Doi1y, B i = 1,2, one below and one
above g, respectively. These curves extend to oo to
the right and their left-hand end lies inside D (that
is, the disk centered at z = 0 of radius §). The points
in @y C follow the B-sequence 0 l HE,;, i=1,2

Finally, we pull back the two curves once again
by using Ly to obtain two curves in 7. The two
Curves, @pig212, i, and w2 o, i which we call

extended tails, contain the two tails Wolp212, 7
l

and W20 1L, s and points on them follow the
B-sequence 001;.,t (precisely, in terms of B-
sequences, they follow (ll()‘1;‘+rtg and Oz(lllkﬂh,
respectively). They extend arbitrarily far to the
left as long as we start all the construction with
a k large enough. Consequently they are part of
Yo10212, 7 and Yo011}, 7> respectively. In short, we
have shown that

Lemma 4.4. Given any p < 0, there exits K > 0
such that for all k > K, there exist two continuous
CUTVES, Wo102127, and W201117, 1 satisfying:

(a) these curves are the extended tails that fol-
low the B-sequences 0'0°1%fy and 0201} xt1;
respectively; and

(b) they cross Rez = p in the far left half plane.

We wish to show that, for any n, the forward
image of the targets V(&,,n,) map in a convenient
way onto the two curves constructed above. We say
that vy = (9(],92, G ,9;@“1) is a B-block of length
k if it is a string of B-symbols of length k. Let
Ek,l and EH denote the two B-blocks of length F,
correspondingly.

Let ] 2 0, k > 0 and n > 0.
Let t be any B-sequence and 9, be any B-block of
length n. Let © = 1,,1001,t be a B-sequence and let
91 = n]l 0%0*11 fj and Og = ljn 212010212)‘2 its
augmentations. Thtn there exist K > 0 such that
for all k > K| the following statements hold.

Proposition 4.5.

(a) The forward image of W 2(&,“7;?-,__}_.,-_') cuts twice
(once far to the left and once far to the right)
across the extended tail Wo102121, and cuts once
(to the left) across the extended tail 20111, -

(b) The forward image of W'(Enytinst) cuts once
(to the right) across the extended tail 201117, -

(¢) The hair g, passes twice and the hair vg,
passes once through

Lﬂn Q nne LG,,..: (WQ(Efa.u nn-i—i))' (3)
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(d) The hair Yo, passes once through
Lgy0---0Lg,_, (I/Vl(fn, Nntt))-

Remark 4.2. The piece of the hair Yo, Passing
through the set defined in (3) follows a “nonadmis-
sible” B-sequence, precisely, 3?1,1]201021?2 (from
Remark 3.1 we see that 1? cannot be followed by
0'). Although this seems a contradiction, we notice
that these points follow such itinerary but they
do not tend directly to infinity. So, the admissibil-
ity condition (introduced in Remark 3.1) does not
apply. Formally, after n + 1 iterates of the expo-
nential this piece of the hair is mapped to the left-
hand side of the extended tail w2 127, Hence they
follow the desired B-itinerary (even though the B-
itinerary is not admissible), by moving from right
to left in C.

Proof. Consider the region Ty N H¢. We denote by
Upr and Ugz the two subregions in Ty N H¢ that lie
below and above the tail of ~y respectively. Simi-
larly, define the regions Ui and U2 inside the set
T1 N He. Let us fix n.

Clearly, E(W2(&n,1n41)) is a portion of an
annulus originating at 4o,; and ending at 5y from
below. Hence, this image crosses Ty far to the left
and crosses Uy far to the right. On the other hand,
E(WY&,,m,41)) consists of a portion of a “rectan-
gle” far to the right, extending from ~g to v2.; from
below (that is, the image cuts across Uy N Upn).
See Fig. 3.

Therefore, statements (a) and (b) are easy
corollaries of Lemma 4.4, since the extended tails

Wo102121, and @z 11 extend arbitrarily far to the
left as long as k is large enough.

We claim now that statements (c¢) and (d) fol-
low from the above statements (a) and (b), and
Lemma 4.3(b). To see this we note that for the
suitable k defined above, the following statements
hold.

(i) There are in W2(&,, nn4) two different pieces
of the hair vg,. One is mapped by E to the
right-hand side of the extended tail W10212%,
(that is, the tail of the hair Yor02127,), and the
other is mapped by E to the left-hand side of
the extended tail W102127,-

(ii) There is in W2(&,,7m,1) a piece of the hair
vYe,. mapped by E to the left-hand side of
the extended tail zy2q2,25,. Note this piece fol-
lows the nonadmissible E—sequence 12020! l}jl
as explained in Remark 4.2.

(iii) There is in W1(&,,mn41) one piece of the hair
vYe,. which is mapped by E to the right-hand
side of the extended tail @y 11 (that is, the
tail of the hair ypegiy1 7,)- Since the extended
tail @o201 111, is a connected set and E is a
continuous map, the two pieces of the hair
Yo, Iying in W (€n, mnts) and W2(E, 1,s1) ave
connected to each other.

(iv) Pulling back W(&,,m,41), i = 1,2 by foll-
owing the B-block ¢, as in Lemma 4.3,
we produce the desired nested subsets of

V(o) N

Remark 4.5. Note that all of the previous results
hold for infinitely many B-sequences, since we use

AW

ey

T8

Dnzptile,

Fig. 3.

Doip2iiiy

The geometric explanation of Propesition 4.5. The arrows denote the forward image of the pieces of Yo, and g~
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an arbitrary B-sequence ¢ that does not terminate
in all 1's.

Now we state and prove the main result of this
paper.

Theorem 4.6. Given an infinite sequence of B-
blocks {Tm,,Tmss...} we may find an increasing
sequence of integers kj such that the B-sequence s
given by

$ = Tpmy 1001, Ty 1001 3y Ty - - -

is admissible and has the property that I(s) con-
sists of either an indecomposable continuum in the
Riemann sphere and a distinguished curve that
accumulates on it, or else the closure of a pair of
curves that accumulate on themselves as well as
on each other. In this case the set of accumula-
tion points is an indecomposable continuum. The
fact that we have one case or the other only depends
on the initial sequence of B-blocks {Tm,, Tmy,---}-

Proof. Let | >0, kg = 0 and define

pi=mi+c+mi+k 4
+3(i—1)+1, i>0.

+ ki

We also construct inductively B-sequences (3},
j >0, given by

fjj = Tmy Hmlk; Trg 1001}:2 Tt Ty ].OULJ,-,_J1 L (4)

in the following way. First, let t be any B-sequence
not ending in 1, and note that each p; term in Bj;
i < j, corresponds to the symbol 1. From Propo-
sition 4.5, we choose k; (at each step) in such a
way that the forward image of WQ(EJD:f Tp,+1) cuts
across all extended tails w01021; 7, twice (one far to

the left and one far to the rlght) and cuts across
the extended tails wy2q1, 1§, once far to the left.

J
Mf)reover._ W l{ﬁpj._-.r;mH) cuts across the extended
tails @ozo11} 7, Oonly once.

As j tends to infinity, the limit of this induc-
tive construction defines a B-sequence s for which
I(s) will satisfy the statements of the theorem. Nev-
ertheless, the above construction does not define s
uniquely, because the blocks 1y, can be chosen arbi-
trarily as stated in Propomtmn 4.5, but we fix one
of those possible choices.

Let 37 and 9_2 be the augmentations of s and
similarly, let {3 ;.2 be the augmentations of ;.
By CO]lth‘uCti(}Il the p; terms in each §; (similarly
in each ,F{?j’i) are either 1! or 12. Moreover, if it is 1!

for 5, (_Eespectively f'_3j‘1 ), then it is 12 for 5, (respec-
tively (3,,), and vice versa.
To see this we divide the proof into two cases.

Case i. Each 5 may have a finite number (possi-
bly zero) of symbols 1! or 1% at the p;th position.
We may assume, without loss of generality, that all
p; terms in §; are 12 symbols, and consequently all
p; terms in 53 are 1! symbols.

Let 5 > 0. By construction, we must have
three disjoint pieces of curves in Wz(Epje Tp;+1) sat-
isfying the following: Two of them land after one
iteration on the extended tail following the B-
sequence o”t1(3;); one far to the left and one far
to the right (remember that, by hypothesis, 5 is
such as a 0! is in the pj + 1 term). Of course,
these two pieces belong to the same extended
tail since they are disjoint parts of the preimage
of an extended (connected) tail. The third piece
lands (after one iteration) on the left-hand side of
the extended tail following the nonadmissible B-
sequence, O'pj+1(§2). Moreover, we must have in
W(&,, Mp,+1) a unique piece of the curve landing
(after one iteration) on the extended tail following
the B-sequence o?171(8y). See Fig. 4.

So, if we regard the B-block 7y, 1001k, Ty + -+t
as the B-block 9, in Proposition 4.5, and Lemma
4.3(b) is applied, it is easy to see that, after going
back through the suitable inverses of the exponen-
tial (following the B-itinerary), we end up in one
of the two subsets of V(ng,py) corresponding to
the preimages of W"""({p},?}pjﬂ), i = 1,2. One of
them (the preimage of W?(&, 5+ Tlp;+1)) includes ay, |
as well as two further pieces of curves having the
desired B itinerary. Indeed, one of them is a piece of
the hair 5, and the other is a piece of the hair vs,.
The other subset (the preimage of W’I(fpj.*r},,J +1))
includes ag, ,.

Since we are assuming that 5; has 1% in all p;
terms, as j — oo, the above construction gives two
nested sequences of subsets of V (1, ;) satisfying
the same statement at each step, in the sense that
one of the nested sequences includes ay,, (a piece
of the hair vz ) as well as another piece of the hair
vs,, and a piece of the hair vz,. The other nested
sequence includes g, ,. In summary, we have shown
that the hairs s, and vs, accumulate on the tail ~,,
(since they accumulate on §; 1,1 > 0) while the hair
vs, does not accumulate onto itself.

To see that 75, and ~vg, indeed accumulate on
points in 75, that do not lie in the tail, we note
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V[.Ep_, +Tlp; +1)

P

\:/— 120102131,

120102127,

12020M1LE) (non sdmisaible)

110201134

Dot 1}y

/ "
- o Tsa

®
T
Yaws
®

T

Dptpt1fty

Vino. i)

Fig. 4. The geometric explanation of Theorem 4.6. We assume that the B-sequence starts with the symbol 0. After taking
the preimages of V(&p,;,np, 1) by E, we find a nested sequence of neighborhoods of the two bases of the tails as, , and as,

in V{no, ).

that we may perform the same construction for the
sequences

Tine 10005, Ton, , 10005, 7o i1=1,2,3,....

e L

Then we may pull the corresponding hairs and their
accumulations back by the appropriate logarithms
to show that ~5 as well as 5, must accumulate
on any point in the hair 5. Consequently, I(s) is
the union of a curve that accumulates on itself and
another curve that accumulates on the first curve.

Case ii. Here we may assume the symbols 1! and
12 appear infinitely many times in the pjth positions
for both augmented sequences 3; and 3s. Conse-
quently, we may consider two infinite subsequences,
denoted by p;, and p;,, such that the terms g i of
5 are all 12 while the terms pj, of 55 are all 14
We may now apply a similar argument to the
pj, subsequences. So, if we regard the B-block
Tmi 1001k, Tong -+ -ty @S the B-block ¥, in Propo-
sition 4.5, and apply Lemma 4.3(b), it is easy to
see that after pulling back through the suitable
inverses of the exponential, we end up in two sub-
sets of V(no, p11), namely, the corresponding preim-
ages of Mﬂ(ﬁp;ik’nﬂjﬁf)‘ i = 1,2. The preimage of

W2 (&py, Mp;, +1) will include ay, , (a piece of the hair
vs.) as well as pieces of the hairs 51 and 5. On
the other hand, the preimage of W'(&p, ,7p, +1) will
include ay, ,, d # k (a piece of the hair vs,).

It follows that each of the hairs 5, and 55 accu-
mulates on itself as well as each other. Hence the
set of accumulation points of both curves is an inde-
composable continuum.

Finally we claim that these hairs do not sepa-
rate the plane. If this were not the case, then one of
the complementary domains would necessarily be
a wandering domain. This contradicts Sullivan’s
Theorem. See [Goldberg & Keen, 1986; Sullivan,
1985]. W

Remark 4.4. The case of A-sequences can also be
studied to find indecomposable continua under cer-
tain (similar) conditions on the s sequence. However
it does not introduce any new phenomena (in the
topology of the indecomposables).

5. Dynamics for B-Sequences

Previous work related to the topology and dynam-
ics of the set I(s) that appear in [Devaney, 1993;
Devaney & Jarque, 2002; Moreno Rocha, 2002]
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have shown the duality within the complexity of
the topology and the simplicity of the dynamics.
Our case is no exception to this rule although the
dynamics for A = 27i has a peculiar behavior not
found in previous cases. Indeed, there is no point
with bounded orbit following a sequence like in
Theorem 4.6.

Lemma 5.1. Let s = Ty, 10014, 71y 10013, 75 - - GS
in Theorem 4.6. Then, any point z € I(s) has an
unbounded o*rbr.t..

Proof. The result is trivial if z is a point in one of
the hairs v;, j = 1,2. So assume z € I(s) — (7, U
¥s, ) and we proceed by contradiction. Suppose there
exist real numbers —oo < a < 0 < b < o0, so for
i = 0,1, we can define the regions

Qi={zld <Rez<b} NT;

whose union contain the orbit of z. Note that the
left-hand boundary of these regions, Re(z) = a, is
mapped to a circle around 0 of radius r = |E(a)|.
Denote by D(0,r) the open disk around z = 0 of
radius r and assume D(0, r) is completely contained
in Ry (otherwise we may adjust the value of a to
accomplish this). Note that the region Re(z) < a
is mapped to the interior of this disk. Let D(27i)
denote the image of D(0,7) under E and again,
assume [(2mi) is completely contained inside Q.
Let L; denote the branch of E~! restricted to
the strip T1. Note L; is an strict contraction inside
(21. Then, since 274 is the only repelling fixed point
in 01, we may find an integer N > 0 large enough so

LY (Q1) C D(2mi).

Since the sequence k,, in increasing and unbounded,
we can find an integer ng for which k, > N for
each n > ng. Let z; = E’(z) be the point in the
orbit of z that follows the itinerary 1, 7,,.,,100.
This implies that z; € D(2ni) and thus, the poln‘r
zj—o that follows the itinerary 001, 7p,,,100...
must lie to the left of the region @y, giving us a
contradiction. M

Now we state the main result of this section.

Theorem 5.2. Assume s is a sequence that sat-
isfies the conditions of Theorem 4.6. Let 51 and
Sy be the two possible augmentations of s and let
z € I(s). Then,

(a) If z is a point in one of the hairs vs, or 7vs,,
then the w-limit set of its orbit is the point at
infinity.

(b) Otherwise, the w-limit set of the orbit of z con-
tains the orbit of 0 and the point at infinity.

Proof. Assume z belongs to one of the hairs 73,
and let ws; denote the tail associated to this hair.
By definition, every point in ws; escapes to infinity.
Moreover, vz, is constructed by successive pullbacks
of its tail. Hence, every point in the hairs are wan-
dering points with the point at infinity as its w-limit
set. So, statement (a) is proved.

Statement (b) is a consequence of Lemma 5.1.
If 2 does not belong to any of the hairs vs,, j = 1,2,
then it cannot escape directly to infinity ll'lblde H.
However, since it follows the itinerary given by the
sequence s, from Lemma 5.1, its orbit cannot be
bounded. So it must visit points with arbitrary big
negative real part (inside 7 U T} ). Consequently it
must pass through any arbitrarily small neighbor-
hood of 0. Of course this also implies that the orbit
passes arbitrarily close to z = 2xi and infinity, as
desired. W
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