THE LEBESGUE DIFFERENTIATION THEOREM VIA NONOVERLAPPING INTERVAL COVERS

Abstract

A short proof is given for the Lebesgue Differentiation Theorem using a variation of the Heine-Borel covering property, without reliance on sophisticated approaches such as Vitali covers and the rising sun lemma.

In this paper we use a variation of the Heine-Borel covering property to prove the theorem due to Lebesgue that every monotone function \(f : [a, b] \to \mathbb{R} \) is differentiable almost everywhere. The approach is more accessible than typical treatments that use Vitali covers, the rising sun lemma or other methods [1, 2, 3, 4, 5]. Throughout \(\lambda \) represents Lebesgue measure on the real line.

A family of nondegenerate compact intervals \(C \) is a right adapted interval cover of a set \(E \subseteq \mathbb{R} \) if for each \(x \in E \) there is an interval \([L(x), R(x)] \in C \) such that \(L(x) < x < R(x) \) and \([s, R(x)] \in C \) for all \(s \in [L(x), x] \). The term left adapted interval cover is defined similarly, and we refer to either of these as an adapted interval cover. We say that a family of compact intervals is nonoverlapping if the interiors of the intervals are pairwise disjoint.

Covering Lemma. If \(C \) is an adapted interval cover of a compact set \(K \subseteq \mathbb{R} \), then there is a finite collection of nonoverlapping intervals in \(C \) that covers \(K \).

Proof. Without loss of generality, suppose that \(C \) is right adapted. Let \(a = \min K \) and \(b = \max K \) and let \(A \) be the set of all \(t \in [a, b] \) such that \(C \) has a finite nonoverlapping subcover of \([a, t] \cap K \). Then \(a \in A \), so \(A \) is nonempty. Let \(\beta = \sup A \). We first show that \(\beta \in K \). Otherwise, \(\beta \) lies in a component \((c, d) \) of \([a, b] \setminus K \) and there is a finite collection \(D \) of nonoverlapping intervals in \(C \) that covers \([a, \beta] \cap K \). Then \(D \) can be modified by deleting extraneous

Key Words: Lebesgue differentiation theorem, interval cover, monotone function
Mathematical Reviews subject classification: Primary: 26A24; Secondary: 26A48
Received by the editors February 16, 2004
Communicated by: B. S. Thomson
intervals to the right of c and adding $[d, R(d)]$. This contradicts $\beta < d$, so $\beta \in K$.

Now let $t \in (L(\beta), \beta] \cap A$ and choose any finite nonoverlapping collection D of intervals in C that covers $[a, t] \cap K$. If $[r, s]$ is the right-most interval of D that contains t, then either $s \geq b$ in which case $b \in A$ as desired or $s \leq \beta$ and D can be modified to include $[s, R(\beta)]$. Then $\min\{R(\beta), b\} \in A$, which is impossible unless $b = \beta \in A$. \hfill \square

The key to the proof of the main theorem is a growth lemma for monotone functions in terms of Dini derivates. As usual, the upper right-hand Dini derivate is given by

$$D^+ f(x) = \inf_{\alpha > 0} \sup_{0 < h < \alpha} \frac{f(x + h) - f(x)}{h},$$

and the other derivates D_+, D_- and D_- are defined similarly. It is well known that the derivates of a monotone function are measurable.

Growth Lemma. Suppose that f is strictly increasing on $[a, b]$. Let C be the set of points in (a, b) at which f is continuous and let E be a Borel subset of C.

(a) For any Dini derivate D, if $Df(x) > q$ on E, then $\lambda(f(E)) \geq q\lambda(E)$.

(b) For any Dini derivate D, if $Df(x) < p$ on E, then $\lambda(f(E)) \leq p\lambda(E)$.

Proof. Part (a): The proofs for D^+ and D^- are similar and the other two cases are then consequences, so we proceed with D^+. Suppose that $D^+ f > q$ on a Borel set $E \subseteq C$. Since f is strictly increasing, $f(E)$ is Borel measurable. Let $\varepsilon > 0$, and choose a compact set $K \subseteq E$ and an open set $U \supseteq f(E)$ such that $\lambda(E \setminus K) < \varepsilon$ and $\lambda(U \setminus f(E)) < \varepsilon$.

Construct a right adapted interval cover C of K as follows. For each $x \in K$, f is continuous at x so there is an open interval $I \subseteq (a, b)$ about x such that $f(I) \subseteq U$. Choose a number $R(x) \in I$ satisfying $x < R(x)$ and

$$f(R(x)) - f(x) > q(R(x) - x).$$

Using continuity at x, choose $L(x) \in I$ such that $L(x) < x$ and

$$f(R(x)) - f(s) > q(R(x) - s)$$

whenever $L(x) \leq s \leq x$. Let

$$C = \{[s, R(x)] : x \in K, L(x) \leq s \leq x\}.$$
The Lebesgue Differentiation Theorem

955

Then \(C \) is a right adapted interval cover of \(K \), so there is a finite set of nonoverlapping intervals \(\{ [c_i, d_i] \}_{i=1}^n \) that covers \(K \) and associated points \(x_i \in K \) such that \(L(x_i) \leq c_i \leq x_i < d_i = R(x_i) \). The intervals \([f(c_i), f(d_i)] \) are also nonoverlapping and lie in \(U \). Then

\[
\lambda(f(E)) > \lambda(U) - \varepsilon \geq \lambda(\bigcup_{i=1}^n [f(c_i), f(d_i)]) - \varepsilon = \sum_{i=1}^n (f(d_i) - f(c_i)) - \varepsilon
\]

\[
> \sum_{i=1}^n q(d_i - c_i) - \varepsilon \geq q\lambda(K) - \varepsilon > q\lambda(E) - \varepsilon(1 + q).
\]

Thus, \(\lambda(f(E)) \geq q\lambda(E) \).

Part (b): Let \(\varepsilon > 0 \) and choose a compact set \(K \subseteq f(E) \) and an open set \(U \supseteq E \) such that \(\lambda(f(E) \setminus K) < \varepsilon \) and \(\lambda(U \setminus E) < \varepsilon \). Now \(K \) must have the form

\[
K = [f(\alpha_0), f(\beta_0)] \setminus \bigcup_i (f(\alpha_i), f(\beta_i))
\]

for some finite or countable set of points \(\alpha_i, \beta_i \in E \), so

\[
f^{-1}(K) = [\alpha_0, \beta_0] \setminus \bigcup_{i \geq 1} (\alpha_i, \beta_i)
\]

which is a closed subset of \(E \). This permits us to apply the above technique to \(f^{-1}(K) \) and \(U \) to show that \(\lambda(f(E)) \leq p\lambda(E) \).

The proof of the main theorem now follows from two consequences of the growth theorem. In the setting of the lemma, if

\[
A = \{ x \in C : Df(x) = \infty \}
\]

for any Dini derivate \(D \), then for any positive real number \(q \),

\[
f(b) - f(a) \geq \lambda(f(A)) \geq q\lambda(A).
\]

Thus \(\lambda(A) = 0 \), so that the Dini derivate of \(f \) are finite a.e. Second, all sets of the form

\[
B = \{ x \in C : D_+f(x) < p < q < D_-f(x) \}
\]

satisfy \(q\lambda(B) \leq \lambda(f(B)) \leq p\lambda(B) \) so that \(\lambda(B) = 0 \). That is, \(D^-f \leq D_+f \) a.e. and similarly \(D^+f \leq D_-f \) a.e. The case of a general monotone function follows from the strictly increasing case in standard fashion. Thus we have the

Lebesgue Differentiation Theorem. If \(f : [a, b] \to \mathbb{R} \) is monotone, then \(f \) is differentiable almost everywhere.
References

