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Consider a rational map R of degree d � 2 with coefficients over the
non-archimedean field Cp , with p a fixed prime number. If R has a cycle of
Siegel disks and has good reduction, then it was shown by Rivera-Letelier
in [7] that a new rational map Q can be constructed from R, in such a way
that Q will exhibit a cycle of m-Herman rings. In this paper, we address
the case of rational maps with bad reduction and provide an extension of
Rivera-Letelier’s result for these class of maps.
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1 Introduction

Let R 2 C.z/ be a rational function of degree greater or equal than two. The Fatou
set of R, denoted by F.R/, is the largest open set where the iterates of R form an
equicontinuous family. A remarkable result of D. Sullivan in [11] states that each Fatou
component must be eventually periodic. A collective endeavor spanning almost a century
provided the classification of each periodic component into five types: attracting basins,
super-attracting basins, parabolic basins, Siegel disks and Herman rings.

Siegel disks and Herman rings are also known as rotation domains since an iterate of
the map restricted to one of these periodic components is analytically conjugated to a
rigid irrational rotation acting either on a disk or a ring domain, respectively. It was not
an easy task to construct an example of a rational function with a cycle of Herman rings
as illustrated by the works of M. Herman in [5] and M. Shishikura in [9].

Consider now the problem of constructing a rational function that exhibits the analogue
of a cycle of Herman rings in the p-adic setting. In [7], J. Rivera-Letelier proved that, if
R is a rational function with good reduction and exhibits a cycle of Siegel disks, then it is
possible to construct a new rational function of higher degree with a cycle of m-Herman
rings (see Theorem 3.1 for the full statement of this result). Briefly, we say that U is
an m-Herman ring for R if it belongs to its domain of quasiperiodicity and for some
integer m � 1, the set U can be written as P .Cp/ n .B0 [ B1 [ : : : [ Bm/, where each
Bj represents a closed ball in the projective space of Cp .

Our aim is to show that for a rational function with an n-cycle of Siegel disks and
bad reduction, it is still possible to produce a new rational function with an n-cycle of
1-Herman rings (see Theorem 3.8).

The organization of the paper is as follows: in Section 2 we provide a short introduc-
tion to p-adic analysis and state without proofs some of the most important results from
rational iteration in the p-adic setting. In Section 3 we review several results known
for rational maps with good reduction and their domains of quasiperiodicity. Then, we
state and prove our main result for rational maps with bad reduction. In Section 4 we
illustrate the conclusion of Theorem 3.8 with a couple of examples constructed from a
rational map with bad reduction.

2 Preliminaries

2.1 p-adic Analysis

Let p denote a fixed prime number. Since any rational number r 2 Q can be written
as r D p˛a=b for ˛; a; b 2 Z and p not dividing either a or b, then one can define the



Víctor Nopal-Coello and Mónica Moreno Rocha 15

p-adic norm as
jr jp D p

�˛;

with the convention j0jp D 0. It is not difficult to verify that j � jp defines a norm whose
triangle inequality is replaced by the non-archimedean condition given by

jx C yjp � maxfjxjp; jyjpg:

Denote by Qp the completion of Q with respect to j � jp , by Qp the algebraic closure
of Qp and by Cp the completion of Qp , which is algebraically closed. Throughout
this work, we only consider the valued field .Cp; j � jp/ and its projective space, P .Cp/,
endowed with the non-archimedean chordal metric, �p . Its expression in homogeneous
coordinates is given by

�p.P1; P2/ D
jX1Y2 �X2Y1jp

maxfjX1jp; jY1jpgmaxfjX2jp; jY2jpg
;

where Pi D ŒXi ; Yi � 2 P .Cp/ for i D 1; 2. If Pi ¤ Œ1; 0� for i D 1; 2, then under the
change of coordinates zi D Xi=Yi , one obtains

�p.z1; z2/ D
jz1 � z2jp

maxfjz1jp; 1gmaxfjz2jp; 1g
:

From now on, we drop the subscript p form the p-adic norm and the chordal metric.
Consider

� the ring of integers O D fz 2 Cp j jzj � 1g,

� the group of units O� D fz 2 Cp j jzj D 1g,

� the maximal ideal of O given by p D fz 2 Cp j jzj < 1g, and

� the residue field of Cp given by QCp D O=p.

If z 2 O, its reduction modulo p is denoted by Qz, and clearly, Qz 2 QCp . The mapping that
takes z 2 O to Qz 2 QCp can be naturally extended to P .Cp/ by setting Qz D1 2 P . QCp/
for all z 2 P .Cp/ nO.

The group jCpj WD fjzj j z 2 Cp n f0gg is called the valuation group of Cp . Let
r 2 jCpj and z0 2 Cp . A ball or a disk in Cp centered at z0 and radius r is denoted
as Br .z0/ D fz 2 Cp j jz � z0j � rg and by Dr .z0/ D fz 2 Cp j jz � z0j < rg,
respectively. If B is a ball in Cp then P .Cp/ n B is a disk in the projective space, and
viceversa.
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Four immediate consequences from the non-archimedean condition are:

1. All triangles in Cp are isosceles: if jxj > jyj then jx C yj D jxj.

2. If U0 and U1 are balls (or disks) in Cp with non-empty intersection, then either
U0 � U1 or U1 � U0.

3. The radius of a ball (or a disk) in Cp is equal to its diameter.

4. Every point in a ball (or a disk) in P .Cp/ is its center.

2.1.1 Geometric objects

The topology determined by the non-archimedean metric reduces every connected
component of P .Cp/ to a single point. Hence, it is necessary to extend the idea of
connected component in this setting. Most of the following concepts can be found in the
dissertations by R.L. Benedetto in [2], and by J. Rivera-Letelier in [7] (alternatively, see
also [8]).

Definition 2.1 (Affinoids). Let U1; U2; : : : ; UN � P .Cp/ be a finite collection of balls
(or disks). A closed (open) connected affinoid is defined as

TN
jD1 Uj . The finite union

of closed (open) connected affinoids is a closed (open) affinoid. The complement of a
closed affinoid is an open affinoid.

Definition 2.2 (Analytic component). Let U � P .Cp/ be a given subset and x 2 U .
The analytic component of U containing x is the union of all (closed or open) connected
affinoids that contain x and that are contained in U .

An increasing union of connected affinoids defines a connected analytic space. A
disk is an example of a connected analytic space. Let B0 � B1 � : : : be an increasing
sequence of balls in P .Cp/. Its increasing union, B D

S
Bj , is either a disk or it

is equal to P .Cp/. The collection of open annuli (or disks if B D P .Cp/) given by
fAj W Aj D B n Bj gj�0 is called a vanishing chain. Two vanishing chains are
equivalent if each chain is cofinal in the other under containment, see [1, Chapter 10].

Definition 2.3 (End). An equivalence class of vanishing chains, denoted by P , is called
an end. The associated ball (resp. disk) of P , denoted as BP (resp. DP ), is equal
to
S
Bj (resp. P .Cp/ �

S
Bj ) for any vanishing chain fAj gj�0 and its definition is

independent of the vanishing chain.

Let P be an end associated to the canonical disk DP D fz j jzj < 1g. For each
w 2 P . QCp/, denote by Pw the end whose associated disk is

DPw
D fz D w C ˛ j ˛ 2 DPg;
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thus, for any z 2 DPw
, Qz D w. The set Sc D fPwgw2P. QCp/

is called the canonical
projective system associated to P (or associated to the canonical disk DP ). If P 0 is any
other given end with disk DP 0 , its projective system S 0 is naturally defined under the
action of a map  2 PGL.2;Cp/ so that  .DP 0/ D DP .

2.1.2 Rational maps and reduction

A rational function R 2 Cp.z/ of degree d � 2 induces a rational map of same degree
acting over the complex projective space. Written in homogeneous coordinates, the
induced map R W P .Cp/ ! P .Cp/ becomes R.X; Y / D ŒF .X; Y /;G.X; Y /�, where
F;G 2 CpŒX; Y � are polynomials in X and Y of degree d , namely

F.X; Y / D

dX
kD0

akX
d�kY k ; G.X; Y / D

dX
kD0

bkX
d�kY k :

Whenever convenient, we shall write the rational map in z-coordinate as R.z/ D
f .z/=g.z/, where F.X; Y / D Y df .X=Y / and G.X; Y / D Y dg.X=Y /. Also, we
shall refer to a rational functionR 2 Cp.z/with the understanding thatR also represents
its induced map over P .Cp/.

Following [10], we say that a pair of polynomials .F;G/ is normalized if the coeffi-
cients of F and G lie in the ring of integers O and at least one coefficient of F or G is
in O�.

Definition 2.4 (Rational map with good reduction). Let R D ŒF;G� where .F;G/ is a
normalized pair. The reduction of R mod p is given by the expression

QR.X; Y / D Œ QF .X; Y /; QG.X; Y /�;

D

"
dX
kD0

QakX
d�kY k ;

dX
kD0

QbkX
d�kY k

#
:

We say R has good reduction if deg. QR/ D deg.R/. If R does not have good reduction,
we say that R has bad reduction.

2.2 p-adic Iteration
Let R be a rational map of degree at least 2. The expression Rn denotes the n-fold
composition of R with itself n times. A point z0 2 P .Cp/ is periodic of period n if
Rn.z0/ D z0 and n is the least positive integer that satisfies this condition. If z0 2 Cp
is a periodic point of period n, its multiplier is given by � WD .Rn/0.z0/. Multipliers are
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invariant under conjugacies in PGL.2;Cp/, [10]. Thus, if z0 is the point at infinity, a
change of coordinates sending z0 to a point in Cp allows us to compute its multiplier.

A periodic point with multiplier � is super-attracting, attracting, repelling or indiffer-
ent if � D 0, j�j < 1, j�j > 1 or j�j D 1, respectively.

Following [3], we define the Fatou set of R, denoted by F.R/, as the set of points
z 2 P .Cp/ for which there exists an open neighborhood in P .Cp/ where fRngn�1 is
an equicontinuous family with respect to the chordal distance �. The Julia set of R,
denoted by J.R/, coincides with P .Cp/ n F.R/.

The following are some of the properties the Fatou and Julia sets satisfy in the p-adic
setting, proofs can be found in [2].

Proposition 2.5. Let R 2 Cp.z/ be given. Then

1. F.R/ is open, J.R/ is closed and both sets are totally invariant under R. More-
over, F.Rn/ D F.R/ and J.Rn/ D J.R/ for all n � 1.

2. F.R/ is never empty. J.R/ has always empty interior.

3. A periodic point lies in J.R/ if and only if it is repelling.

A remarkable implication for a rational map with good reduction is the following.

Theorem 2.6 (Morton & Silverman, [6]). If R 2 Cp.z/ has good reduction, then R
does not expand the chordal metric. Hence J.R/ D ;.

2.2.1 Rational maps acting on geometric objects

In order to study the dynamics of a rational map, it is essential to understand its action
on some of the geometric objects previously defined. Proofs of the following results can
be found in Section 2 in [8] and Chapter 10 in [1].

Let P be a fixed end with associated disk DP and ball BP . Consider a vanishing
chain representative fAigi�1 in the equivalence class P and let S D fPwgw2P. QCp/

be
the projective system associated to P . We shall also refer to S as the projective system
associated to DP or to BP .

Proposition 2.7 (Action on ends). Let R 2 Cp.z/ of degree d � 2. Given P , DP and
fAigi�1 as above,

1. there exists m � 1 such that, for any fAigi�1 and for i sufficiently large, R W
Aj ! R.Aj / has degree m for j � i . In this case, the local degree of R in P is
degR.P/ D m.

2. R.DP/ D P .Cp/ or R W DP ! DR.P/ with degree degR.P/.
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The following result states when two rational functions act exactly the same over ends.
Its proof can be found in [8, Lemma 2.3].

Proposition 2.8. Consider two rational functions R;Q 2 Cp.z/ and an end P with
vanishing chain representative fAigi�1. Assume BR.P/ is of the form fz j jz � z0j � rg.
If there exists i0 � 1 such that

jQ.z/ �R.z/j � r for all z 2 Ai0 ;

then Q.P/ D R.P/ and degQ.P/ D degR.P/.

Let us consider the action ofR over projective systems. It was shown in [8, Proposition
2.4] that given a projective system S0, there exists a projective system S1 so that if
P 2 S0 then R.P/ 2 S1. In this case, we write R.S0/ D S1. Now, consider two
projective systems, S0 and S1, that satisfy R.S0/ D S1. We can always find two
automorphisms  0;  1 2 PGL.2;Cp/ that send each projective system to the canonical
projective system, that is  i .Si / D Sc for i D 0; 1. Then, the rational function

R� D  1 ıR ı  
�1
0

sends the canonical projective system into itself. By [1, Corollary 9.27], R� has a
well-defined, non-constant reduction QR�. We say QR� is the reduction of R with respect
to  0 and  1. The degree of R in S0 is defined by degR.S0/ D deg. QR�/.

A key result related to the action of R over projective systems is stated in the next
lemma. Given a connected analytic space X , we say S is contained in X , denoted by
S � X , if X is not contained in a disk associated to the projective system S.

Lemma 2.9 (Lemma 2.11 in [8]). If a rational function R 2 Cp.z/ is injective over
the connected analytic space X , then for all projective systems S � X , we have
degR.S/ D 1.

2.2.2 Fatou components

In [7], Rivera-Letelier introduced three types of p-adic Fatou components where the
action of a rational map becomes relevant. These are the (immediate) basins of attrac-
tion, wandering components, and components of the domain of quasiperiodicity. For
completeness, we provide their definitions and list some of their elementary properties,
further details can be found in [8, Section 3].
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Definition 2.10 (Basins of attraction). Assume z0 2 P .Cp/ is a super-attracting or an
attracting periodic point of R of period n � 1. The basin of attraction of z0 is given by
the set

U.z0/ D fz 2 P .Cp/ j �.R
nk.z/; Rnk.z0//! 0 as k !1g;

and the set
S
m�0 U.Rm.z0// is the basin of the cycle of z0. The analytic component of

U.z0/ that contains z0 is called the immediate basin of attraction of z0.

Standard arguments employed in rational dynamics over P .C/ show that, in the
p-adic setting, every basin of an attracting cycle lies in the Fatou set of R.

Definition 2.11 (Wandering disks). A disk D � P .Cp/ is wandering under R if
Rn.D/ \Rm.D/ D ; for all integers n > m � 0.

In [8, Lemma 4.29] it is shown that every wandering disks must lie in the Fatou set.
Moreover, if diam� denotes the diameter with respect to the chordal metric, then

lim inf
n!1

diam�.R
n.D// D 0:

Definition 2.12 (Domain of quasiperiodicity). Let R 2 Cp.z/ be a rational function.
The domain of quasiperiodicity of R is defined as the set

E.R/ D fz 2 Cp j 9nj !1 so that �.Rnj ; Id/ � 0 in a neighborhood of zg;

where � denotes uniform convergence with respect to the chordal metric.

The following proposition gathers some of the main properties of E.R/ found in [8,
Proposition 3.9].

Proposition 2.13. The domain of quasiperiodicity of a rational function R satisfies the
following properties:

1. E.R/ is open, R.E.R// D E.R/ and E.Rn/ D E.R/ for all n > 1.

2. R is injective over E.R/.

3. If h 2 PGL.2;Cp/ and G D h ıR ı h�1, then E.G/ D h.E.R//.

Recall from Proposition 2.7 that R acts over a disk DP by either sending it to
all P .Cp/ or to DR.P/ with degree degR.P/. Lemma 4.21 in [8] establishes that, if
DP � E.R/ then R W DP ! DR.P/ acts with degree 1 and there exists m � 1 so that
Rm.DP/ D DP . In particular, RmjDP does not expand the chordal metric, and thus
DP lies in F.Rm/ D F.R/.

The final result of this section is interesting in its own right.
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Theorem 2.14 (Classification Theorem, [7]). The Fatou set of a rational function
R 2 Cp.z/ consists of the following disjoint sets:

1. Basins of attraction.

2.
S
n�0R

�n.E.R//.

3. The union of wandering disks that are not attracted by an attracting cycle.

3 Domains of Quasiperiodicity and Reduction
In this section, we are solely interested in a rational function R 2 Cp.z/ acting on
components of its domain of quasiperiodicity. The next result characterizes analytic
components of E.R/.

Theorem 3.1 (Theorem 3 in [8]). Let R 2 Cp.z/ be a rational function of degree d � 2
and let C be an analytic component of E.R/. Then C is an open connected affinoid, that
is,

C D P .Cp/ �
m[
jD0

Bj ; (3.1)

where m � 0 and each Bj is a ball in P .Cp/. Moreover, each end P of C (whose
ball is associated to a Bj ) is periodic, and the degree of the induced action by the
corresponding iterate of R over the associated projective system is larger than one.

Following the terminology of Rivera-Letelier, we say that an open connected affinoid
C as in equation (3.1) is a Siegel disk if m D 0; otherwise, C is an m-Herman ring.
Thus, a 1-Herman ring is an open connected affinoid of the form P .Cp/ � .B0 [ B1/.

Remark 3.2. It is worth noting that the dynamics of R restricted to either a Siegel disk
or an m-Herman ring in the p-adic setting is very different from the dynamics in P .C/,
as each analytic component in E.R/ contains an infinite number of indifferent periodic
points (see [8, Corollary 5.3]). Thus, a p-adic Siegel disk and a p-adic Herman ring do
not longer correspond to the largest domains of linearization, as expected for rational
dynamics over P .C/.

For further reference, we state the following result regarding the existence of fixed
points in the interior of a Siegel disk.

Proposition 3.3 (Corollary 5.11 in [8]). If D is a fixed Siegel disk, then D contains at
least one fixed point.
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3.1 Good reduction
Corollary 4.34 in [8] states that if R 2 Cp.z/ has good reduction and E.R/ ¤ ;, then
every analytic component C � E.R/ is a Siegel disk. In analogy to rational dynamics
in P .C/, it is then natural to consider in our setting how to construct a rational function
with an n-cycle of Herman rings starting from a rational function with an n-cycle of
Siegel disks. In [9], M. Shishikura provided an elegant solution to this problem using
quasiconformal surgery. The following result by Rivera-Letelier provides a clever answer
in the p-adic setting without applying quasiconformal techniques.

Theorem 3.4 (Proposition 6.7 in [8]). Let R 2 Cp.z/ with good reduction, r 2 jCpj
so that r < 1, and let P1; : : : ;Pn be ends so that each BPi

� E.R/ has radius r .
Then, there exists Q 2 Cp.z/ with deg.Q/ D deg.R/C n, so that for every analytic
component C of E.R/, the open connected affinoid

C � [TBP ;

with T D fRj .Pi / j 1 � i � n; j � 1g, is an analytic component of E.Q/.

Since C is a Siegel disk, the resulting analytic component forQmust be anm-Herman
ring for some finite m � 1. Moreover, Q must have bad reduction. The proof of the
above theorem is based on Proposition 2.8 and the following result, which we state for
further reference.

Proposition 3.5 (Proposition 5.2 in [8]). Let X be an open connected affinoid and
R 2 Cp.z/ be a rational map of degree at least 2 such that R W X ! X has degree 1.
Then X � E.R/. Moreover, if for every projective system S there exists n � 1 so that
degRn.S/ > 1, then X is an analytic component of E.R/.

3.2 Bad reduction
The hypothesis of good reduction in Theorem 3.4 permits the selection of ends whose
associated balls have all the same radii. This is not necessarily true for maps with bad
reduction. Nevertheless, our first result states that, regardless of the reduction of R, we
can retain control on the radius of R.U / for a given disk (or ball) U � E.R/.

Lemma 3.6. Let R 2 Cp.z/ be a rational function with E.R/ ¤ ;. Let D � E.R/ be
a disk of radius r and R.D/ a disk of radius t . Then

jR.z1/ �R.z2/j D
t

r
jz1 � z2j;

for all z1; z2 2 D.
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Proof. Let z1; z2 2 D and consider the function f .z/ WD R.z/�R.z2/, which sends the
disk Dr .z2/ to Dt .0/. Proposition 2.13 establishes that R is injective in D D Dr .z2/,
hence, f has only one zero in Dr .z2/. Moreover, we can find values ˛i ; ǰ … Dr .z2/

for 1 � i � n; 1 � j � m so that

f .z/ D a.z � z2/
.z � ˛1/ � � � .z � ˛n/

.z � ˇ1/ � � � .z � ˇm/
; (3.2)

for some a 2 Cp . Since jz � z2j < r � jz2 � ˛i j; jz2 � ˇi j for each i; j , we obtain

jf .z/j D ja.z � z2/j
j.z � ˛1/ � � � .z � ˛n/j

j.z � ˇ1/ � � � .z � ˇm/j
;

D ja.z � z2/j
j.z � z2 C z2 � ˛1/ � � � .z � z2 C z2 � ˛n/j

j.z � z2 C z2 � ˇ1/ � � � .z � z2 C z2 � ˇm/j
;

D ja.z � z2/j
j.z2 � ˛1/ � � � .z2 � ˛n/j

j.z2 � ˇ1/ � � � .z2 � ˇm/j
;

where the last expression follows from the isosceles condition of the non-archimedean
norm. The disk R.D/ has radius t , so jf .z/j ! t when jz � z2j ! r . This implies that

t

r
D jaj

j.z2 � ˛1/ � � � .z2 � ˛n/j

j.z2 � ˇ1/ � � � .z2 � ˇm/j
;

and together with (3.2), we conclude that jR.z1/ �R.z2/j D jf .z1/j D t
r
jz1 � z2j.

Remark 3.7. Proposition 3.14 in [2] provides a similar result for power series defined
over a general non-archimedean field.

We now state and prove our main result.

Theorem 3.8. Let R 2 Cp.z/ be a rational function with an n-cycle of Siegel disks,
D0;D1; : : : ;Dn�1 � E.R/, labeled in such a way that if �j is the radius of Dj D
Rj .D0/, then �0 � �j for 1 � j � n � 1.

If the distance between D0 and Dj is the same as the distance between D1 and
DjC1 for each j � 1, then there exists a rational function Q 2 Cp.z/ with deg.Q/ D
deg.R/C 1 such that Q has an n-cycle of 1-Herman rings.

Proof. After a change of coordinates, assume that Dj � B1.0/ for 0 � j � n � 1, so
each Siegel disk is a disk in Cp . From Proposition 3.3, we can assume the existence
of an n-periodic point z0 2 D0. Let r 2 jCpj and � 2 Cp so that j�j D r < �0, and
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define
Q.z/ D

z � z0

z � z0 � �
.R.z/ �R.z0//CR.z0/: (3.3)

Our goal is to show the collection fDj � Rj .Br .z0//gn�1jD0 is an n-cycle of analytic
components in E.Q/, and thus, they define an n-cycle of 1-Herman rings for Q.

We start by showing that Q acts injectively on Dj �Rj .Br .z0// for each 0 � j �
n � 1. We start with the case j D 0: let P be an end whose associated ball, BP , lies
in D0 � Br .z0/ and has radius r < �0. For any pair z1; z2 2 BP � D0, we can apply
Lemma 3.6 to D0 and D1 to obtain

jR.z1/ �R.z2/j D
�1

�0
jz1 � z2j �

�1

�0
r:

Since z1 and z2 are arbitrary, the radius ofBR.P/ must be �1

�0
r . Now consider an arbitrary

point z 2 BP and observe that z; z0 2 D0, hence, their images lie in D1. In order to
show Q and R act exactly the same over ends, we estimate

jQ.z/ �R.z/j D

ˇ̌̌̌
z � z0

z � z0 � �
.R.z/ �R.z0//CR.z0/ �R.z/

ˇ̌̌̌
;

D
j�.R.z/ �R.z0//j

jz � z0 � �j
D j�j

jR.z/ �R.z0/j

jz � z0j
;

where the last identity follows after applying the isosceles property in the denominator.
Since z 2 BP is arbitrary, the non-archimedean condition implies that jz � z0j D �0
while jR.z/ �R.z0/j D �1. Then

jQ.z/ �R.z/j D r
�1

�0
;

and Proposition 2.8 implies that Q.P/ D R.P/ and degQ.P/D degR.P/ D 1. That is,
Q acts injectively on D0 � Br .z0/.

Now consider any 1 � j � n � 1. Let Pj be an end whose associated ball, BPj
, lies

in Dj �Rj .Br .z0// and has radius �j

�0
r < �j . As before, selecting two arbitrary points

in BPj
� Dj and applying Lemma 3.6 to Dj and DjC1, one concludes that BR.Pj / has

radius �j C1

�0
r (when j D n � 1, the subscript j C 1 is taken mod n).

Given an arbitrary point z 2 BPj
, we now observe that z0 2 D0 while z 2 Dj . By

the distance assumption on the Siegel disks, namely dist.D0;Dj / D dist.D1;DjC1/, it
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follows that jz � z0j D jR.z/ �R.z0/j. Then, the estimate becomes

jQ.z/ �R.z/j D j�j
jR.z/ �R.z0/j

jz � z0j
D r <

�jC1

�0
r:

Therefore Q.Pj / D R.Pj / and degQ.Pj / D degR.Pj / D 1. Once more, we conclude
that Q acts injectively on Dj �Rj .Br .z0// for any 1 � j � n � 1.

The first part of Proposition 3.5 implies that each Dj � Rj .Br .z0// lies in E.Q/.
In order to show each ring is an analytic component, we need to prove that Q acts on
projective systems with degree larger than one.

Since the disk Dr .z0/ lies in E.R/, then R acts injectively on it. Thus, for any
projective system S0 associated to Dr .z0/, Lemma 2.9 shows that degR.S0/ D 1.
Consider the Mobius transformations  r ;  t 2 PGL.2;Cp/, where  r sends Dr .z0/
to D1.0/ while  t sends R.Dr .z0// D Dt .R.z0// to D1.0/. Recall that condition
degR.S0/ D 1 is equivalent to state that deg. QR�/ D 1, where R� D  t ı R ı  

�1
r

preserves the canonical projective system Sc associated to the canonical disk D1.0/.
In order to compute Q� and the degree of its reduction, first observe the image of

Dr .z0/ under both R and Q is a disk of radius t . Indeed, expression (3.3) implies that
for any z 2 Dr .z0/,

jQ.z/ �Q.z0/j D
jz � z0jjR.z/ �R.z0/j

jz � z0 � �j
D
jz � z0j

r
jR.z/ �R.z0/j:

As jz � z0j ! r , we obtain jQ.z/ � Q.z0/j ! jR.z/ � R.z0/j D t and thus
Q.Dr .z0// D Dt .Q.z0//. Thus, we define Q� D  t ıQ ı  �1r , and since Q.z0/ D
R.z0/, the expression of Q� becomes

Q�.z/ D
Q.rz C z0/ �Q.z0/

t
;

D
rz

rz � �

�
R.rz C z0/ �R.z0/

t

�
;

D

�
z

z � �=r

�
R�.z/:

The coefficients in parenthesis of the last identity belong to O� and deg. QR�/ D 1.
Thus, QQ� is a rational function of degree 2, and in particular, degQ.S0/ > 1. As every
end associated to Rj .Dr .z0// is periodic under Q with period n, then these ends are
fixed underQn. SinceQ is injective inD0�Br .z0/ and acts 2-to-1 over the ends of the
projective systems, there exist ends P0;P1 2 S0 such that Q.P0/ D Q.P1/. Similarly,
if Sj denotes a projective system associated toRj .Dr .z0// for each 0 < j � n�1, there
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exist P0;j ;P1;j 2 Sj such that Qn.P0;j / D Qn.P1;j /, and therefore degQn.Sj / > 1.
From Proposition 3.5, each Dj �Rj .Br .z0// is an analytical component of E.Qn/ and
hence, it is an analytical component of E.Q/ by Proposition 2.13. We conclude from
Theorem 3.1 that the collection

fDj �R
j .Br .z0//g

n�1
jD0

is an n-cycle of 1-Herman rings for Q.

4 Examples

We provide a couple of examples that realize the setting described in Theorem 3.8. The
first example considers a rational map R with a 2-cycle of Siegel disks fD0;D1g and
a point z0 2 D0 which is 2-periodic under R. In the second example, we show that
the periodicity condition imposed to z0 can be relaxed: indeed, we construct Q by
selecting a non-periodic point in D0 whose second iterate comes back to D0 without
being periodic.

General setting

Let p D 5 and consider R 2 C5.z/ defined by

R.z/ D
z2 � z=5

z2 � 1
; (4.1)

or in homogeneous coordinates

RŒX; Y � D Œ5X2 �XY; 5X2 � 5Y 2�;

with normalized polynomials. The reduction of R becomes QR.X; Y / D Œ�XY; 0�, that
is, R has bad reduction. A direct computation shows that the origin is a fixed point of R
with multiplier � D 1=5 and thus, repelling under the p-adic norm, as j1=5j D 5. From
Proposition 2.5, it follows that J.R/ is not empty.

A straightforward computation shows that R also has an indifferent 2-cycle at f1;1g.
Let us show the disks D1.1/ and D5.1/ WD fz j jzj > 5g [ f1g form a 2-cycle of
Siegel disks.
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For any z 2 D1.1/, it can be written as z D 1C ˛, with j˛j < 1. Then

jR.z/j D
jzjjz � 1=5j

jz � 1jjz C 1j
D
j1C ˛ C 1=5j

j˛jj2C ˛j
D

5

j˛j
> 5;

so in particular R sends D1.1/ into D5.1/. A similar computation shows that if
z 2 D5.1/, then jR.z/ � 1j D 5=jzj < 1, so D5.1/ maps into D1.1/. We claim
R2.D1.1// D D1.1/. Indeed, for z D 1C ˛, j˛j < 1,

jR2.z/ � 1j D

ˇ̌̌̌
.R.z//2 �R.z/=5

.R.z//2 � 1
� 1

ˇ̌̌̌
D

ˇ̌̌̌
�R.z/=5C 1

.R.z//2 � 1

ˇ̌̌̌
D

ˇ̌̌̌
�R.z/=5

.R.z//2

ˇ̌̌̌
;

D 5

ˇ̌̌̌
R.z/

.R.z//2

ˇ̌̌̌
D 5

ˇ̌̌̌
1

R.z/

ˇ̌̌̌
D 5

ˇ̌̌̌
z2 � 1

z2 � z=5

ˇ̌̌̌
;

D 5

ˇ̌̌̌
ˇ .1C ˛/2 � 1

.1C ˛/2 � 1C˛
5

ˇ̌̌̌
ˇ D 5j˛j

ˇ̌̌̌
2C ˛

.1C ˛/2 C 1=5C ˛=5

ˇ̌̌̌
D j˛j:

This computation shows that R2 does not expand or contract the norm in D1.1/, hence,
the collection fD1.1/;D5.1/g is a 2-cycle of Siegel disks for R. Under the conjugacy
of the automorphism '.z/ D 1=z we obtain

R'.z/ D ' ıR ı '�1.z/ D
5 � 5z2

5 � z
(4.2)

has a 2-cycle of Siegel disks fD1=5.0/;D1.1/g in Cp . Moreover, R' also has bad
reduction. Both R' and its cycle of Siegel disks satisfy the hypothesis of Theorem 3.8,
so we can proceed to construct Q 2 Cp.z/ with deg.Q/ D 3 that exhibits a 2-cycle of
1-Herman rings.

Example 1

Set D0 WD D1=5.0/;D1 WD D1.1/, let � D 25; r D 1=25 and z0 D 0, which is a
2-periodic point that lies in D0. The expression in (3.3) applied to R' defines the new
rational function

Q.z/ D
z

z � 25
.R'.z/ � 1/C 1;

D
5z3 � 30z C 125

.z � 25/.z � 5/
:
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Let us compute the image of the ball B1=25.0/ under R' . First, observe that z1 D
125 2 D1=25.0/. Set z2 D 0. Since R'.125/ D 651 and R'.0/ D 1, Lemma 3.6
implies that

1

25
D j650j D jR'.125/ �R'.0/j D

t

1=25
j125j D

t

5
:

Thus t D 1=5 and R' maps B1=25.0/ to B1=5.1/. Now, consider the rings

A
1=5

1=25
.0/ D fz 2 Cp j 1=25 < jzj < 1=5g D D0 � B1=25.0/;

and
A11=5.1/ D fz 2 Cp j 1=5 < jz � 1j < 1g D D1 � B1=5.1/:

Let us show these rings form a 2-cycle under Q. For any z 2 A1=5
1=25

.0/,

jQ.z/ � 1j D
ˇ̌̌ z

z � 25
.R'.z/ � 1/

ˇ̌̌
D

ˇ̌̌̌
z

z � 25
�
z � 5z2

5 � z

ˇ̌̌̌
;

D
jzj

jz � 25j
�
jzjj1 � 5zj

j5 � zj
D 5jzj:

On the other hand, for any z 2 A1
1=5
.1/, setting z D 1C ˛ with 1=5 < j˛j < 1,

jQ.z/j D
ˇ̌̌ z

z � 25
.R'.z/ � 1/C 1

ˇ̌̌
D

ˇ̌̌̌
z

z � 25
�
z � 5z2

5 � z
C 1

ˇ̌̌̌
;

D

ˇ̌̌̌
5z3 � 30z C 125

z2 � 30z C 125

ˇ̌̌̌
D

ˇ̌̌̌
5.1C ˛/3 � 30.1C ˛/C 125

.1C ˛/2 � 30.1C ˛/C 125

ˇ̌̌̌
;

D
j100 � 15˛ C 15˛2 C 5˛3j

j96 � 28˛ C ˛2j
D
j15˛j

j96j
D
j˛j

5
:

Therefore,

A
1=5

1=25
.0/

Q
�! A11=5.1/

Q
�! A

1=5

1=25
.0/;

and Q does not expand or contract the metric, as expected. Observe also that A1=5
1=25

.0/

(and henceA1
1=5
.1/) are maximal analytic components of quasiperiodicity: if we consider

a ring domain A1=5� .0/ with � < 1=25, then the pole at � must lie in its interior, so
Q.A

1=5
� .0// must contain a diskDı.1/ � P .Cp/ for some ı < 1. In particular, Q will

not longer be injective in A1=5� .0/, a contradiction with part (2) in Proposition 2.13.
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Example 2

Consider again R' as in (4.2) and p D 5. Here we stress that the periodicity condition
imposed on z0 can be relaxed: in order to construct Q, it is enough to select a non-
periodic point in a Siegel disk whose second iterate returns to the same disk.

Recall that the non-archimedean condition implies that any point in a disk is its center.
Thus, we now work with the disks

D0 WD D1=25.125/ D D1=25.0/ and D1 WD D1=5.651/ D D1=5.1/:

As D0 � D1=5.0/ and D1 � D1.1/, it is clear that R' acts injectively on these disks.
And from the previous example, R' maps D0 to D1, thus fD0;D1g forms a new 2-
cycle of Siegel disks for R' . Therefore, we can apply Theorem 3.8 and define a rational
function Q with � D 25, r D 1=25 and z0 D 125. Observe that in this case, z0 is not
longer 2-periodic since R'.125/ D 615 and R'.615/ D 3280 60

323
¤ 125. The new

rational map is given by

Q.z/ D
z � 125

z � 125 � 25
.R'.z/ � 651/C 651;

D
z � 125

z � 150
.R'.z/ � 651/C 651;

D
5z3 � 1276z2 C 83974z � 308600

150 � z
:

Then, the rings A1=5
1=25

.125/ D A
1=5

1=25
.0/ and A1

1=5
.651/ D A1

1=5
.1/ form a 2-cycle of

1-Herman rings for our new map Q. To verify this last statement, let z 2 A1=5
1=25

.125/,
so 1=25 < jz � 125j D jzj < 1=5. We have

jQ.z/ � 1j D

ˇ̌̌̌
z � 125

z � 150
.R'.z/ � 651/C 650

ˇ̌̌̌
;

D

ˇ̌̌̌
z � 125

z � 150

�
5 � 5z2

5 � z
� 651

�
C 650

ˇ̌̌̌
;

D

ˇ̌̌̌
z � 125

z � 150

�
�5z2 C 651z � 3250

5 � z

�
C 650

ˇ̌̌̌
;

D 5jzj;

since
ˇ̌
z�125
z�150

ˇ̌
D 1;

ˇ̌̌
�5z2C651z�3250

5�z

ˇ̌̌
D 5jzj and j650j D 1=25. On the other hand, if

z 2 A1
1=5
.651/ then 1=5 < jz� 651j D jz� 1j < 1. Set z D 1C˛ with 1=5 < j˛j < 1.
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Then

jQ.z/j D

ˇ̌̌̌
z � 125

z � 150
.R'.z/ � 651/C 651

ˇ̌̌̌
;

D

ˇ̌̌̌
.˛ � 124/

5 � 5.1C ˛/2

5 � 1 � ˛
� 16275

ˇ̌̌̌
;

D

ˇ̌̌̌
.˛ � 124/5˛.�2 � ˛/

4 � ˛
� 16275

ˇ̌̌̌
;

D
j˛j

5
;

since j˛ � 124j D j � 2 � ˛j D j4 � ˛j D 1; and j16275j D 1=25. We conclude again
that Q has a 2-cycle of 1-Herman rings.
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