We now study the self-adjoint subalgebras of C(X) for X a compact Hausdorff
space. We begin with the generalization due to Stone of the classical theorem
of Weierstrass on the density of polynomials. A subset I of C(X) is said to be
self-adjoint if f in 11 implies f is in 1.

2.40 Theorem. (Stone-Weierstrass) Let X be a compact Hausdorff space. If I
is a closed self-adjoint subalgebra of C(X) which separates the points of X and
contains the constant function 1, then I = C(X).

Proof If 11, denotes the set of real functions in 11, then 11, is a closed subalgebra
of the real algebra C;(X) of continuous functions on X which separates points and
contains the function 1. Moreover, proof of the theorem reduces to showing that
I, = C(X).

We begin by showing that f in 11, implies that | f| is in 11,. Recall that the binomial
series for the function p(#) = (1—1)1/2is Y 22 ) a,t", where a, = (—1)*( lflz). Itis
an easy consequence of the comparison theorem that the sequence {ZnN=O ant" 1%,
converges uniformly to ¢ on the closed interval [0, 1 — 3] for § > 0. (The sequence
actually converges uniformly to ¢ on [—1, 1].) Let f be in I1; such that || f|l ., < 1
and set gs = 8 + (1 — 8) f2 for § in (0, 1]; then 0 < 1 —gs <1 — 4. For fixed
§>0,sethy = YN  a,(1 — gs)". Then hy is in 11, and

N
|hy — )|, = sup goan(l - 8®)" — o(1 — g5(x))

N
Y ant" — )

n=0

< sup

t€f0,1-4]

Therefore, limy oo | An — (85)"/ Ilo0 = 0, implying that (gs)!/? is in UI;. Now
since the square root function is uniformly continuous on [0,1], we have lims_,q
I11— (5)'7|_, = 0, and thus | f] is in U,.

We next show that 1I, is a lattice, that is, for f and g in U, the functions f v g
and f A g are in ll,, where (f Vv g)(x) = max{f(x), g(x)}, and (f A g)(x) =
min{ f (x), g(x)}. This follows from the identities

fvg=5f+g+If—gl, and  fAg=3{f+g—If —2sl

which can be verified pointwise.

Further, if x and y are distinct points in X and a and b arbitrary real numbers, and
f is a function in U, such that f(x) # f(y), then the function g defined by
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f@)— fx)
f») - fx)

isin 11, and has the property that g(x) = a and g(y) = b. Thus there exist functions
in U, taking prescribed values at two points.

We now complete the proof. Take f in C;(X) and &£ > 0. Fix x, in X. For each x
in X, we can find a g, in U, such that g, (xo) = f(xo) and g, (x) = f(x). Since f
and g are continuous, there exists an open set U, of x such that &M =f+e
for all y in U. The open sets {U,}cex cover X and hence by compactness, there
is a finite subcover Uy,, Uy,, ..., U,,. Let hxy = 8x, A 8x; A --+ A gx,. Then hy,
isin Uz, hyy(x0) = f(x0), and hyy(y) < f(y) + & for y in X.

Thus for each xy in X there exists hy, in U; such that hyy(x0) = f(x0) and
hx(¥) < f(y) + ¢ for y in X. Since h,, and f are continuous, there exists an
open set V,, of xo such that h,,(y) > f(y) — & for y in Vxo- Again, the family
{Vxo}xoex covers X, and hence there exists a finite subcover Viir Vigs o005 Vi, IE
wesetk =hy,V hy,V---Vh, ,thenkisinl, and f(y)—¢& <k(y) < f(y)+¢
for y in X. Therefore, || f — k||, < € and the proof is complete. ]

g@)=a+(b—a)
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13.3 THE STONE-WEIERSTRASS THEOREM

Theorem 4. Let S be a compact Hausdorff space, C(S) the set of all real-valued
continuous functions on S. Let E be a subalgebra of C(S), that is,

(i) E is alinear subspace of C(S).
(ii) The product of two functions in E belongs to E.

In addition we impose the following conditions on E:

(iii) E separates points of S, that is, given any pair of points p and q, p # q, there
is a function f in E such that f(p) # f(q).
(iv) All constant functions belong to E.

Conclusion: E is dense in C(S) in the maximum norm.

The classical Weierstrass theorem is a special case of this proposition, with S an
interval of the x axis, and E the set of all polynomials in x. 'We present Louis de
Branges’s elegant proof, based on the Krein-Milman theorem, of Stone’s generaliza-
tion of the Weierstrass theorem.
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THE STONE-WEIERSTRASS THEOREM 127

Proof. According to the spanning criterion, theorem 8 of chapter 8, E is dense in
C(S) if the only bounded linear functional £ on C(S) that is zero on E is the zero
functional. According to the Riesz-Kakutani representation theorem, theorem 14 of
chapter 8, the bounded linear functionals on C(S) are of the form

40p) =/Sfdv,

v a signed measure of finite total variation ||v|| = f |dv]. So what we have to show
is that if [ fdv =0forall fin E,v =0.

Suppose not; denote by U the set of signed measures of finite total mass is < 1
that annihilate all functions in E. This is a convex set, and according to Alaoglu’s
theorem, theorem 3 in chapter 12, compact in the weak™ topology. So according to
the Krein-Milman theorem, if U contained a nonzero measure, it would contain a
nonzero extreme point; call it ;. Since u is extreme, || || = 1. Since E is an algebra,
if f and g belong to E, so does gf. Since u annihilates every function in E,

/ (fg)du =0.

It follows that the measure gd i also annihilates every function in E.
Let g be a function in E whose values lie between 0 and 1:

0<g(p) <1 forall pin S.

Denote
a=|gul =/gldul, b=1-gul =/(1 —-gldu.

Clearly a and b are positive. Add them:

a+b=/|du|=1.
The identity

1-—
R TR Y

a b
represents u as a nontrivial convex combination of gy /a and (1 —g)u /b, both points
in U. Since u is an extreme point, £ must be equal to gu/a.

Define the support of the measure u to be the set of points p that have the property
that fN |du| > 0O for any open set N containing p. If u = gu/a, it follows that g
has the same value at all points of the support of w.

We claim that the support of 1 consists of a single point. To see this, suppose that
both p and g, p # ¢, belong to the support w. Since the functions in E separate
points of S, there is a function 4 in E, h(p) # h(g). Adding a large enough constant
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128 LOCALLY CONVEX TOPOLOGIES AND THE KREIN-MILMAN THEOREM

to h and dividing it by another large constant, we obtain a function g whose values
lie between O and 1, and g(p) # g(g). This contradicts our previous conclusion.

A measure ¢ whose support consists of a single point p, and ||[u|| = 1, is a unit
point mass at p. Therefore

f fdu = F(p)or — F(p).

Since, by hypothesis, the constant 1 belong to E, [ fdu # O for f = 1inE, a
contradiction. O


jabba
Highlight




