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Notations and conventions

• R and C are the set of real and complex numbers, respectively.

• (x, y, z), (r, ϕ, z), and (R, θ, ϕ) are, respectively, the cartesian, cylindrical, and spherical
coordinates, defined in Section 2.2.

• All functions, unless otherwise stated, are smooth, namely, all partial derivatives exist.

• In computing the electromagnetic fields or potentials at the field position
−→
R , caused

by sources situated at the volume spanned by source position vector
−→
R ′, we set

−→
R 0 =

−→
R ′ −

−→
R, R0 =

∣∣∣−→R 0

∣∣∣ , R =
∣∣∣−→R ∣∣∣ , R′ =

∣∣∣−→R ′0∣∣∣ , R̂0 =

−→
R 0

R0

.

For example, the electrostatic field E at the point
−→
R caused by a charge density

distribution ρ is given by

E(
−→
R ) =

1

4πε0

ˆ
R̂0

R2
0

ρ(
−→
R ′)dV.

• ∇, ∇·, ∇×, ∇2 = ∆, �, �·, �2 are differential operators introduced in Section 2.4,
formula (5.8), and Section 5.4.

• The tilde is used to denote the Fourier transform

f̃ (ω) = F (f (t)) =
1√
2π

ˆ
R
f (t) e−

√
−1ωtdt,

f (t) = F−1
(
f̃ (ω)

)
=

1√
2π

ˆ
R
f̃ (ω) e

√
−1ωtdω.
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Chapter 1

What is this course about?

Motion is due to inertia (mass) and force, according to the Newton’s laws of motion. So
far, four fundamental forces have been identified in nature, and this course is about one
of them: the electromagnetic force.1 Putting gravity aside, the electromagnetic force
is responsible for practically all motion phenomena one encounters in daily life above the
nuclear scale. The study of this force, its creation and effects is called electromagnetics.

The electromagnetic force is attributed to electric and magnetic fields according
to the Lorentz law

F = qE + qv ×B. (1.1)

Here, F is the electromagnetic force (measured in Newton, N) applied on a point electric
charge q (measured in Coulomb, C) moving with velocity v (measured in meter per
second, m/s), E is the electric field strength (measured in volt per meter, V/m), B
is the magnetic flux density (measured in Weber per meter squared, Wb/m2), and
× stands for the cross product of vectors in R3. At each point of space and each time,
E,B are vector quantities. There are two other electric and magnetic fields: Electric
flux density D (measured in Coulomb per meter squared, C/m2) and magnetic field
strength H (measured in Ampere per meter, A/m). The microscopic nature of the
substance (or matter or medium) under study gives the constitutive relations:

D = εE, B = µH.

Here, ε (permittivity, measured in Farad per meter, F/m) and µ (permeability, mea-
sured in Henry per meter, H/m) are tensors (3× 3 matrices) in general, but they are just
scalars for many different substances. For example, in vaccum:

ε = ε0 = 8.85× 10−12 F

m
, µ = µ0 = 4π × 10−7 H

m
.

Electric and magnetic fields are themselves caused by electric charges and their mo-
tion. (Magnetic charges have not yet been detected in nature.) The motion of charge
creates current (measured in Ampere, A). Electric charge like mass is a fundamental
property of matter, and at the moment we want to assume:

1Other fundamental forces are the strong nuclear force, the weak nuclear force, and the gravitational
force [Fey, Volume II, Chapter 1].
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• There are two kinds of charge, positive and negative. Neglecting nuclear phenom-
ena, the negative (respectively, positive) charge of a matter is due to its excess
(respectively, loss) of electrons. All electrons have the same negative charge of
1.6× 10−19 Coulombs.

• Two charges of the same (respectively, opposite) signs repel (respectively, attract)
each other.

• It is not possible to create or annihilate charges, but they just move from one place
to another. This is called the principle of the conservation of charge.

Although the electric and magnetic fields generated by (moving) charges are given
by complicated formulas, the space variation of these fields can be concisely given in
the language of vector calculus: All classical, as opposed to quantum, electromagnetic
phenomena are governed by Maxwell’s equations

∇ ·D = ρ, ∇ ·B = 0, ∇× E = −∂B
∂t
, ∇×H = J +

∂D

∂t
, (1.2)

accompanied by the continuity equation:

∇ · J +
∂ρ

∂t
= 0. (1.3)

Here, ρ is the volume electric charge density (namely, the amount of charge per
unit volume, measured in coulomb per meter cubed), J is the volume electric current
density (namely, the amount of charge passing per unit time through per unit area of
the surface perpendicular to the flow direction, measured in ampere per meter squared),
· stands for the dot product of vectors, and ∇ (nabla) is the differential operator x̂∂/∂x+
ŷ∂/∂y + ẑ∂/∂z. (Vector calculus is reviewed in Chapter 2. Refer to Example 7 for the
derivation of (1.3).) These equation are supposed to be satisfied at every point in space
at all times. They express how the electric and magnetic field interact with themselves
and with electric charge density and current. These equations are behind the analysis
and design of all (classical) electromagnetic devices such as electric circuits, antennas,
microwave waveguides, optical tools, electricity generators and transmission lines, etc. In
this course, we learn about the meaning of these equations and the way they are used
for the analysis and design of electromagnetic devices. Mathematics and physics are
interwoven in this study. For pedagogical reasons, we develop our study at several levels
in increasing order of difficulty:

• Electrostatics (Chapter 3): Motionless electric charges. Here, there are no magnetic
effects, and E,D are time-independent and enough to develop the theory.

∇ ·D = ρ, ∇× E = 0, B = 0, H = 0.

• Magnetostatics (Chapter 4): Electric charges move, but we have steady (namely, time-
independent) electric current. Here, again, E,D,B,H are time-independent.

∇ ·D = ρ, ∇ ·B = 0, ∇× E = 0, ∇×H = J.
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• Electrodynamics (Chapter 5): General case. Time-varying electric and magnetic fields
are coupled (namely, each one produce the other), and under certain conditions produce
electromagnetic waves that radiate energy from the source to other points of space.

∇ ·D = ρ, ∇ ·B = 0, ∇× E = −∂B
∂t
, ∇×H = J +

∂D

∂t
.

Since motion2 is a relativistic notion, special relativity considerations should be taken
into account in electromagnetics: What we call an electric field in one reference frame
must be interpreted as a magnetic field in another. As we will see in Chapter 5, this implies
that electricity and magnetism are two sides of the same coin: electromagnetism.

Remark 1. The international system of units (SI) has seven fundamental units: meter
(m) for length, second (s) for time, kilogram (kg) for mass, ampere (A) for electric
current, kelvin (K) for temperature, mole (mole) for amount of substance, and candela
(cd) for luminous intensity. All the other units can be determined in terms of these
seven. Specially in electromagnetics, coulomb is A · s, volt is joule per coulomb (namely
kg · m2 · s−3 · A−1), farad is coulomb per volt, weber is volt · s, and henry is weber per
ampere.

Exercise: Compute 1/
√
ε0µ0. Find its unit according to the information given in

Remark 1. Is it a familiar quantity?
In Maxwell’s equation, one is tempted to look at ρ, J as causes (source variables), and

E,D,B,H as effects (field variables). However, the formation of electromagnetic fields
affects the distribution of charges, hence changes the field variables. This shows that
cause and effect are interwoven in a real electromagnetic problem. In fact, there are few,
idealized, carefully-designed electromagnetic problems which can be solved completely. In
practical engineering problems, one uses simulator softwares (like HFSS, FEKO, Momen-
tum, CST Studio Suite, etc.) to solve electromagnetic problems numerically. However,
the intuition that is gained by solving a simple, idealized electromagnetic problem is
excessively valuable for physicists and electrical engineers. We encounter many such
problems in this course.

Exercise: We will learn in Chapter 4 that electric currents flowing in wires produce
magnetic fields. On the other hand, equation (1.1) shows that magnetic fields exert force
on moving charges. Having these two facts in mind, find the definition of ampere in SI
system of units.

Exercise: Find the name of the underlying numerical mathematics method used in
one of the simulator softwares mentioned above.

At the end, I highly suggest reading the Feynman’s masterful introduction to electro-
magnetics [Fey, Volume II, Chapter 1].

2Motion as referred to the classification of the subject into electrostatics, magnetostatics, and elec-
trodynamics, or the velocity vector v in the Lorentz law force.
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Chapter 2

Vector calculus

2.1 Vectors

Those physical quantities (like mass, length, time, electric charge, energy) which does
not change under the rotation of the coordinate system (observer) with respect to it
the quantity is measured are called scalars. Vectors are those quantities (like force,
velocity, momentum, electric and magnetic field intensities) which under the rotation of
the coordinate system change exactly the same way as the position vector changes. More
precisely, a vector A in each cartesian coordinate system xyz is given by a 3-tuple of real
numbers (A1, A2, A3), which is related to the 3-tuple (A′1, A

′
2, A

′
3) in the rotated cartesian

system x′y′z′ by the following linear equations1:

Exercise: Write the equations of the change of components of a vector with two
components when the coordinate system rotates by the angle ϕ in the counterclockwise
orientation. (Answer. x = cosϕx′ − sinϕy′, y = sinϕx′ + cosϕy′.)

The best way to represent a vector is by an arrow in space, which clearly shows the
analogy of vectors with displacement. Also, we use a scale such that one unit of our

1Scalar and vectors are tensors of rank 0 and 1, respectively. Refer to [Fey, Volume I, Chapter 11],
[Fey, Volume II, Chapter 31], [AW, Sections 3.4, 4.1], or [Tai, Sections 1.3–4] for a complete discussion.
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vector corresponds to a certain convenient length. The magnitude and direction of the
vector A is denoted by |A| and Â, respectively. Two vector are the same if they have the
same magnitude and direction, or equivalently, if they have the same components in one
(hence all) coordinate systems. The vector with all three components zero is denoted by
0. Vectors of unit magnitude are called unit vectors.

We have several operations on vectors:

• The scalar product aA of a scalar a and a vector A is a vector whose magnitude
equals |a||A|, and its direction is the direction of A if a > 0, and the reverse of the
direction of A if a < 0. Clearly, 0A = 0, 1A = A, and a(bA) = (ab)A.

• The addition and subtraction of two vectors is a vector obtained by the parallelogram
law:

Clearly,
A+ 0 = 0,

A+B = B + A, A+ (B + C) = (A+B) + C,

a(A+B) = aA+ aB, (a+ b)A = aA+ bA.

With respect to a cartesian coordinate system, one can decompose a vector into its
components:

A = Axx̂+ Ayŷ + Az ẑ.

Here, x̂ is the dimension-less vector of unit magnitude in the direction of x-axis; simi-
larly for ŷ, ẑ. In terms of components, we have

|A| =
√
A2
x + A2

y + A2
z,

Â =
A

|A|
=

Ax√
A2
x + A2

y + A2
z

x̂+
Ay√

A2
x + A2

y + A2
z

ŷ +
Az√

A2
x + A2

y + A2
z

ẑ,

aA = aAxx̂+ aAyŷ + aAz ẑ,

A±B = (Ax ±Bx)x̂+ (Ay ±By)ŷ + (Az ±Bz)ẑ,

where B = Bxx̂+Byŷ +Bz ẑ.

• The dot (or inner) product A · B of two vectors A,B is the scalar given by the
magnitude of A times the magnitude of B times the cosine of the angle between the
direction of A and B. Equivalently,

A ·B = AxBx + AyBy + AzBz. (2.1)
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Clearly,
|A| =

√
A · A,

and two vectors are orthogonal exactly when their dot product vanishes.

Exercise: Using (2.1), show that A · B is a scalar. (Hint. Assume that A,B are in
the xoy-plane, and then rotate the xoy-system to another x′oy′-system. Note that
any rotation can be written as the composition of three rotations around the axes of
coordinate systems, namely Euler angles.)

Exercise: Using the first definition of dot product, prove that

A ·B = B · A,

A · (B + C) = A ·B + A · C. (2.2)

Then, use (2.2) to deduce (2.1).

Exercise: Assuming (2.2), prove the law of cosines in triangles. (Hint. |A − B|2 =
(A−B) · (A−B) = A · A− 2A ·B +B ·B = · · · .)

• The cross product A × B of two vectors A,B is the vector whose magnitude is the
magnitude of A times the magnitude of B times the sine of the (smaller) angle between
the direction of A and B (this equals the area of the parallelogram spanned by A,B),
it is perpendicular to both A,B, and its direction follows that of the thumb of the
right hand when the other fingers rotate from A to B (through the smaller angle).
Equivalently,∣∣∣∣∣∣

x̂ ŷ ẑ
Ax Ay Az
Bx By Bz

∣∣∣∣∣∣ = (AyBz − AzBy)x̂− (AxBz − AzBx)ŷ + (AxBy − AyBx)ẑ. (2.3)

Exercise: Using (2.3), show that A×B is a vector.

Exercise: Prove that
A×B = −B × A,

A× (B + C) = A×B + A× C. (2.4)

Exercise: Assuming (2.4), deduce (2.3) from the first definition of the cross product.

• The scalar triple product of three vectors A,B,C:

A · (B × C) =

∣∣∣∣∣∣
Ax Ay Az
Bx By Bz

Cx Cy Cz

∣∣∣∣∣∣ . (2.5)

Exercise: Prove that in the scalar triple product, · and × may be freely interchanged
so long as A,B,C remain in cyclic order, namely

A · (B × C) = (A×B) · C
= B · (C × A) = C · (A×B).

Exercise: Show that |A · (B × C)| equals the volume of the parallelepiped spanned by
A,B,C.
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• The vector triple product of three vectors A,B,C:

A× (B × C) = (C · A)B − (B · A)C.

This is called the “CAB minus BAC” rule.

Exercise: Prove that

(A×B)× C = (A · C)B − (B · C)A.

Exercise: Prove that

(A×B) · (C ×D) = (A · C)(B ·D)− (A ·D)(B · C),

(A×B)× (C ×D) = (A · C ×D)B − (B · C ×D)A = (A ·B ×D)C − (A ·B × C)D.

Exercise: (a) Assume three vectors A,B,C such that A is nonzero. Prove that if
A · B = A · C and A × B = A × C, then B = C. (b) Let A be a nonzero vector.
Determine a formula for vector X is A · X and A × X is known. (Hint. (a) Assume
A = x̂. (b) Write X = aA+ bA× (A×X), and then determine scalars a, b.)

2.2 Cylindrical and spherical coordinate systems

Since the laws of electromagnetism is written in the vector analysis language (recall
Maxwell’s equations), they are invariant under the translation and rotation of coordinate
systems. However, in order to numerically solve a specific problem, one coordinate system
might be preferable to the others, depending on the symmetry of the geometry of the sit-
uation. We start by explaining the notion of a right-handed, orthogonal, curvilinear
coordinate system (u1, u2, u3), most important examples being the cartesian (x, y, z),
cylindrical (r, ϕ, z), and spherical (R, θ, ϕ) coordinate systems. (ϕ and θ are called polar
and azimuth angles, respectively.)

Here,

• Coordinate system means that there is a one-to-one correspondence between the points
of space and 3-tuples of real numbers (u1, u2, u3), each ui ranging on some specific set
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of values. For example, all points of the space, except the points on the z-axis, can be
given unique cylindrical coordinates with

0 < r <∞, 0 ≤ ϕ < 2π, −∞ < z <∞;

also unique spherical coordinates with

0 < R <∞, 0 < θ < π, 0 ≤ ϕ < 2π.

At each point (u1, u2, u3), let û1 be the dimension-less vector of unit magnitude, or-
thogonal to the surface of constant u1, which points to the direction where u1 increases;
similarly, define û2, û3.

• Orthogonal means that at each point, the unit vectors û1, û2, û3 are mutually orthogonal
to each other. Right-handed (in the presence of orthogonality) means û1 × û2 = û3. If
so, then û2 × û3 = û1, û3 × û1 = û2.

• Curvilinear means that the unit vectors û1, û2, û3 might change when the point changes.

The good news is that assuming such a system, any vector can be represented (at any
point) by three real numbers, called its components:

A = A1û1 + A2û2 + A3û3

= (A · û1)û1 + (A · û2)û2 + (A · û3)û3.

Especially, the position vector
−→
R is given by:

−→
R = xx̂+ yŷ + zẑ = rr̂ + zẑ = RR̂.

We have the following relations among different coordinates:

x = r cosϕ, y = r sinϕ,

r =
√
x2 + y2, ϕ = tan−1 y

x
,

x = R sin θ cosϕ, y = R sin θ sinϕ, z = R cos θ,

R =
√
x2 + y2 + z2, θ = tan−1

√
x2 + y2

z
, ϕ = tan−1 y

x
.

Note that:

r̂ =
∂
−→
R

∂r
= cosϕ x̂+ sinϕ ŷ,

ϕ̂ = − sinϕ x̂+ cosϕ ŷ =
∂r̂

∂ϕ
,

R̂ =
∂
−→
R

∂R
= sin θ cosϕ x̂+ sin θ sinϕ ŷ + cos θ ẑ,

θ̂ = cos θ cosϕ x̂+ cos θ sinϕ ŷ − sin θ ẑ =
∂R̂

∂θ
.

Exercise: The formulas (2.1), (2.3), (2.5) remain valid for every right-handed, orthog-
onal, curvilinear system.

Exercise: Write x̂ is terms of R̂, θ̂, ϕ̂. (Hint. x̂ = (x̂ · R̂)R̂ + (x̂ · θ̂)θ̂ + (x̂ · ϕ̂)ϕ̂.)
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2.3 Infinitesimals and their integral

Suppose a point P , given by the placement (or position) vector
−→
R , with coordinates

(u1, u2, u3) given in a right-handed, orthogonal system. When u1 changes infinitesimally

to u1 + du1, then
−→
R changes infinitesimally to

−→
R + h1du1û1, where h1 is a function

of u1, u2, u3. Similarly h2, h3 can be defined. They are called metric coefficients.

If (u1, u2, u3) changes infinitesimally to (u1 + du1, u2 + du2, u3 + du3), then
−→
R changes

infinitesimally to
−→
R + d

−→
R given by

d
−→
R = h1du1û1 + h2du2û2 + h3du3û3, (2.6)

This latter quantity is called the infinitesimal displacement, and the notation
−→
dl is

also used for it. For example,

−→
dl = dxx̂+ dyŷ + dzẑ

= drr̂ + rdϕϕ̂+ dzẑ

= dRR̂ +Rdθθ̂ +R sin θdϕϕ̂.

The magnitude of
−→
dl , called the infinitesimal length, is given by

dl =
√

(h1du1)2 + (h2du2)2 + (h3du3)2.

The volume of the parallelepiped spanned by h1du1û1, h2du2û2, h3du3û3, called the
infinitesimal volume, is given by

dV = h1h2h3du1du2du3.

When u1 is fixed, and u2, u3 vary infinitesimally, the area spanned by h2du2û2, h3du3û3,
called the infinitesimal area, is given by

dS1 = h2h3du2du3.

The corresponding infinitesimal surface

−→
dS1 = h2du2û2 × h3du3û3 = h2h3du2du3û3, (2.7)

has magnitude dS1, and is perpendicular to the constant u1 surface; similarly for
−→
dS2,

−→
dS3.

In electromagnetics, we need to integrate different infinitesimals:
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• Line integrals of:

fdl, f
−→
dl , Adl, A ·

−→
dl , A×

−→
dl .

• Surface integrals of:

fdS, f
−→
dS, AdS, A ·

−→
dS, A×

−→
dS.

• Volume integrals of:
fdV, AdV.

Here, f (respectively, A) is a scalar field (respectively, vector field), namely, a
scalar-valued (respectively, vector-valued) quantity which varies on space; for example,
the temperature distribution of a room (respectively, the force applied to some particle).
The meaning of these integrals should be clear from your experience with the basic
differential and integral calculus. (Refer to [Tho, Chapter 16] or [Apo, Chapters 10-12]
for a complete development.) For example,

´
C
fdl (C a curve) is defined as the limit

of the Riemann sum
∑
f∆l as max ∆l → 0, where ∆l =

√
(∆x)2 + ∆y)2 + ∆z)2 is the

distance between two successive partition points of C. Also,
´
S
A ×

−→
dS (S an oriented

surface) is defined as the limit of the Riemann sum
∑
A×
−→
∆S as max |

−→
∆S| → 0. Here,

the surface S being oriented means that a smooth distribution of unit normal vectors n̂

is defined on S.2 Then,
−→
∆S has the same direction as n̂, and its magnitude is the area of

a small partition patch of S. In computing these integrals, one should fulfill the following
steps in order to reduce the integral into (sums of) single, double, or triple integrals

ˆ
f(x)dx,

¨
f(x, y)dxdy,

˚
f(x, y, z)dxdydz.

1. Choose an appropriate coordinate system. In this course, these are cartesian, cylin-
drical, or spherical coordinates.

2. Write the integrand in terms of fundamental infinitesimals: dx, dy, dz, dr, dϕ, dR, dθ.

3. Parametrize the curve C (with one parameter), surface S (with two parameters),
or volume V (with three parameters) where integration is taken on.

Example 2. Let us compute the integral I :=
´
A ×
−→
dS for the vector field A = e−RR̂

on that part of the cone z =
√
x2 + y2 which lies in the first octant. The cone is given

by θ = π/4 in spherical coordinates. The integrand is

A×
−→
dS = e−RR̂×R sin θdRdϕθ̂ = Re−R sin θdRdϕ(− sinϕx̂+ cosϕŷ).

The integration over 0 ≤ R ≤ ∞, 0 ≤ ϕ ≤ π/2 gives I = (−x̂+ ŷ)/
√

2. �
2There are surfaces (most notably, the Möbius band) with no such distribution, but we do not consider

them in this course.
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Remark 3. In this course, we almost always have curves and surfaces given by constant
coordinates in cartesian, cylinderical, or spherical coordinates, so (2.6) and (2.7) are used.
In general, if we move along a curve parametrized by the position vector

−→
R =

−→
R (t) = x(t)x̂+ y(t)ŷ + z(t)ẑ,

then the displacement infinitesimal is given by

−→
dl =

∂
−→
R

∂t
dt =

(
dx

dt
x̂+

dy

dt
ŷ +

dz

dt
ẑ

)
dt.

If we have a surface paved by the position vector

−→
R =

−→
R (u, v) = x(u, v)x̂+ y(u, v)ŷ + z(u, v)ẑ,

then the infinitesimal surface is given by

−→
dS =

∂
−→
R

∂u
× ∂
−→
R

∂v
dudv =

∣∣∣∣∣∣
x̂ ŷ ẑ
∂x
∂u

∂y
∂u

∂z
∂u

∂x
∂v

∂y
∂v

∂z
∂v

∣∣∣∣∣∣ dudv.
Exercise: Find

´
A·
−→
dl for A = x2y3x̂+ ŷ+zẑ along the curve made by the intersection

of the cylinder x2 + y2 = 4 and the hemisphere x2 + y2 + z2 = 16, z > 0, paved
counterclockwise when viewed from above (z = +∞).

2.4 Differentials of scalar and vector fields

Remember from elementary calculus that the derivative f ′(x) = df/dx of a function
f : R → R measures the rate of change of f with respect to its variable x. This section
introduces differential operators which measure different aspects of space variations of
scalar f : R3 → R as well as vector fields A : R3 → R3.

2.4.1 Gradient of a scalar field

Assume a scalar field f . We want to measure the rate of change of f(P ) as the point P

moves infinitesimally to P +
−→
dl . We describe two equivalent approaches:

• Coordinate-dependent approach. By Taylor’s expansion

df = fxdx+ fydy + fzdz = (gradf) ·
−→
dl ,

where
gradf := fxx̂+ fyŷ + fz ẑ

is called the gradient of f . One can pretend that gradf is obtained by exerting the
differential operator

∇ := x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
,
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called nabla (or del), on f , hence, we have the notation

gradf = ∇f.

The same sort of computations in an orthogonal coordinate system (u1, u2, u3) shows
that

∇f =
1

h1

fu1û1 +
1

h2

fu2û2 +
1

h3

fu3û3.

Therefore,

∇ ≡ û1
∂

h1∂u1

+ û2
∂

h2∂u2

+ û3
∂

h3∂u3

. (2.8)

Note that the equation df = gradf ·
−→
dl clearly shows that gradf is a vector field.

• Coordinate-free approach. Draw the constant f surface passing through P = P1. Fix
df , and also draw the constant f +df surface. Let P2 and P3 be points on the constant

f + df surface such that
−−→
P1P2 =

−→
dn is orthogonal to the constant f surface, and−−→

P1P3 =
−→
dl is some arbitrary infinitesimal.

Since df is assumed to be fixed, the computations

df

dl
=
df

dn

dn

dl
=
df

dn
cosα ≤ df

dn
,

df =
df

dl
dl =

df

dn
n̂ · d̂l dl =

df

dn
n̂ ·
−→
dl

shows that the vector

∇f =
df

dn
n̂

represents both the magnitude and the direction of the maximum space rate of the
change of f . Always remember: The gradient of f is orthogonal to the constant f
surface.

Exercise 4. Prove that ˆ P2

P1

∇f ·
−→
dl = f(P2)− f(P1), (2.9)

where the integral is taken over an arbitrary curve starting from point P1 and ending in
point P2.
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2.4.2 Divergence of a vector field

Assume a vector field A. Let S be an oriented surface, namely, there exists a smooth
distribution of unit normal vector n̂ on S. The quantity

ˆ
S

A ·
−→
dS,

where
−→
dS = n̂dS, is called the flux of A passing through S. The flux density of A at a

point can be measured by the scalar

divA := lim
∆V→0

¸
σ
A ·
−→
dS

∆V
, (2.10)

called the divergence of A.3 Here, σ is a small closed, oriented surface (like a cube,
cylinder, or sphere) around our point of interest, ∆V is the volume of the solid enclosed

by σ, and n̂ (in
−→
dS = n̂dS) is taken to be outwards.

Theorem 5. In cartesian coordinates A = Axx̂+ Ayŷ + Az ẑ, we have

divA =
∂Ax
∂x

+
∂Ay
∂y

+
∂Az
∂z

. (2.11)

More generally, in any orthogonal, curvilinear coordinates A = A1û1 + A2û2 + A3û3, we
have

divA =
1

h1h2h3

(
∂

∂u1

(h2h3A1) +
∂

∂u2

(h1h3A2) +
∂

∂u3

(h1h2A3)

)
.

Proof. In the definition (2.10), let σ be a cube of side lengths dx, dy, dz, with faces parallel
to yoz, xoz, xoy planes, and centered at our point of interest (x0, y0, z0). The flux passing
through the front face x = x0 + dx/2 equals

A(x0 + dx/2, y0, z0) · dydzx̂ = Ax(x0 + dx/2, y0, z0)dydz,

and the flux passing through the back face x = x0 − dx/2 equals

A(x0 − dx/2, y0, z0) · (−dydzx̂) = −Ax(x0 − dx/2, y0, z0)dydz.

These, add up to

Ax(x0 + dx/2, y0, z0)dydz − Ax(x0 − dx/2, y0, z0)dydz =
∂Ax
∂x

(x0, y0, z0)dxdydz.

After dividing by dV = dxdydz, and taking the limit σ → 0, we get the first summand
∂Ax/∂x in (2.11). Other summands appear similarly by integrating over the remaining
four faces. The general coordinate system case is proved similarly. �

3A justification for this appellation is given in [Lee, Page 422].
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The formula (2.11) justifies the notation

divA = ∇ · A.

For any oriented, closed surface S enclosing volume V , we have the divergence
theorem: ˛

S

A ·
−→
dS =

ˆ
V

∇ · A dV. (2.12)

Here,
−→
dS is pointing outwards. This formula can be proved by partitioning V into small

volumes ∆V , and summing up all the definition equations
¸
A ·
−→
dS = divA dV [Che,

Section 2.8].

Example 6. Let us verify the divergence theorem for the vector field

A := 4xx̂− 2y2ŷ + z2ẑ,

on the region bounded by x2+y2 = 4, z = 0, and z = 3. The divergence of A is 4−4y+2z,
and the infinitesimal volume is rdrdϕ4dz, so

ˆ
∇ · A dV =

ˆ 2

r=0

ˆ 2π

ϕ=0

ˆ 3

z=0

(4− 4r sinϕ+ 2z)rdrdϕdz = 84π.

The flux is the sum of three surface integrals

ˆ
upper lid

A ·
−→
dS =

ˆ
A · dxdyẑ =

ˆ
z2dxdy =

ˆ
9dxdy = 36π,

ˆ
lower lid

A ·
−→
dS =

ˆ
A · dxdyẑ =

ˆ
z2dxdy = 0,

and

ˆ
peripherical cylinder

A ·
−→
dS =

ˆ
A · 2dϕdzr̂ =

ˆ
2(4xx̂ · r̂ − 2y2ŷ · r̂)dϕdz

=

ˆ 2π

ϕ=0

ˆ 3

z=0

2(4r cos2 ϕ− 2r2 sin3 ϕ)dϕdz = 48

ˆ 2π

0

(cos2 ϕ− sin3 ϕ)dϕ = 48π.

Therefore, the total flux equals 36π + 48π = 84π. �
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Example 7. Assume a fixed volume U ⊆ R3, with boundary S. The amount of the
electric charge inside U is given by Q =

´
U
ρdV , where ρ is the volume electric charge

density. The time rate of the change of Q, according to the principle of the conservation
of electric charges, is due to the passage of charges through the boundary, and is given by

−
¸
S
J ·
−→
dS, where J is the volume electric current density. (By definition, J is a vector

pointing to the flow of charge, and its magnitude is the amount of charge passing per unit
time across per unit area of the surface perpendicular to the flow of charge.) Therefore,

ˆ
U

∂ρ

∂t
dV =

d

dt

ˆ
U

ρdV = −
˛
S

J ·
−→
dS = −

ˆ
U

∇ · JdV.

This proves the continuity equation ∇ · J = −∂ρ/∂t, first appeared in (1.3). �

Exercise: Find the divergence of the position vector field A =
−→
R in three cartesian,

cylindrical, and spherical coordinate systems.
Exercise: Derive the formula for divergence in cylindrical coordinates in two ways: (a)

Using (5). (b) Applying ∇ ≡ r̂ ∂
∂r

+ ϕ̂ ∂
r∂ϕ

+ ẑ ∂
∂z

to A = Arr̂ + Aϕϕ̂+ Az ẑ. (Hint. In (b),
one needs to compute nine terms, which come from distributing THE three summands
of ∇ over THE three summands of A. Two of them are(

r̂
∂

∂r

)
· (Arr̂) = r̂ ·

(
∂Ar
∂r

r̂ + Ar
∂r̂

∂r

)
= r̂ ·

(
∂Ar
∂r

r̂ + 0

)
=
∂Ar
∂r

,

(
ϕ̂

∂

r∂ϕ

)
· (Arr̂) =

ϕ̂

r
·
(
∂Ar
∂ϕ

r̂ + Ar
∂r̂

∂ϕ

)
=
ϕ̂

r
·
(
∂Ar
∂ϕ

r̂ + Arϕ̂

)
=
Ar
r
.

Continue!)

Exercise: Verify the divergence theorem for the position vector field A =
−→
R on the

shell region enclosed by spherical surfaces at R = a and R = b, b > a, centered at the
origin.

Exercise: Show that the volume of the region enclosed by a closed, oriented surface S

equals 1
3

¸
S

−→
R ·
−→
dS.

Exercise: Prove that there is no smooth orientable closed surface which is everywhere
tangent to the position vector.

2.4.3 Curl of a vector field

Assume a vector field A. Let C be an oriented curve, namely, one assumes a smooth
distribution t̂ of unit tangent vectors on C. (Any smooth curve has exactly two such
distributions.) The quantity ˆ

C

A ·
−→
dl ,

where
−→
dl = t̂dl, is called the circulation of A (or the work done by A) along C. The

circulation density of A at a point can be measured by a vector curlA, called the curl
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(or rotation) of A, whose component along any unit vector û is given by4

(curlA) · û := lim
∆S→0

¸
c
A ·
−→
dl

∆S
. (2.13)

Here, c is a small, oriented, closed curve (like a square or circle) around our point of
interest, c lies in the plane Π perpendicular to û, ∆S is the area of the surface in Π
enclosed by c, and the orientations of c and û are compatible according to the right-hand
rule.

Theorem 8. In cartesian coordinates A = Axx̂+ Ayŷ + Az ẑ, we have

curlA =

∣∣∣∣∣∣
x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

Ax Ay Az

∣∣∣∣∣∣ , (2.14)

to be expanded with respect to its first row. More generally, in any right-handed, orthog-
onal, curvilinear coordinates A = A1û1 + A2û2 + A3û3, we have

curlA =
1

h1h2h3

∣∣∣∣∣∣
h1û1 h2û2 h3û3
∂
∂u1

∂
∂u2

∂
∂u3

h1A1 h2A2 h3A3

∣∣∣∣∣∣ . (2.15)

Proof. In the definition (2.13), assume û = x̂, and let c be a square of side lengths dy, dz,
in the x = x0 plane, whose sides are parallel to y and z axes, and it is centered at our
point of interest (x0, y0, z0). The work done on the right side y = x0 + dx/2 equals

A(x0, y0 + dy/2, z0) · dzẑ = Az(x0, y0 + dy/2, z0)dz,

and the work done on the left side y = y0 − dy/2 equals

A(x0, y0 − dy/2, z0) · (−dzẑ) = −Az(x0, y0 + dy/2, z0)dz.

These, add up to

Az(x0, y0 + dy/2, z0)dz − Az(x0, y0 − dy/2, z0)dz =
∂Az
∂y

(x0, y0, z0)dydz.

After dividing by dS = dydz, and taking the limit c → 0, we get the first summand
∂Az/∂y in the x-component of ∇×A in (2.14). The other summand ∂Ay/∂z appears by
computing the work done on upper and lower sides z = z0±dz/2. The rest is similar. �

4To prove that such a vector exists, one can first define curlA by lim∆V→0

¸ −→
dS×A
∆V (this definition

itself comes from the identity (2.25), to be proved later.), and then show that this vector satisfies (2.13).
This is done in [NB, Pages 19–20]. Another approach to the curl, taken in [Fey, Vomule II, Chapters
2–3], is to first prove that the expression (2.15) represents a vector field, and then follow the proof of
Theorem 8 to show (2.13) for û = x̂; this proves (2.13) for every unit û.
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The formula (2.14) justifies the notation

curlA = ∇× A.

For any oriented, closed curve C (planar or not) enclosing surface S, we have the
Stokes’ theorem: ˛

C

A ·
−→
dl =

ˆ
S

∇× A ·
−→
dS. (2.16)

Here, the orientations of C and S are compatible according to the right-hand rule. This
can be proved by partitioning S into small surfaces ∆S, and summing up all the definition

equations
¸
A ·
−→
dl = curlA ·

−→
dS [Che, Section 2.10].

Example 9. Let us verify the Stokes’ theorem for the vector field A := sin(ϕ/2)ϕ̂ on
the upper hemisphere surface R = a, z > 0. The curl of A, based on the formula (2.15),
equals

1

R2 sin θ

∣∣∣∣∣∣
R̂ Rθ̂ R sin θϕ̂
∂
∂R

∂
∂θ

∂
∂ϕ

0 0 R sin θ sin(ϕ/2)

∣∣∣∣∣∣ =
R cos θ sin(ϕ/2)R̂−R sin θ sin(ϕ/2)θ̂

R2 sin θ
.

On the upper hemisphere S, we have
−→
dS = a2 sin θdθdϕR̂, so

ˆ
S

∇× A ·
−→
dS =

ˆ π/2

θ=0

ˆ 2π

ϕ=0

a cos θ sin(ϕ/2)dθdϕ = 4a.

The boundary C of S is the circle r = a, so

˛
C

A ·
−→
dl =

ˆ 2π

0

sin(ϕ/2)ϕ̂ · adϕϕ̂ = 4a.

�

Exercise 10. Compute the divergence and curl of the inverse square field A = R̂/R2, at
a point away from the origin.
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Exercise: Verify the Stokes’ theorem for the vector field A = x2y3x̂ + ŷ + zẑ on the
surface x2 + y2 + z2 = 4, z ≥ 1.

Exercise: Find the flux of B = ∇×A passing through the hemisphere x2 +y2 +z2 = 1,
z ≥ 0, where A = (y +

√
z)x̂+ exyzŷ + cos(xz)ẑ.

Exercise: Compute the curl of vector fields A = xx̂+ yŷ+ zẑ and B = −yx̂+xŷ+ zẑ.
Then, use an online vector field plotter to intuitively approve your computation.

Exercise: (a) Deduce Green’s formula in the plane
˛
C

Pdx+Qdy =

ˆ
S

(−Py +Qx)dxdy

from the Stokes’ theorem. Here, C is a closed curve in the xoy-plane, paved in the
counterclockwise orientation, and it enclosed surfece S. (b) Show that the area of S is
given by 1

2

¸
C
xdy − ydx.

2.4.4 Laplacian of a scalar field

The divergence of the gradient of a scalar field is called its Laplacian:

∇2f := ∇ · ∇f.

It is also denoted by ∆f . In cartesian coordinates, we have

∆f =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
.

In a general orthogonal system (u1, u2, u3), we have

∆f =
1

h1h2h3

(
∂

∂u1

(
h2h3

h1

∂f

∂u1

)
+

∂

∂u2

(
h1h3

h2

∂f

∂u2

)
+

∂

∂u3

(
h1h2

h3

∂f

∂u3

))
. (2.17)

The intuition about Laplacian comes from the following theorem:

Theorem 11. The average Aa(f ; ρ) of a scalar field f on the sphere |
−→
R − a| = ρ, and

the average Ba(∆f ; ρ) of its Laplacian on the ball |
−→
R − a| ≤ ρ are related by

Aa(f ; ρ) = f(a) +

ˆ ρ

0

ρ

3
Ba(∆f ; ρ)dρ.

Proof. After a shift, we may assume a = 0. By the divergence theorem,

4πρ3

3
B0(∆f ; ρ) =

ˆ
R≤ρ

∆fdV =

ˆ
R=ρ

∇f ·
−→
dS =

ˆ π

0

ˆ 2π

0

∂f

∂ρ
ρ2 sin θdθdϕ,

so
4πρ

3
B0(∆f ; ρ) =

ˆ π

0

ˆ 2π

0

∂f

∂ρ
sin θdθdϕ. (2.18)

On the other hand,

4πρ2A0(f ; ρ) =

ˆ
R=ρ

fdS =

ˆ π

0

ˆ 2π

0

fρ2 sin θdθdϕ,

21



so

4πA0(f ; ρ) =

ˆ π

0

ˆ 2π

0

f sin θdθdϕ. (2.19)

Putting (2.18), (2.19) together, we have

d

dρ
A0(f ; ρ) =

ρ

3
B0(∆f ; ρ).

We are done noting that Aa(f ; 0) = f(a). �

The scalar fields whose Laplacian vanish are called harmonic functions. By the
previous theorem, harmonic functions satisfy the mean value property: The average
of any harmonic function on any sphere equals the value of the function at the center
of the sphere. (Conversely, any continuous function with the mean value property is a
(smooth) harmonic function [Ahl, Page 242][AD, C.5.3].) The most important examples
of harmonic functions are

log r on r 6= 0 and
1

R
on R 6= 0.

(Also see Section 2.7.)
Exercise: Show that a non-constant harmonic function can not have minimum or

maximum in a connected region except at its boundary. (Hint. Use the mean value
property, continuity, and connectivity.)

Exercise: Prove that the following functions are harmonic:
(a)

cos θ

R2
=

z

R3
,
x

R3
,
y

R3
on R 6= 0,

3 cos2 θ − 1

R3
=

2z2 − x2 − y2

R5
on R 6= 0,

xy

R5
,
xyz

R7
on R 6= 0,

(b)
ϕ on 0 < ϕ < 2π,

log | tan(θ/2)| on 0 < θ < π,

(c)
eλx cos(λy), eλx sin(λy) on R3, where λ is a real parameter,

r±λ cos(λϕ), r±λ sin(λϕ) on r 6= 0,

(d)
∞∑

n=−∞

r|n|e
√
−1nϕ =

1− r2

1− 2r cosϕ+ r2
on R3 \ {r = 1, ϕ = 0}.

Exercise: Prove the Green’s reciprocity theorem:˛
S

(f∇g − g∇f) ·
−→
dS =

ˆ
V

(f∆g − g∆f)dV,

for a volume V bounded by surface S.
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Exercise 12. Fulfilling the following steps, prove that if f(x, y, z) is a harmonic function,
then so is

g(x, y, z) :=
1

R
f
( x

R2
,
y

R2
,
z

R2

)
,

where R =
√
x2 + y2 + z2. g is called the Kelvin transform of f . (A direct proof of

this fact by the chain rule needs a very long computation. Another clever proof can be
found in [Axl, Page 63].)

(a) The transformation

(x, y, z) 7→ (X, Y, Z), X =
x

R2
, Y =

y

R2
, Z =

z

R2
,

celled the inversion with respect to the unit sphere, gives a left-handed, orthogonal,
coordinate system.

(b) The metric coefficients are 1
R2 ,

1
R2 ,

1
R2 .

(c) By (2.17),

∆f = R6

(
∂

∂X

(
1

R2

∂f

∂X

)
+

∂

∂Y

(
1

R2

∂f

∂Y

)
+

∂

∂Z

(
1

R2

∂f

∂Z

))
.

(d) Set g := f/R. Then, using the computation(
1

R2
fX

)
X

=
1

R2
fXX +

2

R
fX

(
1

R

)
X

=
1

R

(
fXX

1

R
+ 2fX

(
1

R

)
X

)
=

1

R

(
gXX − f

(
1

R

)
XX

)
,

and the harmonicity of 1
R

, deduce that the Laplacians of f and g are related by ∆f =
R5∆g.

(e) Prove the fact. �

Exercise: Using Exercise 12, prove that the functions x
R3 ,

xy
R5 ,

xyz
R7 are harmonic.

2.4.5 Laplacian of a vector field

The Laplacian of a vector field A is defined by

∇2A := ∇(∇ · A)−∇× (∇× A). (2.20)

It is also denoted by ∆A. It is straightforward to show that in cartesian coordinates
A = Axx̂+ Ayŷ + Az ẑ, we have

∆A = (∆Ax)x̂+ (∆Ay)ŷ + (∆Az)ẑ.
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2.5 Some differential and integral identities

∇×∇f = 0, ∇ · ∇ × A = 0, (2.21)

∇(fg) = f∇g + g∇f,

∇ · (fA) = ∇f · A+ f∇ · A, (2.22)

∇× (fA) = ∇f × A+ f∇× A, (2.23)

∆(fg) = f∆g + g∆f +∇f · ∇g,

∇ · (A×B) = ∇× A ·B −∇×B · A,˛
f
−→
dS =

ˆ
∇f dV (gradient theorem) (2.24)

˛ −→
dS × A =

ˆ
∇× A dV (curl theorem) (2.25)

˛
f
−→
dl =

ˆ −→
dS ×∇f (cross− gradient theorem) (2.26)

˛ −→
dl × A =

ˆ
(
−→
dS ×∇)× A (cross− del− cross theorem) (2.27)

Exercise: (a) Prove (2.24) and (2.25) by applying (2.12) to vector fields fC and A×C,
where C is a constant vector. (b) Prove (2.26) and (2.27) by applying (2.16) to vector
fields fC and A× C, where C is a constant vector.

Exercise: Find formulas for ∇(A ·B) and ∇× (A×B) in [NB, Chapter 1].

Exercise: Prove that
¸ −→
dS = 0.

Exercise: Prove that
¸ −→
R ×
−→
dl = 2

´ −→
dS. (Hint. Assuming

−→
dS = dSxx̂+ dSxŷ+ dSz ẑ,

compute (
−→
dS × ∇) ×

−→
R = −2

−→
dS, and then use (2.27). Another method is to argue

geometrically and find an interpretation for
¸
C

−→
R ×

−→
dl as the lateral surface vector, and

then use the previous exercise.)

2.6 Scalar and vector potentials

Theorem 13 (Scalar potential). Let A be a vector field on an open5 subset U ⊆ R3,
which has the property that any closed curve in U is the boundary of some surface in U .6

Then, the followings are equivalent:
(a) A is the gradient of some scalar field.
(b) The curl of A vanishes on U .
(c) The circulation of A along any closed curve in U vanishes.

5U being open means for any point P ∈ U , there exists a ball around P which is still contained in U .
6Namely, the first homology group of U vanishes.
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Proof. (a)⇒(b) Immediate from the identity (2.21).
(b)⇒(c) Immediate from the Stokes’ theorem and the topological assumption on U .
(c)⇒(a) We assert that A = ∇f , where f is given by the line integral

f(P ) =

ˆ P

P0

A ·
−→
dl ,

along any path from a fixed point P0 ∈ U to P ; it does not matter which path we use,
because of our assumption (c). (Here we are assuming that U is connected, namely, any
two points can be connected to each other. If not, apply the argument here to each
connected component of U .) In computing

∂f

∂x
=

1

dx

(ˆ P+dxx̂

P0

A ·
−→
dl −

ˆ P

P0

A ·
−→
dl

)
=

1

dx

ˆ P+dxx̂

P

A ·
−→
dl ,

let us take the straight-line path from P to P + dxx̂. Then,

∂f

∂x
=

1

dx
(Axx̂+ Ayŷ + Az ẑ) · dxx̂ = Ax.

Similarly, ∂f/∂y = Ay and ∂f/∂z = Az. �

Example 14. A simple computation shows that the vector field

A = 3yx̂+ (3x− 2z)ŷ − (2y + z)ẑ

is curl-free in R3. Let us find a scalar field f such that A = ∇f . Integrating fx = 3y
with respect to x gives

f = 3yx+ g(y, z),

where g is a (smooth) function of y, z. Then,

3x− 2z = fy = 3x+ gy

implies gy = −2z. Integrating this with respect to y gives

g = −2zy + h(z),

where h is a function of z. Then,

−2y − z = fz = gz = −2y + h′(z),

implies h′(z) = −z. Therefore, h(z) = −z2/2 + C, where C is a constant. The whole
analysis shows that

f = 3xy − 2yz − z2

2
+ C

satisfies A = ∇f . Alternative method. We compute the line integral

f(x, y, z) =

ˆ (x,y,z)

(0,0,0)

A · d
−→
R
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along the straight-line path

−→
R (t) = txx̂+ tyŷ + tzẑ, 0 ≤ t ≤ 1,

from (0, 0, 0) to (x, y, z). Since

A · d
−→
R = 3Y dX + (3X − 2Z)dY − (2Y + Z)dZ, X = tx, Y = ty, Z = tz

= (3xy + (3x− 2z)y − (2y + z)z)tdt

= (6xy − 4yz − z2)tdt,

we have

f =

ˆ 1

0

(6xy − 4yz − z2)tdt = 3xy − 2yz − z2

2
.

This is the same as before. �

Exercise: Show that the vector field

A := (ex cos y + yz)x̂+ (xz − ex sin y)ŷ + (xy + z)ẑ

is curl-free in R3, and find a scalar field f such that A = ∇f .

Exercise 15. Let g : R→ R be an arbitrary (smooth) function.

(a) Prove that the divergence and curl of the vector field A := g(R)R̂ is respectively
given by gR + 2

R
g and 0.

(b) Prove that the gradient and laplacian of the scalar field f := g(R) is respectively

given by gRR̂ and gRR + 2
R
gR.

(c) Use the following figure to intuitively justify the fact that a radial (or central)

vector fields F := g(R)R̂ is curl-free.

One can not drop the simply connected assumption from Theorem 13, as the following
example shows:

Example 16. The vector field

A =
−y

x2 + y2
x̂+

x

x2 + y2
ŷ =

rϕ̂

r2
=
ϕ̂

r
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is curl-free. However, it can not be written as the gradient of a scalar field in its maximal
domain of definition R3 \ z-axis, because if it could, then the circulation of A along a
circle of radius a in the xoy-plane around the origin would have been

0 =

˛
A ·
−→
dl =

ˆ 2π

0

ϕ̂

a
· aϕ̂dϕ = 2π.

However, on any open subset of the space which does not turn around the z-axis (namely,
any subset of R3 \ {r = 0 or ϕ = ϕ0} for some ϕ0), the polar angle ϕ is a well-defined
(single-valued) function, and A = ∇ϕ. �

Theorem 17 (Vector potential). Let A be a vector field on an open subset U ⊆ R3, which
has the property that any closed surface in U is the boundary of some open subset of U .7

Then, the followings are equivalent:
(a) A is the curl of some vector field.
(b) The divergence of A vanishes on U .
(c) The flux of A across any closed surface vanishes.

Proof. We only prove the special case U = R3. (The general case is proved in differential
topology, under the name of the de Rham theorem [Lee, 18.14]: The vanishing of the
second singular homology group implies the vanishing of the second de Rham cohomology
group.)

(a)⇒(b) Immediate from the identity (2.21).
(b)⇒(c) Immediate from the divergence theorem and the topological assumption on

U .
(c)⇒(a) We assert that A = ∇×B, where B is given by

B(x, y, z) =

(ˆ z

z0

Ay(x, y, t)dt−
ˆ y

y0

Az(x, t, z0)dt

)
x̂−

(ˆ z

z0

Ax(x, y, t)dt

)
ŷ, (2.28)

and P0 = (x0, y0, z0) is a fixed point in space. We compute

∂Bz

∂y
− ∂By

∂z
= Ax(x, y, z),

∂Bx

∂z
− ∂Bz

∂x
= Ay(x, y, z),

∂By

∂x
− ∂Bx

∂y
= −
ˆ z

z0

∂Ax
∂x

(x, y, t)dt−
ˆ z

z0

∂Ay
∂y

(x, y, t)dt+ Az(x, y, z0)

=

ˆ z

z0

∂Az
∂z

(x, y, t)dt+ Az(x, y, z0) = Az(x, y, z).

This completes the proof. The main idea in deriving the formula (2.28) is that by adding
an expression like ∇f to B, one can assume that B has no z-component. The rest is
straightforward. �

7Namely, the second homology group of U vanishes.
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One can not drop the topological assumption from Theorem 17, as the following
example shows:

Example 18. The inverse square field

A =
R̂

R2
=

xx̂+ yŷ + zẑ

(x2 + y2 + z2)
3
2

is well-defined and divergence-free on R3\{(0, 0, 0)}, but can not be written as the curl of
a vector field, because if it could, then the flux of A across an sphere of radius a around
the origin would have been

0 =

˛
A ·
−→
dS =

ˆ π

θ=0

ˆ 2π

ϕ=0

R̂

a2
· a2 sin θdθdϕR̂ = 4π.

However, on any open subset of the space which does not turn around the z-axis (namely,

any subset of R3 \ {r = 0 or ϕ = ϕ0} for some ϕ0), we can write A = ∇× (ϕ sin θθ̂). �

Exercise: (a) Show that the inverse square field B = R̂/R2 can be written as the curl
of the vector field

A+ =
1− cos θ

R sin θ
ϕ̂

(
respectively, A− =

−1− cos θ

R sin θ
ϕ̂

)
on U+ = R3 \ {(0, 0, z) z ≤ 0} (respectively, U− = R3 \ {(0, 0, z) z ≥ 0}). (b) Note that
R3 \ {(0, 0, 0)} can be covered by U+, U−, but the values of A+, A− do not match on the
intersection U+ ∩ U−; in fact, A+ − A− = ∇(2θ).

2.7 Dirac delta function

The Dirac delta (or unit impulse) function δ(t) on the real line R can be defined in
either of the following equivalent ways:

• δ(t) is characterized by two properties:

ˆ
R
δ(t)dt = 1 and δ(t) = 0 for t 6= 0.

No Riemann (or even Lebesgue) integrable function satisfy these properties.

• δ(t) can be thought as the limit of rectangular pulses

δε(t) =

{
ε−1, 0 < t < ε,

0, otherwise,

as ε→ 0+.
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• δ(t) could be thought of as the formal derivative8 of the unit step function u(t). More
generally, if a function f(t) is differentiable everywhere on the real lineexcept at finitely
many discontinuity points t1, . . . , tn, and that at each point tk, k = 1, . . . , n, the func-
tion jumps jk units, then the summand

n∑
k=1

jkδ(t− tk),

appears in the first derivative f ′(t). For example, if f(t) = |t|, then

f ′(t) =

{
−1, x < 0,

1, x > 0,
and f ′′(t) = 2δ(t).

• δ(t) can be characterized by the sifting (or sampling) property:

f(t)δ(t− a) ≡ f(a)δ(t− a),

where a is a real constant, and f is any smooth function. The integral version of the
sampling property is

f(t) =

ˆ ∞
−∞

f(τ)δ(t− τ)dτ.

This expresses a function as linear combinations (superpositions) of impulses.

Similarly, the Dirac delta function on the three-dimensional space δ(
−→
R ) = δ(x, y, z)

is characterized by properties:ˆ
R3

δ(x, y, z)dV = 1 and δ(x, y, z) = 0 for (x, y, z) 6= 0.

This shows that the volume charge density (measured in coulomb per meter cubed) due
to a point charge of q coulombs situated at the point (x0, y0, z0) is given by

ρ = qδ(x− x0, y − y0, z − z0).

In terms of the one-dimensional Dirac functions, we have

δ(x, y, z) = δ(x)δ(y)δ(z).

Exercise: Show that the three-dimensional delta function in spherical coordinates is
given by (R2 sin θ)−1δ(R)δ(θ)δ(ϕ).

Exercise: Justify that the volume charge density of an infinitely-thin rod situated
along the z-axis can be expressed by λ(z)δ(x)δ(y), where λ is the linear charge density
measured in coulomb per unit length.

8Technical terminology is distributional (or weak) derivative.
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Theorem 19. (a) −∆ 1
R

= ∇ · R̂
R2 = 4πδ(

−→
R ).

(b) The outward flux of the inverse square field R−2R̂ across any closed surface S is
either 4π or 0 depending on whether S contains the origin or not.

Proof. (a) According to Exercise 15, away from the origin, we have

−∆
1

R
= ∇ · R̂

R2
=

∂

∂R

(
1

R2

)
+

2

R

1

R2
= 0.

This shows that the inverse square field R̂/R2 is divergence-free, except at the origin. If
we want to make the divergence theorem valid on the whole space, then for any ball of
radius a > 0 around the origin, we must have

ˆ
ball R≤a

(
∇ · R̂

R2

)
dV =

ˆ
sphere R=a

R̂

R2
·
−→
dS =

ˆ π

θ=0

ˆ 2π

ϕ=0

R̂

a2
· a2 sin θdθdϕR̂ = 4π.

Because of this, one says that the weak (or distributional) divergence of the inverse square
field equals 4π times the three-dimensional Dirac delta function.

(b) This is (a) expressed in words. However, there is a beautiful, elementary, geometric
argument for this fact that we now present. Let us first assume that S does not contain
the origin. The fundamental fact is that the flux of the inverse square field passing

through an infinitesimal surface
−→
dS = dSn̂ does not depend on the distance of

−→
dS to the

origin or its orientation, but only on the solid angle represented by
−→
dS, namely, on the

area of the projection of
−→
dS onto the unit sphere. The total flux across S is zero because

the flux corresponding to two pieces of S cut out by rays from the origin and forming
a small solid angle cancel each other. Next, assume that S contains the origin. By the

same argument, the flux across S equals the flux across the unit sphere, which clearly
equals its area, 4π. �

Theorem 20. For any constant k, we have

(
∆ + k2

)(e±√−1kR

R

)
= −4πδ(

−→
R ).
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Proof. Let us try to find a radial scalar field G = G(R) which satisfies (∆ + k2)G =

−4πδ(
−→
R ). For this property to hold, it is necessary and sufficient that for every a > 0,

we have

−4π =

ˆ
ball R≤a

(
∆ + k2

)
GdV.

By the divergence theorem,

− 4π =

ˆ
sphere R=a

∇G ·
−→
dS + k2

ˆ
R≤a

GdV

=

ˆ
R=a

∂G

∂R
dS + k2

ˆ
R≤a

GdV = 4πa2dG

dR
(a) + 4πk2

ˆ a

0

R2GdR,

or equivalently,

a2dG

dR
(a) + k2

ˆ a

0

R2GdR = −1.

After differentiation,

a2d
2G

da2
+ 2a

dG

da
+ k2a2G = 0, lim

a→0
a2G′(a) = −1.

One can easily check that this latter differential equation has the general solution

G(a) = c1
e
√
−1ka

a
+ c2

e−
√
−1ka

a
,

where c1, c2 are constants. The initial condition lim a2G′(a) = −1 is satisfied exactly
when c1 + c2 = 1. Arguing backwards shows that G = R−1e±

√
−1kR satisfies (∆ + k2)G =

−4πδ. �

Exercise: Justify

δ(−t) = δ(t), δ(2t) =
1

2
δ(t), taδ(t) = 0,

where a is a positive real number.
Exercise: Justify

δ
(
t2 − 1

)
=

1

2
δ(t+ 1) +

1

2
δ(t− 1).

(Hint. For part (b), either use the definition δ(t) = limε→0+ δε(t), and approximation√
1± ε = 1± ε/2, or differentiate u (t2 − 1) = u(−t− 1) + u(t− 1) by chain rule.)

Exercise: Justify ˆ ∞
−∞

exp(
√
−1xt)dx = 2πδ(t).

Exercise: What is the flux of the vector field A = (xx̂ + yŷ + zẑ)/(x2 + y2 + z2)3/2

passing through the sphere (x− 1)2 + y2 + z2 = 2? (Answer. 4π.)
Exercise: Prove the two-dimensional analogue of Theorem 19: ∆ log r = ∇ · r̂

r
equals

2π times the two-dimensional Dirac delta function δ(x, y).

31



2.8 Helmholtz-Hodge decomposition theorem

Theorem 21. Let U ⊆ R3 be an open subset with smooth boundary S.
(a) A C2(U) vector field A can be written as the sum of a curl-free, and a divergence-

free vector field. More precisely,

A = −∇f +∇×B, (2.29)

where, using notations introduced on page 3,

f(
−→
R ) =

ˆ
U

∇′ · A(
−→
R ′)

4πR0

dV −
˛
S

A(
−→
R ′) ·

−→
dS

4πR0

,

B(
−→
R ) =

ˆ
U

∇′ × A(
−→
R ′)

4πR0

dV +

˛
S

A(
−→
R ′)×

−→
dS

4πR0

,

and

∇′ = x̂
∂

∂x′
+ ŷ

∂

∂y′
+ ẑ

∂

∂z′

is the nabla operator taken with respect to the source (not the field) position vector
−→
R ′ =

x′x̂+ y′ŷ + z′ẑ.
(b) A C2(U) vector field is uniquely determined with its curl and divergence on U ,

and its value on S.
(b′) Let U have the property that any closed curve in U is the boundary of some surface

in it. Then, a C2(U) vector field is uniquely determined with its curl and divergence on
U , and its normal component on S.

(b′′) A C2(R3) vector field A is uniquely determined with its divergence and curl if it
decays no slower than 1/R at infinity, namely, if RA→ 0 as R→∞. If so, then

A = −∇
ˆ
U

∇′ · A
4πR0

dV +∇×
ˆ
U

∇′ × A
4πR0

dV.

Proof. (a) According to Theorem 19, 4πA(
−→
R ) equals

−
ˆ
U

∆

(
1

R0

)
A(
−→
R ′)dV = −

ˆ
U

∆

(
A(
−→
R ′)

R0

)
dV = −∆

ˆ
U

A(
−→
R ′)

R0

dV.

This latter, according to (2.20), can be written as

−∇f +∇×B,

where

f = ∇ ·
ˆ
U

A(
−→
R ′)

R0

dV, B = ∇×
ˆ
U

A(
−→
R ′)

R0

dV.
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Using the identity (2.22) and the divergence theorem, we have

f =

ˆ
U

∇ ·

(
A(
−→
R ′)

R0

)
dV =

ˆ
U

A(
−→
R ′) · ∇

(
1

R0

)
dV = −

ˆ
U

A(
−→
R ′) · ∇′

(
1

R0

)
dV

= −
ˆ
U

∇′ ·

(
A(
−→
R ′)

R0

)
dV +

ˆ
U

∇′ · A(
−→
R ′)

R0

dV = −
˛
S

A(
−→
R ′)

R0

·
−→
dS +

ˆ
U

∇′ · A(
−→
R ′)

R0

dV.

Similarly, using the identity (2.23) and the divergence theorm,

B =

ˆ
U

∇×

(
A(
−→
R ′)

R0

)
dV ′ =

ˆ
U

∇
(

1

R0

)
× A(

−→
R ′)dV = −

ˆ
U

∇′
(

1

R0

)
× A(

−→
R ′)dV

= −
ˆ
U

∇′×

(
A(
−→
R ′)

R0

)
dV +

ˆ
U

∇′ × A(
−→
R ′)

R0

dV =

˛
S

A(
−→
R ′)×

−→
dS

R0

+

ˆ
U

∇′ × A(
−→
R ′)

R0

dV.

(b) Immediate from (a).
(b′) Since the problem is linear, assuming ∇ ·A = 0, ∇×A = 0, An := A · n̂ = 0, we

need to show that A vanishes everywhere on U . Since A is curl-free and the first homology
of U vanishes, one can find a scalar field f such that A = ∇f . Since 0 = ∇f · n, we have

0 =

˛
S

(f∇f) ·
−→
dS =

ˆ
U

∇ · (f∇f)dV =

ˆ
U

|∇f |2dV +

ˆ
V

f(∆f)dV =

ˆ
U

|∇f |2dV.

Therefore, ∇f ≡ 0 on U .
(b′′) Apply the representation formula in (a) to a ball U of radius R around the origin.

When R grows large, the surface integral terms approach zero. �

Exercise: This exercise gives a direct proof of Theorem 21.(c) using Fourier transform.

Fourier transform of a vector field B is given by the vector field B̃ defined by

B̃(
−→
k ) =

ˆ
R3

B(
−→
R )e

√
−1
−→
k ·
−→
RdV (

−→
R ),

with the inverse given by

B(
−→
R ) =

1

(2π)3

ˆ
R3

B̃(
−→
k )e−

√
−1
−→
k ·
−→
RdV (

−→
k ).

Similarly, the Fourier transform of scalar fields is defined.

(a) Show that applying the Fourier transform to (2.29) gives Ã = −
√
−1
−→
k · f̃ +√

−1
−→
k × B̃.

(b) Show that f̃ =
√
−1

−→
k ·Ã
−→
k ·
−→
k

and B̃ =
√
−1
−→
k ×Ã
−→
k ·
−→
k

satisfy this latter equation.

(c) Give formulas for f and B using inverse Fourier transform.
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2.9 Transport theorems

If the curve, surface, or volume that we are taking integral over changes through time,
then we will have the following transport theorems:

d

dt

ˆ
C(t)

A ·
−→
dl =

ˆ
C(t)

(
∂A

∂t
− v × (∇× A)

)
·
−→
dl , (2.30)

d

dt

ˆ
S(t)

A ·
−→
dS =

ˆ
S(t)

(
∂A

∂t
+ v(∇ · A)−∇× (v × A)

)
·
−→
dS, (2.31)

d

dt

ˆ
V (t)

fdV =

ˆ
V (t)

(
∂f

∂t
+∇ · (fv)

)
dV, (2.32)

where v is the velocity vector field of the evolution of C(t), S(t), or V (t). We only prove
the second identity; others can be proved similarly. Let S1, S2, S3 respectively denote the
surfaces S(t), S(t + dt), and the lateral surface swept by the displacement vector vdt
as S(t) evolves into S(t + dt). Let V denote the region bounded by S1, S2, S3. In the
following computations, by A, ∂A

∂t
, we mean A(t), ∂A

∂t
(t), respectively. We compute the

left hand side of (2.31) as follows:ˆ
S(t+dt)

A(t+ dt) ·
−→
dS =

ˆ
S2

(
A+

∂A

∂t
dt

)
·
−→
dS = I1 + I2 + I3,

where

I1 =

ˆ
S1

(
A+

∂A

∂t
dt

)
·
−→
dS =

ˆ
S1

A ·
−→
dS + dt

ˆ
S1

∂A

∂t
·
−→
dS,

I2 =

ˆ
−S1+S2+S3

(
A+

∂A

∂t
dt

)
·
−→
dS =

ˆ
V

∇ ·
(
A+

∂A

∂t
dt

)
dV

=

ˆ
S1

∇ ·
(
A+

∂A

∂t
dt

)
vdt ·

−→
dS = dt

ˆ
S1

(∇ · A)v ·
−→
dS,

I3 = −
ˆ
S3

(
A+

∂A

∂t
dt

)
·
−→
dS = −

ˆ
∂S1

(
A+

∂A

∂t
dt

)
·
−→
dl × vdt = −dt

ˆ
∂S1

A ·
−→
dl × v

= −dt
ˆ
∂S1

v × A ·
−→
dl = −dt

ˆ
S1

∇× (v × A) ·
−→
dS.
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All the three terms in the right hand side of (2.31) have been revealed.
Exercise: Prove (2.30) and (2.32).
Exercise: In (2.31), assuming S(t) to be closed and setting f := ∇ · A, find another

proof for (2.32).
Exercise: Either prove directly, or deduce the following elementary transport theorem

for a time-dependent real-valued function f(x, t) of a real variable x:

d

dt

ˆ v(t)

u(t)

f(x, t)dx =

ˆ v(t)

u(t)

∂f

∂t
(x, t)dx+ v′(t)f(v(t), t)− u′(t)f(u(t), t).

2.10 Visualizing scalar and vector fields

A vector field can be visualized by drawing vectors at many points in space, each of which
gives the field strength and direction at that point. Alternatively, one can draw field
lines: A collection of smooth curves that are everywhere tangent to the vector field, and
the number of lines per unit area at the surface perpendicular to the direction of the field
should be proportional to the magnitude of the field. Therefore, the number of field lines
passing a surface is proportional to the flux. Therefore, unless for divergence-free regions,
new lines sometimes start up in order to keep the number up to the strength of the field.

Exercise: Draw the field lines for the constant field, inverse square field, and the
position vector field.

A scalar field can be visualized by level surfaces (or isosurfaces), namely surfaces
such that the scalar field is constant on them. When the scalar field is a potential func-
tion (respectively, temperature), these are called equipotential (respectively, isothermal)
surfaces.

2.11 Differential forms

The left column in Figure 1 shows how Maxwell was writing his equations [Max]. Later
on, Gibbs and Heaviside developed vector calculus (presented in this chapter) to write
Maxwell’s equations in a concise way, the right column in the latter figure. Elie Cartan
developed a calculus generalizing the vector calculus presented in the chapter. In this the-
ory, scalar and vector fields have a common generalization called differential forms ω; The
gradient, divergence, and curl have a common generalization called the exterior deriva-
tive d [Lee, Page 426]; and curves, surfaces, and volumes have common generalization
called (smooth) manifolds M . In this theory, the identities (2.9), (2.16), (2.12), together

with the fundamental theorem of (undergraduate) calculus
´ b
a
f ′(x)dx = f(b)− f(a), are

generalized to ˛
∂M

ω =

ˆ
M

dω.

Also, the null identities (2.21) have the common form

ddω = 0.
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All three transport theorems of Section 2.9 can be generalized to

d

dt

ˆ
M(t)

ω =

ˆ
M(t)

∂ω

∂t
+

ˆ
M(t)

vydω +

ˆ
∂M(t)

vyω,

where y is the operation of interior product [Fla]. This theory is developed in [Lee,
Chapters 14–16]. Electromagnetics can also be developed in this language [Lin].
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Figure 1: The original set of equations as labeled by Maxwell in his treatise [Max], with
their interpretation in modern vector calculus notation of Gibbs and Heaviside. The
simplest equations were also written in vector form. Taken from [Lin, Page 3].
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Chapter 3

Electrostatics

3.1 Axioms

Since the situations described by the full Maxwell’s equations (1.2) can be very compli-
cated (these equations already contain all of the special relativity effects), we start by
analyzing the simplest situation: We are in the vacuum, and all the charges are fixed in
space, namely, ρ does not depend on time, and J = 0. This is called electrostatics, and
is governed by the differential axioms

∇ · E =
ρ

ε0
, ∇× E = 0, ∇ ·B = 0, ∇×B = 0.

According to the Helmholtz-Hodge theorem, there are no magnetic effects (B vanishes
everywhere), and the electric phenomena are governed by

∇ · E =
ρ

ε0
, ∇× E = 0. (3.1)

These differential equations, according to the divergence and Stokes theorems, can be
equivalently expressed by the following integral equations:

˛
S

E ·
−→
dS =

Q

ε0
,

˛
C

E ·
−→
dl = 0, (3.2)

where S is an arbitrary closed surface containing total charge Q inside, and C is an
arbitrary closed curve.

We first want to justify that: The electrostatic field produced by the volume charge
density ρ is given by

E(
−→
R ) =

1

4πε0

ˆ −→
R −

−→
R ′∣∣∣−→R −−→R ′∣∣∣3ρ(

−→
R ′)dV,

or, more concisely,

E =
1

4πε0

ˆ
R̂0

R2
0

ρdV. (3.3)

Here are some theoretical/experimental justifications for this formula:
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• It is immediate from the Helmholtz-Hodge theorem (Theorem 21) assuming some
growth conditions at infinity:

E = −∇
ˆ
V

ρ(
−→
R ′)/ε0
4πR0

dV = − 1

4πε0

ˆ
V

∇
(

1

R0

)
ρdV =

1

4πε0

ˆ
R̂0

R2
0

ρdV.

This computation also shows that the electrostatic field (3.3) can be written as E =
−∇Φ, where the electrostatic potential V is given by

Φ =
1

4πε0

ˆ
ρdV

R0

. (3.4)

The inclusion of the negative sign in E = −∇Φ is to make the potential decreasing as
we move along the field lines.

• Assuming the uniqueness of solutions to the electrostatic axioms (3.1 or 3.2), from the
linearity of these equations, we discover a fundamental fact in field theory: If a charge
distribution ρj, j = 1, 2 produces field Ej, then the charge distribution ρ1 + ρ2 produces
the field E1 + E2. This is called the superposition principle, and its validity goes
beyond electrostatics. Because of this principle, to show (3.3), it suffices to show that
the electrostatic field due to a point charge of q coulombs situated at the origin is given

by E = q
4πε0

R̂
R2 . By symmetry, E = ER(R)R̂. Plugging this into the integral axiom¸

E ·
−→
dS = Q/ε0, applied to a sphere of radius R centered at the origin, gives

ER × 4πR2 =
q

ε0
,

and we are done.

Exercise: The electrostatic potential of a point charge q situated at the origin is given
by Φ = 1

4πε0
1
R

.

Exercise: Where did the axiom ∇ × E = 0 appear in the justification above? (Note

that every radial field ER(R)R̂ already satisfies this axiom.)

• Experiments done by Coulomb/Cavendish show that the electric force between two
motion-less point charges q, q′ is inversely proportional to the square of the distance
between them, applies on the line connecting them, is proportional to each charge,
and is repulsive (respectively, attractive) if the charges are like (respectively, unlike).1

Therefore, according to the Lorentz law (1.1), the electrostatic field at the point
−→
R ′

generated by a point charge q situated at the point
−→
R is given by

E(
−→
R ) = (The Coulomb force applied on the unit charge at

−→
R ′) = (constant)× q

R2
R̂0.

The constant is determined to be 9 × 109 in SI, which for some historical reasons is
written as 1/(4πε0). This formula combined with the superposition principle (also
confirmed by experiments) gives (3.3).
1If charges move, then this force needs to be corrected by the special relativity considerations [Fey,

Volume I, Chapter 28].
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Remark 22. Sometimes we are assuming that charges are distributed on surfaces or
curves. Although in such situations the volume charge density ρ is infinity, but the
formulas (3.3) and (3.4) are still valid if one replaces ρdV by σdS or λdl, where σ (re-
spectively, λ) is the surface (respectively, linear) charge density, measured in coulomb per
meter squared (respectively, coulomb per meter).

Here are some examples to use the formulas (3.3) and (3.4) in action:

1. The electrostatic field at the point
−→
R = rr̂+ zẑ, produced by a uniform linear charge

density λ on a rod situated along the z-axis is given by

E =
1

4πε0

ˆ
R

rr̂ + zẑ − z′ẑ
|rr̂ + zẑ − z′ẑ|3

λdz′ =
λ

4πε0

ˆ
R

rr̂ + (z − z′)ẑ
(r2 + (z − z′)2)

3
2

dz′ =
λrr̂

4πε0

ˆ
R

dz′

(r2 + z′2)
3
2

,

which, after the change of variable z′ = r tanα, equals

λ

2πε0

r̂

r
. (3.5)

Here is an easier way to derive this: By symmetry, E = Er(r)r̂. Plugging this into the

integral axiom
¸
E ·
−→
dS = Q/ε0 applied to a cylinder of height h and radius r along

the z-axis gives

Er × 2πrh =
λh

ε0
.

Since r̂
r

= ∇ log r, the electrostatic potential is given by

− λ

2πε0
log r. (3.6)

Remark 23. The field (3.5) blows up at the points with large z and bounded r.
This violates our growth-at-infinity assumption that was used to derive (3.3). A more
precise treatment would be to first consider a finite rod, and then study the fields as
the length of the bar becomes large. This is done [NB, Example 2.2], and ends up to
the same result (3.5). In the same spirit, the integral in (3.4) for the infinite rod turns
out to be infinite:

1

4πε0

ˆ
λdz′

|rr̂ + zẑ − z′ẑ|
=

λ

4πε0

ˆ ∞
−∞

dz′

(r2 + z′2)
1
2

=∞.

However, one can extract the “principal part (3.6)” from this improper integral by
first integrating over a finite rod, and then make the length large, as the following
computations show:

ˆ L

−L

dz′

(r2 + z′2)
1
2

= 2

ˆ L

0

dz′√
r2 + z′2

=

[
log

1 + z′√
r2+z′2

1− z′√
r2+z′2

]z′=L
z′=0

= log
1 + L√

r2+L2

1− L√
r2+L2

= log

(
4L2 +O(L)

r2

)
= log

(
4L2 +O(L)

)
− 1

2
log r.
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2. The electrostatic field at the point
−→
R = xx̂+yŷ+zẑ produced by the constant surface

charge density σ situated on the xoy-plane is given by

E =
1

4πε0

ˆ
xx̂+ yŷ + zẑ − (x′x̂+ y′ŷ)

|xx̂+ yŷ + zẑ − (x′x̂+ y′ŷ + z′ẑ)|3
σdx′dy′

=
σ

4πε0

ˆ
(x− x′)x̂+ (y − y′)ŷ + zẑ

((x− x′)2 + (y − y′)2 + z2)
3
2

dx′dy′ =
σ

4πε0

ˆ
−x′x̂− y′ŷ + zẑ

(x′2 + y′2 + z2)
3
2

dx′dy′

=
σzẑ

4πε0

ˆ
r′dr′dϕ′

(r′2 + z2)
3
2

,

which, after the change of variable r′ = z tanα, equals

± σ

2ε0
ẑ, (3.7)

depending on whether z > 0 or z < 0. Here is an easier way to derive this: By
symmetry, E = Ez(z)ẑ, where Ez(z) is an odd function of z. Plugging this into the

integral axiom
¸
E ·
−→
dS = Q/ε0 applied to a cylinder of height 2h and radius a with

bases at z = ±h gives

2Ez(h)× πa2 =
σπa2

ε0
.

Since ẑ = ∇z, the electrostatic potential is given by

∓ σ

2ε0
z. (3.8)

Remark 24. The same comments as in Remark 23 also hold here. The field (3.7)
does not satisfy the “faster that 1/R” decay assumption that was used to derive (3.3).
A more precise treatment would be to first consider a finite disc, and then study the
fields as the radius of the disc becomes large. This is done [NB, Example 2.4], and
ends up to the same result (3.7). In the same spirit, the integral in (3.4) for the infinite
surface turns out to be infinite:

1

4πε0

ˆ
σdx′dy′

|rr̂ + zẑ − z′ẑ|
=

σ

4πε0

ˆ
rdrdϕ

(r2 + (z − z′)2)
1
2

=
σ

2ε0

ˆ ∞
0

rdr

(r2 + (z − z′)2)
1
2

=∞.

However, one can extract the “principal part (4.8)” from this improper integral by first
integrating over a finite disc, and then make the radius large. Do this as an exercise.

Exercise: Compute the electrostatic field due to a charge Q distributed uniformly on
a ball of radius a around the origin.

Exercise: Find the electrostatic field due to two parallel infinite sheets with equal and
opposite uniform charge densities ±σ. (Answer. σ/ε0 between plates, and zero outside.)

Example 25. Let us find the motion-less charge distribution which causes the field

E =

{
azẑ, 0 ≤ z ≤ l,

bẑ, otherwise,
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where a, b, l are constants, and 0 6= b 6= al. According to the differential axiom ∇ · E =
ρ/ε0, we have ρ = aε0 when 0 < z < l, and ρ = 0 when z < 0 or z > l. At z = 0, Ez jumps
from b to 0, hence ρ = −bε0δ(z). This means that we have the surface charge distribution
σ = −bε0 at z = 0. Similarly, we have the surface charge distribution σ = (b − al)ε0 at
z = l.

Exercise: Assume two thin spherical shells of radii a < b around the origin, with
uniformly distributed total charges q,Q. Find the electric field using the integral axiom

(3.2), and then find the electric potential with the formula Φ(P ) = −
´ P
P0
E ·
−→
dl .

3.2 Electric dipole

An electric dipole is two point charges±q, separated by some a distance d. The quantity
q times the displacement vector from −q to q is called the electric dipole moment and
denoted by p. Let us place charges ±q at ±d

2
ẑ, and find the approximate form of the

electrostatic field produced by this dipole at points far away from the origin.

We compute

Φ =
q

4πε0

(
1

R+

− 1

R−

)
≈ q

4πε0

(
1

R− d
2

cos θ
− 1

R + d
2

cos θ

)
≈ q

4πε0

d cos θ

R2

=
qd

4πε0

x

R3
=
p · R̂
4πε0

1

R2
, (3.9)

E ≈ −∇
(

q

4πε0

d cos θ

R2

)
= − qd

4πε0

(
−2

cos θ

R3
R̂− sin θ

R3
θ̂

)
=

qd

4πε0

1

R3

(
2 cos θR̂ + sin θθ̂

)
=

qd

4πε0

1

R3

(
3 cos θR̂ +

(
sin θθ̂ − cos θR̂

))
=

3(p · R̂)R̂− p
4πε0

1

R3
.

The important point here is that: The electrostatic potential and field of an electric dipole
decays like R−2 and R−3 with respect to distance, compared to the R−1 and R−2 variations
for a point charge.

Exercise: Show that the far-field of the electric dipole is divergence and curl free away
from the dipole’s center.

Exercise: Find another proof for (3.9) by reading [Fey, Volume II, Section 6.4].
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3.3 Far-field multipole expansion

Let us analyze the electrostatic potential caused by a charge distribution ρ bounded in
some part of the space, at points far away. To do this, we use the binomial formula

(1 + z)α = 1 + αz +
α(α− 1)

2!
z2 +

α(α− 1)(α− 2)

3!
z3 + · · · , |z| < 1,

to expand

1

R0

=
1∣∣∣−→R −−→R ′∣∣∣ =

1

R

(
1− 2

−→
R ·
−→
R ′

R2
+

(
R′

R

)2
)− 1

2

(3.10)

in the integrand of (3.4). In the far-field region R′

R
< 1, we have

1

R0

=
1

R

1− 1

2

(
−2

−→
R ·
−→
R ′

R2
+

(
R′

R

)2
)

+
3

8

(
−2

−→
R ·
−→
R ′

R2
+

(
R′

R

)2
)2

−+ · · ·


=

1

R

1 + R̂ ·
−→
R ′

R
+

1

2

3

(
R̂ ·
−→
R ′

R

)2

−
(
R′

R

)2
+ · · ·

 .

This gives the multi-pole expansion

Φ = Φ(0) + Φ(1) + Φ(2) + · · · , (3.11)

where

Φ(0) = (monopole term) =
1

4πε0

Q

R
, Q = (total charge) =

ˆ
dq,

Φ(1) = (dipole term) =
1

4πε0

p · R̂
R2

, p = (dipole moment) =

ˆ −→
R ′dq,

Φ(2) = (quadrupole term) =
1

4πε0

1

2R3

ˆ (
3
(
R̂ ·
−→
R ′
)2

−R′2
)
dq

=
1

4πε0

1

2R5

ˆ (
3
(−→
R ·
−→
R ′
)2

−R2R′2
)
dq.

The main point in this expansion is: The successive terms decay by a factor of order
1/R, and a term becomes dominant if all the previous ones vanish. For example, if
the total charge Q =

´
dq of the distribution vanishes, then the dipole terms becomes

dominant.
In cartesian coordinates

−→
R = x1x̂1 + x2x̂2 + x3x̂3,

−→
R ′ = x′1x̂

′
1 + x′2x̂

′
2 + x′3x̂

′
3, the

quadruple term can be written as

Φ(2) =
1

4πε0

1

2R5

3∑
i,j=1

Qij(3xjxj −R2δij),
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where

Qij = (quadrupole matrix) =

ˆ
x′ix
′
jdq, δij =

{
1, i = j,

0, i 6= j.

Exercise: Show that if the total charge of the distribution vanishes, then the dipole
moment does not depend on the choice of the origin, namely, the start point of the charge

position vector
−→
R ′.

Exercise: Compute the dipole moment of the following charge distributions: (a) A
cylindrical rod of length l, placed along the z axis 0 ≤ z ≤ l, with the volume charge
density ρ = a(z − l/2). (b) A spherical shell, centered at the origin, with the surface
charge density σ = σ0 cos θ. (Answer. (a) ẑ l

2a
12
× volume; (b) ẑσ0 × volume.)

Exercise: For the following charge distributions, show that the quadruple term is the
dominant term, and compute it. (Answer. (a) qa2

4πε0
3 cos2 θ−1

R3 ; (b) qa2

4πε0

3xy
R5 .)

One intuition behind the multipole expansion is to approximate an arbitrary charge
distribution by a combination of a point charge, a point dipole, a point quadrupole, and
so forth, as shown in the following figure. This viewpoint can be applied to approximate
quantities other than the electrostatic potential.

Remark 26. One can find explicit formulas for higher multipole terms using the gener-
ating function of Legendre polynomials. One need only to expand (3.10) using (3.12):

1

R0

=
1

R

∑
n≥0

(
R′

R

)n
Pn(cosψ), cosψ = R̂ · R̂′, R� R′.

3.4 Conductors

From now on, we want to include the effect of matters in electrostatics. A conductor
is a matter with a sufficient supply of free electrons, namely, loose electrons in the out-
most shells of the atoms. Most metals are so, although, the conductivity properties of
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materials change with temperature, pressure, etc. Materials with negligible content of
free electrons are called dielectrics or insulators. (We later introduce a quantity called
conductivity through the equation J = σE, and then conductors are those material with
high conductivity.) When a conductor is placed in an external electrostatic field, its free
electrons content moves as a whole body in the opposite direction of the field until it
makes the total field inside zero. This transient phenomenon takes a short time of the
order 10−19 seconds. After the quiliberium:

• According to the differential axiom ρ = ε0∇ · E, all the charges will be distributed
on the surface.

• Since the electric field is zero inside, the whole conductor is an equipotential body.
Therefore, on the conductor’s surface, the electrostatic field is normal to the surface.

A simple application of the integral axiom
¸
E·
−→
dS = Q/ε0 shows that the magnitude

of this normal field equals σ/ε0, if the conductor is placed in vacuum.

Exercise: Consider a conductor with a vacuum hollow (cavity) inside. Prove that
there is no electric field in the cavity, and all the polarization charges accumulate on the
outer surface of the conductor. (Hint. Use both axioms (3.2).)

3.5 Electrostatic boundary conditions

Reference [NB, Section 3.3].

3.6 Electrostatic boundary value problems

In electrostatics, if the charge distribution is given, then the field intensity can be com-
puted using the integral formula (3.3). There are situations where the exact charge
distribution is not known. For example, if we place several conductors and point charges
(or other known charge distributions) in vaccum, then the equilibrium surface charge
distribution on the conductors is not known apriori: This charge distribution depends on
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the electric field (σ = ε0En), and the electric field itself depends on the charge distribu-
tion. Since each conductor is an equipotential body, and there is no charge in the vaccum
region between conductors and known charges, it is a good idea to eliminate the electric
field in the axioms ∇ · E = 0, E = −∇Φ, and work directly with Φ:

∆Φ = ∇ · ∇Φ = −∇ · E = 0.

The second-order partial differential equation ∆Φ = 0 is called the Laplace equation:
In charge-free regions, the electrostatic potential is a harmonic function. This equation
together with the constant-Φ condition on the conductor surfaces is called a electrostat-
ics boundary value problem, and this section is devoted to it.

Remark 27. A more general equation than the Laplace equation is the Poisson equa-
tion ∆Φ = −ρ/ε0, obtained by eliminating the electric field between the axioms ∇ ·E =
ρ/ε0, E = −∇Φ.

Theorem 28 (Existence and uniqueness theorem for the Dirichlet and Neumann prob-
lems). Let U ⊆ R3 be a connected, open subset with smooth boundary S. Let Φ0 be a
smooth function on S.

(a) The problem of finding a smooth function Φ on U which satisfies the Laplace
equation ∆Φ = 0 on U , and the Dirichlet boundary condition Φ = Φ0 on S has a
unique solution. (If U is unbounded, then we assume that Φ decays no slower that 1/R
at infinity.)

(b) The problem of finding a smooth function Φ on U which satisfies the Laplace
equation ∆Φ = 0 on U , and the Neumann boundary condition ∂Φ/∂n = Φ0 on S
has a solution if and only if

¸
S

Φ0dS = 0. If so, then the solution is unique up to additive
constants. (If U is unbounded, then we assume that Φ decays no slower that 1/R at
infinity.)

Proof. We only prove the uniqueness here. The existence is a very deep result, with
different proofs: [Fol, 3.40, 7.33][CH, Volume II, Chapter 4][Eva, 6.3.2][Jos, 23.15][Hel,
Med, GM][Tay, Chapter 5][Ahl, Chapter 6][Con, Chapters 10, 19, 21]. Note that the
necessary condition in (b) comes from

˛
S

Φ0dS =

˛
S

∂Φ

∂n
dS =

˛
S

∇Φ ·
−→
dS =

ˆ
U

∆ΦdV = 0.

(a) We repeat the argument used in the proof of Theorem 21.(b′). Since the problem
is linear, assuming ∆Φ = 0, Φ|S = 0, we need to show that Φ ≡ 0 on U . The computation

0 =

˛
S

(Φ∇Φ) ·
−→
dS =

ˆ
U

∇ · (Φ∇Φ)dV =

ˆ
U

|∇Φ|2dV +

ˆ
U

Φ(∆Φ)dV =

ˆ
U

|∇Φ|2dV,

shows that ∇Φ ≡ 0 on U . Since U is connected and Φ|S ≡ 0, it follows that Φ ≡ 0 on U .

(b) The argument in (a) works. Note that Φ∇Φ ·
−→
dS = Φ∂Φ

∂n
dS. �
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3.6.1 Method of separation of variables

The main use of the uniqueness theorem is that, if by any means (guess, conformal
transformations, probabilistic methods, etc.), we find a solution, that is the solution. In
order to efficiently fulfill this strategy, we need a good supply of harmonic functions. This
is addressed in Theorems 29, 31.

Theorem 29 (One-variable harmonic functions). The harmonic functions on the three-
dimensional space which only depend on one variable in cartesian, cylindrical, or sphercal
coordinates are

ax+ b, ay + b, az + b,

a log r + b, aϕ+ b,
a

R
+ b, a log tan(θ/2) + b,

where a, b are constants.

Proof. If Φ = Φ(θ) is harmonic, then

0 = ∆Φ =
1

R2 sin θ

(
∂

∂θ
(sin θΦ′)

)
,

hence,

Φ = b+

ˆ
adθ

sin θ
= b+ a log tan(θ/2).

The other cases can be treated similarly. �

Example 30. Consider a capacitor consisting of two conductor cones, with axes along the
z-axis, apexes at the origin, and with angles θ1 < θ2. Suppose that these cones are kept at
potentials 0,Φ0, respectively. By symmetry, we guess that the potential Φ between cones

only depends on θ. One can easily find constant a, b such that Φ = a log tan(θ/2) + b
satisfies the boundary conditions Φ(θ1) = 0,Φ(θ2) = Φ0:

Φ = Φ0

log tan(θ/2)
tan(θ1/2)

log tan(θ2/2)
tan(θ1/2)

.

This is the electrostatic potential, according to the uniqueness theorem. �
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Exercise: Find the electrostatic field E in the previous example, as well as the surface
charge distribution on conductors. (Hint. Use the equations E = −∇Φ, σ = ε0E · n̂.)

Theorem 31 (Two-variable harmonic functions). The following functions are harmonic:

(ax+ a′) (by + b′) ,

(a cosαx+ a′ sinαx)
(
beαy + b′e−αy

)
,(

aeαx + a′e−αx
)

(b cosαy + b′ sinαy) ,

r±n cosnϕ, r±n sinnϕ, (n = 1, 2, 3, . . .)

RnPn(cos θ), R−n−1Pn(cos θ), (n = 1, 2, 3, . . .)

where a, a′, b, b′, α are constants, and

Pn(t) =
1

2nn!

dn

dtn
(t2 − 1)n =

bn2 c∑
j=0

(−1)j
(2n− 2j)!

2nj!(n− j)!(n− 2j)!
tn−2j

is the Legendre polynomial of degree n. Other ways to characterize the Legendre
polynomials are:

• The generating function:

∞∑
n=0

Pn(t)zn =
1√

1− 2zt+ z2
. (3.12)

• P0(t), P1(t), P2(t), . . ., up to multiplicative constants, are the output of the Gram-
Schmidt orthogonalization procedure applied to 1, t, t2, . . ., with the inner product
given by 〈f, g〉 =

´ 1

−1
f(t)g(t)dt. We have

ˆ 1

−1

Pn(t)Pm(t)dt =
2

2n+ 1
δnm.

Proof. We show how these functions have been found. Let us try to find non-constant,
harmonic functions of the form Φ = Φ(x, y) = A(x)B(y). We have

0 = ∆Φ = A′′B + AB′′,

so
A′′

A
+
B′′

B
= 0.

This is a function of x plus a function of y equals zero. Since we are looking for non-
constant harmonic functions, we must have

A′′

A
= (constant) = λ2 = −B

′′

B
.
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(There is no loss of generality in showing an arbitrary constant by λ2, λ ∈ C. It will soon
become clear why we have chosen such a representation.) Depending on whether λ = 0,
λ < 0, and λ > 0, we get the solutions in the first three lines of the statement of the
theorem.

Next, let us try to find non-constant, harmonic functions of the form Φ = Φ(r, ϕ) =
A(r)B(ϕ). We have

0 = ∆Φ =
1

r

(
∂

∂r
(rA′B) +

∂

∂ϕ

(
1

r
AB′

))
=

1

r

(
(rA′)

′
B +

A

r
B′′
)
,

so

r
(rA′)′

A
+
B′′

B
= 0.

This is a function of r plus a function of ϕ equals zero. Since we are looking for non-
constant harmonic functions, we must have

r
(rA′)′

A
= (constant) = λ2 = −B

′′

B
.

(There is no loss of generality in showing an arbitrary constant by λ2, λ ∈ C. It will
soon become clear why we have chosen such a representation.) The resulting ordinary
differential equations

r2A′′ + rA′ − λ2A = 0, B′′ + λ2B = 0

have general solutions

A = arλ + br−λ, B = c cosλϕ+ d sinλϕ.

Reversing the whole argument shows that

r±λ cosλϕ, r±λ sinλϕ

are harmonic functions for any complex constant λ. Why we have chosen λ to be a
positive integer in the statement of the theorem? Because in the simplest examples that
we want to analyze in this chapter, the geometry of our situations contains the full range
of ϕ, namely, [0, 2π]; and, in order to our smooth function B(ϕ) to satisfy the natural
periodic condition B(ϕ+2π) = B(ϕ), λ must be an integer. On the other hand, λ ranging
over negative integers gives no essentially new harmonic function not given by λ ranging
over positive integers.

The treatment of the spherical coordinates is similar. Plugging Φ = Φ(R, θ) =
A(R)B(θ) into ∆Φ = 0 gives

0 =
1

R2 sin θ

(
∂

∂R

(
R2 sin θA′B

)
+

∂

∂θ
(sin θAB′)

)
=

sin θ (R2A′)
′
B + A(sin θB′)′

R2 sin θ
,

so
(R2A′)′

A
+

1

sin θ

(sin θB′)′

B
= 0.
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This is a function of R plus a function of θ equals zero. Since we are looking for non-
constant harmonic functions, we must have

(R2A′)′

A
= (constant) = λ(λ+ 1) = − 1

sin θ

(sin θB′)′

B
.

(There is no loss of generality in showing an arbitrary constant by λ(λ+1), λ ∈ C. It will
soon become clear why we have chosen such a representation.) The resulting ordinary
differential equations are

R2A′′ + 2RA′ − λ(λ+ 1)A = 0, B′′ + cot θB′ + λ(λ+ 1)B = 0.

The first equation has the general solution

A = aRλ + bR−λ−1,

and the second equation, after the change of variable t = cos θ becomes

(1− t2)
d2B

dt2
− 2t

dB

dt
+ λ(λ+ 1)B = 0.

This is called the Legendre differential equation. Since the functions

−2t

1− t2
and

λ(λ+ 1)

1− t2

are given by power series (real analytic functions) with the radius of convergence 1
around the point t = 0, a classical theorem [Apo, Volume II, Page 169][Sim, Page 180]
guarantees that the equation can be solved by plugging a power series representation
P (t) :=

∑∞
j=0 ajt

j. Doing so, we infer that a0, a1 are arbitrary, and

aj+2 =
(j − λ)(j + λ+ 1)

(j + 1)(j + 2)
aj for j = 0, 1, 2, . . . .

This formula shows that when λ is an integer, then the Legendre equation has a poly-
nomial solution. To find all these polynomial solutions, it suffices to assume that λ is
nonnegative, because a negative integer λ = −n gives rise to the same λ(λ + 1) if one
uses the nonnegative integer λ = n− 1. So, assume the nonnegative integer λ = n. Then
the polynomial solution, up to a multiplicative constant, is given by

Pn(t) =

bn2 c∑
j=0

(−1)j
(2n− 2j)!

2nj!(n− j)!(n− 2j)!
tn−2j =

1

2nn!

dn

dtn
(t2 − 1)n.

(This and the other properties of the Legendre polynomials is investigated in [Sim, Chap-
ter 8][AW, Chapter 15].) It can be shown that if λ is not an integer, then any nonzero
solution of the Legendre differential equation blows up at t = ±1, namely, θ = 0, π.
Since in the simplest examples that we want to analyze in this chapter, the geometry of
our situations contains the full range of θ, namely, [0, π], we only analyzed the integer λ
case. �
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Example 32. Two grounded, semi-infinite, parallel-plane conductors are separated by
distance b, and a third conductor perpendicular to and insulated from both is maintained
at a constant potential V0. We want to find the electrostatic potential Φ = Φ(x, y)
in the region between. As the first step, let us find all nonzero, two-variable, separable
A(x)B(y) harmonic functions satisfying the zero boundary conditions at y = 0 and y = b.
The general form of such functions is

sin
(nπ
b
y
) (
Ce−

nπ
b
x +De

nπ
b
x
)
,

with constants C,D. We choose D = 0 to avoid the potential from blowing up as x→∞.
It remains to find constant Cn such that

Φ(x, y) =
∞∑
n=1

Cn sin
(nπ
b
y
)
e−

nπ
b
x,

satisfies the remaining boundary condition

V0 = Φ(0, y) =
∞∑
n=1

Cn sin
(nπ
b
y
)
.

This can be done by Fourier analysis methods, as we now elaborate. Multiplying both
sides of this latter equation by sin

(
mπ
b
y
)
, m = 1, 2, . . ., and then integrating

´ b
0
dy,

because of the orthogonality relations

ˆ b

0

sin
(nπ
b
y
)

sin
(mπ
b
y
)
dy =

b

2
δmn,

we have

Cm =
2

b

ˆ b

0

V0 sin
(mπ
b
y
)
dy =

2V0

b

b

mπ

[
− cos

(mπ
b
y
)]y=b

y=0
=

{
4V0
mπ
, m odd,

0, m even.

The whole analysis shows that

Φ =
4V0

π

(
sin
(π
b
y
)
e−

π
b
x +

1

3
sin

(
3π

b
y

)
e−

3π
b
x +

1

5
sin

(
3π

b
y

)
e−

5π
b
x + · · ·

)
is our desired electrostatic potential. �

Example 33. Let us solve the following electrostatic problem. The idea is to find con-
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stant an, bn such that

Φ = Φ(r, ϕ) =
∞∑
n=0

rn (an cosnϕ+ bn sinnϕ)

solves our boundary value problem. We must have

∞∑
n=0

an cosnϕ+ bn sinnϕ = Φ(1, ϕ) =

{
0, if 0 < ϕ < π,

1, if π < ϕ < 2π.
(3.13)

This can be done by Fourier analysis methods, as we now elaborate. Integrating
´ 2π

0
dϕ

gives

2πa0 = π ⇒ a0 =
1

2
.

Multiplying both sides of (3.13) by cosmϕ (respectively, sinmϕ), m = 1, 2, . . ., and then

integrating
´ 2π

0
dϕ, because of the orthogonality relations

ˆ 2π

0

cosnϕ cosmϕdϕ =

ˆ 2π

0

sinnϕ sinmϕdϕ = πδmn,

we have

am =
1

π

ˆ 2π

π

cosmϕdϕ = 0,

bm =
1

π

ˆ 2π

π

sinmϕdϕ =
1

mπ
[− cosmϕ]ϕ=2π

ϕ=π =

{
− 2
mπ
, m odd,

0, m even.

The whole analysis shows that

Φ =
1

2
− 2

π

(
r sinϕ+

r3

3
sin 3ϕ+

r5

5
sin 5ϕ+ · · ·

)
is our desired electrostatic potential. �

Example 34. Suppose we put an uncharged conducting sphere of radius ρ at the origin,
inside an initially uniform electric field E = E0ẑ. To find the potential outside the sphere,
we try to constant a, b, c, an, bn such that the harmonic function

Φ(R, θ) = a+
b

R
+ c log tan(θ/2) +

∞∑
n=1

(
anR

n + bnR
−n−1

)
Pn(cos θ)

satisfies our boundary conditions:
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• Φ(ρ, θ) = (constant) for every θ.

• Φ(R, θ) ≈ −E0z + (constant) = −E0R cos θ + (constant) for every θ and large R.

• 0 = (total charge) = −ε0
¸

sphere R=ρ
∂Φ
∂R

(ρ, θ)dS.

The second condition gives

0 = c = a2 = a3 = · · · , a1 = −E0,

so

Φ = a+
b

R
+

(
−E0R +

b1

R2

)
cos θ +

∞∑
n=2

bn
Rn+1

Pn(cos θ).

The first condition gives

b1 = E0ρ
3, 0 = b2 = b3 = · · · ,

so

Φ = a+
b

R
− E0

(
R− ρ3

R2

)
cos θ.

The last condition gives

0 = −ε0
ˆ (

−b
ρ2
− 3E0 cos θ

)
ρ2dϕdθ,

hence, b = 0. The whole analysis shows that

Φ = a− E0

(
R− ρ3

R2

)
cos θ

is our desired electrostatic potential. �

Theorem 35. The exact electrostatic potential due to a spherical shell of radius a around
the origin, carrying a surface charge distribution σ = σ0 cos θ is given by

Φ =

{
1

4πε0

p·R̂
R2 , R ≥ a,

σ0
3ε0
z, R ≤ a,

where p = 4
3
πa3σ0ẑ is the dipole moment of the distribution.
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Proof. [NB, Examples 2.17, 3.6], [Fey, Volume II, Section 6.4]. �

Remark 36. One can easily find a plenty of three-variable harmonic functions in carte-
sian coordinates. For example, the function(

ae
√
−1αx + a′e−

√
−1αx

)(
be
√
−1βy + b′e−

√
−1βy

)(
ce
√
−1γz + c′e−

√
−1γz

)
,

is harmonic for any choice a, a′, b, b′, c, c′, α, β, γ of constants satisfying α2 + β2 + γ2 = 0.
However, to find three-variable harmonic functions in cylindrical and spherical coordi-
nates, one needs the Bessel and associated Legendre functions. We are not going to
pursue this, but the details can be found [AW, Chapter 9].

3.6.2 Method of images

We explain this method by several examples.

Example 37. Consider a charge q at the point (0, 0, d) on the z-axis, above an infinite
plane conductor on the xoy-plane of potential zero. The problem is to find the electro-
static potential Φ on the whole space R3. By the uniqueness theorem, Φ vanishes on
z < 0. The electrostatic boundary value problem on z > 0 is equivalent to the problem
of finding the electrostatic potential of a system of two charges, q at (0, 0, d) and −q at
(0, 0,−d). By the uniqueness theorem,

Φ(x, y, z) =

 q
4πε0

(
1√

x2+y2+(z−d)2
− 1√

x2+y2+(z+d)2

)
, if z ≥ 0,

0, if z < 0.

�

Exercise: Show that the total charge induced on the conductor in Example above
equals −q. (Hint. Integrate σ = ε0Ez = −ε0∂Φ/∂z.)

Example 38. Consider a point charge q at distance b from the center of a conducting
sphere of radius a and potential 0. The problem is to find the electrostatic potential Φ

on the whole space. By the uniqueness theorem, Φ vanishes inside the sphere. To find
the electrostatic potential outside the sphere, we try to construct an equivalent boundary
value problem. We use the mathematical fact: The locus of the points in space whose
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distances from two fixed points are in a constant ratio is a sphere whose center lies on
the line connecting the two fixed points. Proof of the fact. If the two fixed points are
(0, 0,±d), then the desired locus is the set of points (x, y, z) such that√

x2 + y2 + (z − d)2 = C
√
x2 + y2 + (z + d)2.

This can be written as

x2 + y2 +

(
z +

C2 + 1

C2 − 1
d

)2

=

(
2Cd

C2 − 1

)2

,

which is a sphere. In the special case C = 1, the locus is the bisecting plane z = 0. Q.E.D.
The idea is to put a certain charge q′ (to be determined), unlike q, on the line segment
connecting the charge q and the center of the sphere, such that the sphere becomes a
surface of constant potential zero. This happen if for any point P on the sphere of
distances R1(P ) and R2(P ) to the charges q′ and q, we have R1/R2 = −q′/q. Let A and
B be the two points of the intersection of the sphere with the line connecting q′ and q.
If x is the distance of q′ to the center of the sphere, we must have

a+ x

b+ a
=
R1(A)

R2(A)
= −q

′

q
=
R1(B)

R2(B)
=
a− x
b− a

.

This gives

x =
a2

b
, q′ = −a

b
q.

All this is shown in the picture above. �

Exercise: Find the electrostatic potential when a point charge q is put near a conductor
wedge of 90 degrees. (Hint. Three imaginary charges are needed.)

3.6.3 Method of Brownian motion

Suppose the Laplace equation ∆Φ = 0 in an open subset U ⊆ RN , together with the
Dirichlet boundary condition Φ = f on the boundary S of U . There is a probabilistic
way to solve this problem [Tay, Chapter 11][GM]: If, for any point P ∈ U and any
(measurable) subset E ⊆ S, µP (E) denotes the probability that the Brownian motion
(random walk, Wiener process) started at P , first crosses the boundary through E, then
the unique solution to the Dirichlet problem is given by

Φ(P ) =

ˆ
S

fdµP ,

where the integration is in the sense of Lebesgue.
In some situations, it is possible to guess the probability measure µ, called the har-

monic measure, and this gives a clever way to solve the Dirichlet problem. Here is
an example. We want to a harmonic function Φ(x, y) on y > 0, whose values on the
x-axis is given by the piecewise step function shown in the figure. The probability that
a Brownian motion started at P , first exists the x-axis through the yellow part is given
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by the angle α1 divided by π, and likewise for the other parts. Therefore, the solution to
our problem is given by the finite sum

4∑
j=1

αj
π

Φj.

Exercise: Use the following figure to prove that the solution to the Laplace equation
Φxx + Φyy = 0 on y > 0 with the boundary condition Φ|y=0 = f is given by

Φ(x, y) =
1

π

ˆ ∞
−∞

y

(x− ξ)2 + y2
f(ξ)dξ.

3.6.4 Method of conformal mappings

Methods of complex analysis can be used to solved two-dimensional electrostatic prob-
lems. We need the following facts:
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• Let z = x+
√
−1y, w = u+

√
−1v be two complex variables such that w depends in a

differentiable way on z, in the sense that the expression (w(z+h)−w(z))/h has a finite
limit as the complex variable h tends 0. Then, u(x, y) (as well as v(x, y)) is a harmonic
function, the transformation (x, y) 7→ (u, v) is conformal (namely, preserves angles
and orientation), and the harmonic functions of (x, y) are transformed to harmonic
functions of u, v.

• Any simply connected domain in the z-plane2, except the whole plane, can be con-
formally transformed to the upper-half plane. This is called the Riemann’s mapping
theorem, and is true whether or not the boundary of the domains are smooth or
not. There are explicit conformal maps, discovered by Schwartz and Christoffel, which
transform a polygonal domain to the upper half-plane.

• The unit disc in the z-plane is transformed to the upper-half plane by the mapping

z =

√
−1− w√
−1 + w

, w =
√
−1

1− z
1 + z

. (3.14)

Here is why: |z| < 1 corresponds to |w −
√
−1| < |w +

√
−1| <, and the upper-half

plane is the locus of points which are closed to
√
−1 than −

√
−1.

Here is a simple example. Many more can be found in [Chu, Chapters 9–12].

Example 39. Consider the two-dimensional inner Dirichlet problem illustrated in left
part of the following figure. Under the transformation (3.14),

u+
√
−1v =

√
−1

1− (x+
√
−1y)

1 + (x+
√
−1y)

=
2y

(1 + x)2 + y2
+
√
−1

1− x2 − y2

(1 + x)2 + y2
,

we need to solve the problem in the right part, which based on our knowledge from
Section 3.6.3 is solved by:

Φ(u, v) =
α

π
=

1

π
cot−1 u

v
.

Transforming back into the z-plane, we get

Φ(x, y) =
1

π
cot−1 2y

1− x2 − y2
.

�
2Namely, an open subset D ⊆ C such that both D and its complement with respect to the extended

plane C ∪ {∞} are connected.
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Exercise: Compare the solutions of Example 39 with Example 33.
Exercise: Find another solution for Example 32 using the conformal mapping

w = sin
(√
−1
(π
b
z −
√
−1

π

2

))
,

to map the region there to the upper-half plane.
The appendix gives a table of conformal mapping, taken from [Chu, Appendix 2].
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Chapter 4

Magnetostatics

4.1 Axioms

The next simplest level is to assume that: We are in the vacuum, charges are moving but
with steady (namely, time-independent) current. This is called magnetostatics, and is
governed by the differential axioms

∇ · E =
ρ

ε0
, ∇× E = 0, ∇ ·B = 0, ∇×B = µ0J.

In the previous chapter, we studies the first two axioms. In this chapter, we study the
first fundamental consequences of the axioms

∇ ·B = 0, ∇×B = µ0J. (4.1)

These differential equations, according to the divergence and Stokes theorems, can be
equivalently expressed by the following integral equations:

˛
S

B ·
−→
dS = 0,

˛
C

B ·
−→
dl = µ0I, (4.2)

where S is an arbitrary closed surface with boundary C, and I is the current passing
through S. (All such currents are equal because

¸
J · dS = − d

dt

´
ρdV = 0.) Note that

the direction of I and the orientation of C are consistent according to the right-hand rule.
We first want to justify that: The magnetostatic field produced by the volume current

density J is given by

B =
µ0

4π

ˆ
JdV × R̂0

R2
0

. (4.3)

Here are some theoretical/experimental justifications for this formula:

• It is immediate from the Helmholtz-Hodge theorem (Theorem 21) assuming some
growth conditions at infinity:

B = ∇×
ˆ
V

µ0J

4πR0

dV =
µ0

4π

ˆ
V

∇
(

1

R0

)
× JdV =

µ0

4π

ˆ
JdV × R̂0

R2
0

.
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This computation also shows that the magnetostatic field (4.3) can be written as B =
∇× A, where the magnetostatic potential A is given by

A =
µ0

4π

ˆ
JdV

R0

. (4.4)

(Another method to derive (4.4) is given in [NB, Section 8.5].)

• Experiments show that the magnetic force that a small element I
−→
dl of steady current

applies on another element I ′
−→
dl ′ of steady current is proportional to

II ′
−→
dl ′ × (

−→
dl × R̂0)

R2
0

= I ′
−→
dl ′ ×

(
I
−→
dl × R̂0

R2
0

)
.

Comparing this with the Lorentz law (1.1) show that the expression in the parenthesis

is the magnetic field generated by the steady current element I
−→
dl . This fact together

with the superposition principle proves (4.3).

Remark 40. Sometimes we are assuming that our steady current is flowing along surfaces
or curves. Although in such situations the volume current density J is infinity, but the

formulas (4.3) and (4.4) are still valid if one replaces JdV by KdS or I
−→
dl , where K is

the surface current density (measured in ampere per meter), and I is the current.

Here are some examples to use the formulas (4.3) and (4.4) in action:

1. The magnetostatic field at the point
−→
R = rr̂ + zẑ, produced by a steady current I

flowing along the z-axis is given by

B =
µ0

4π

ˆ
Idz′ẑ × (rr̂ + zẑ − z′ẑ)

|rr̂ + zẑ − z′ẑ|3
=
µ0I

4π

ˆ
rϕ̂dz′

(r2 + (z − z′)2)
3
2

=
µ0Irϕ̂

4π

ˆ
dz′

(r2 + z′2)
3
2

,

which, after the change of variable z′ = r tanα, equals

µ0I

2π

ϕ̂

r
. (4.5)

Here is an easier way to derive this: By symmetry and the form of the integral (4.3),
B = Bϕ(r)ϕ̂. (That Br = Bz = 0 is justified in [NB, Example 8.3] by only using the

axioms (4.2).) Plugging this into the integral axiom
¸
B ·
−→
dl = µ0I applied to a circle

of radius r, with center on the z-axis, and lying in a plane perpendicular to ẑ gives

Bϕ × 2πr = µ0I.

Since ϕ̂
r

= −∇× (ẑ log r), the magnetostatic potential is given by

− µ0I

2π
log rẑ. (4.6)

Exercise: Derive (4.6) by extracting the “principal part” from the integral (4.4).
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2. The magnetostatic field at the point
−→
R = xx̂+yŷ+zẑ produced by the steady constant

surface current density Kŷ flowing on the xoy-plane is given by

B =
µ0

4π

ˆ
Kdx′dy′ŷ × (xx̂+ yŷ + zẑ − (x′x̂+ y′ŷ))

|xx̂+ yŷ + zẑ − (x′x̂+ y′ŷ)|3

=
µ0K

4π

ˆ
−(x− x′)ẑ + zx̂

((x− x′)2 + (y − y′)2 + z2)
3
2

dx′dy′ =
µ0K

4π

ˆ
x′ẑ + zx̂

(x′2 + y′2 + z2)
3
2

dx′dy′

=
µ0Kzx̂

4π

ˆ
r′dr′dϕ′

(r′2 + z2)
3
2

,

which, after the change of variable r′ = z tanα, equals

± µ0K

2
x̂, (4.7)

depending on whether z > 0 or z < 0. Here is an easier way to derive this: By
symmetry and the form of the integral (4.3), B = Bx(z)x̂, where Bx(x) is an odd
function of x. (That By = Bz = 0 is justified in [NB, Example 8.5] by only using

the axioms (4.2).) Plugging this into the integral axiom
¸
B ·
−→
dl = µ0I applied to a

rectangular loop of x-spread L and z-spread W gives

2Bx(z)× L = µ0KL.

Since x̂ = −∇× (zŷ), the magnetostatic potential is given by

∓ µ0K

2
zŷ. (4.8)

The integral axioms (4.2) and the computation of (4.3) in different examples says:
Magnetic field lines never start or stop at a point, but they always wrap in closed loops
around electric current sources.

Exercise: Using the integral axiom
¸
B ·
−→
dl = µ0I and symmetry considerations,

show that the magnetic field along the mid-circle of a torus wraped uniformly with wires
carrying uniform current I is given by B = ϕ̂µ0nI, where n = NI

2πr
is the number of wraps

per unit length.

61



4.2 Magnetic dipole

A magnetic dipole is a closed loop of electric current I. The quantity I times the area
of the loop is called the magnetic dipole moment and denoted by m. Let us place
the loop at xoy-plane with center at the origin, and find the approximate form of the
magnetostatic field produced by this dipole at points far away from the origin. At first,

we find an approximate formula for 1/R0 appearing in the integral (4.4).

1

R0

=
1∣∣∣−→R −−→R ′∣∣∣ =

1

|(R sin θ cosϕx̂+R sin θ sinϕŷ +R cos θẑ)− (a cosϕ′x̂+ a sinϕ′ŷ)|

=
(
R2 + a2 − 2aR sin θ cos(ϕ− ϕ′)

)− 1
2 ≈ R

(
1 +

a

R
sin θ cos(ϕ− ϕ′)

)
.

Then,

A =
µ0

4π

ˆ
I
−→
dl

R0

≈ µ0Ia

4πR

ˆ π

0

(
1 +

a

R
sin θ cos(ϕ− ϕ′)

)
(− sinϕ′x̂+ cosϕ′ŷ) dϕ′

=
µ0Ia

2 sin θ

4πR2

ˆ 2π

0

cos(ϕ− ϕ′) (− sinϕ′x̂+ cosϕ′ŷ) dϕ′ =
µ0Ia

2 sin θ

4R2
ϕ̂ =

µ0

4π

m× R̂
R2

,

(4.9)

B ≈ ∇×
(
µ0Ia

2 sin θ

4R2
ϕ̂

)
=
µ0

4π

|m|
R3

(
2 cos θR̂ + sin θθ̂

)
=
µ0

4π

3(m · R̂)R̂−m
R3

.

We recognize similarity with the electric dipole.
There is a more conceptual way to drive (4.9), which also show that the formula is

valid for every other loop. According to the identity (2.26), we have

A =
µ0I

4π

˛
C

−→
dl

R0

=
µ0I

4π

ˆ
S

−→
dS ×∇′

(
1

R0

)
=
µ0I

4π

ˆ
S

−→
dS × R̂0

R2
0

≈ µ0I

4π

(ˆ −→
dS

)
× R̂

R2
=
µ0

4π

m× R̂0

R2
0

.
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Chapter 5

Electrodynamics

Unlike the previous two chapters, this chapter assumes no restriction on the motion
of charges or the time variation of currents. The study of electromagnetic phenomena
in such generality is called electrodynamics. Experiments show that the divergence
axioms of electrostatics and magnetostatics

∇ · E =
ρ

ε0
, ∇ ·B = 0

are still valid, but the curl axioms ∇× E = 0, ∇×B = µ0J need to be modified to

∇× E = −∂B
∂t
, ∇×B = µ0J + µ0ε0

∂E

∂t
.

The first correction is due to Faraday (Section 5.1.1), and the second due to Maxwell
(Section 5.1.2). The totality of the axioms

∇ · E =
ρ

ε0
, ∇ ·B = 0, ∇× E = −∂B

∂t
, ∇×B = µ0J + µ0ε0

∂E

∂t

are called Maxwell’s equations, and this chapter is devoted to their study.

5.1 Axioms

5.1.1 Electric induction

In electrodynamics, the electrostatic axiom ∇× E = 0 should be corrected to

∇× E = −∂B
∂t
, (5.1)

or its equivalent integral version
˛
C

E ·
−→
dl = −

ˆ
S

∂B

∂t
·
−→
dS, (5.2)

where S is an arbitrary oriented surface with boundary C, and the orientation of S and
C are consistent according to the right-hand rule.
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Here we try to clarify the experimental origin of this axiom. Faraday discovered that
when the magnetic flux passing through a wire circuit changes with time, an electric
current is induced in the circuit, and the direction of the induced current is such that the
magnetic field generated by it opposes the change of the original magnetic flux. (This
latter fact was discovered by Lenz.) In general, the generation of a conduction current
is attributed to a electromotive force (or voltage), defined as the amount of work
done by the electric and magnetic fields to circulate an imaginary unit charge around
the circuit. Faraday’s experiments showed that: When the magnetic flux passing through
a wire circuit changes with time, the induced electromotive force equals the time rate of
change of the magnetic flux. Since the electromagnetic force experienced by a unit charge
equals E + v ×B, the Faraday law can be expressed by

˛
C

(E + v ×B) ·
−→
dl = − d

dt

ˆ
S

B ·
−→
dS.

The minus sign comes from the Lenz law. This equation, using the transport theorem
(2.31) and the axiom ∇ ·B = 0, reduces to (5.2). Note that the change of flux

d

dt

ˆ
S

B ·
−→
dS =

ˆ
S

∂B

∂t
·
−→
dS −

ˆ
C

v ×B ·
−→
dl

might be because of the change in the magnetic field (the first term), or the change in
the shape or orientation of the circuit (the second term).

Example 41. Let us compute the electromotive force induced in a h × w rectangular
wire loop which is rotating with angular velocity ω in a uniform time-varying magnetic
field B = B(t)ŷ. We are assuming that the loop is in the xoz plane at t = 0. Since the

unit normal vector to the loop is n̂ = ŷ cosα− ẑ sinα, α = ωt, the magnetic flux is given
by ˆ

B ·
−→
dS = ŷB(t) · n̂

ˆ
dS = hwB(t) cosωt.
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Therefore, the electromotive force is given by

− d

dt
(hwB(t) cosωt) = −hwB′(t) cosωt+ hwωB(t) sinωt.

Note that the first term is due to change of the magnetic field, and the second term is
due to rotation. �

Exercise: A conducting disk of radius a is rotating with a constant angular frequency
ω about its central axis, and is placed in a uniform and constant magnetic field B which
is parallel to its axis of rotation. Brush contacts are provided at the axis and on the rim

of the disk. Determine the electromotive force produced. (Hint. Compute
´
v × B ·

−→
dl .

The answer is Bωa2/2. It is helpful to read [NB, Page 360] or [Fey, Volume II, Section
17.2].)

5.1.2 Displacement current

Before Maxwell, the curl of the magnetic field had been given by

∇×B = µ0J. (5.3)

Maxwell noticed that this equation is incompatible with the other axioms plus the con-
tinuity equation:

0 = ∇ · ∇ ×B = µ0∇ · J = −µ0
∂ρ

∂t
= −µ0ε0

∂(∇ · E)

∂t
= ∇ ·

(
−µ0ε0

∂E

∂t

)
,

and that the contradiction disappears if one corrects (5.3) to

∇×B = µ0J + µ0ε0
∂E

∂t
. (5.4)

The added term JD := ε0
∂E
∂t

has the dimension of the electric durrent density J , and is
called the displacement current density because of the interpretation of it given in
the following example.

Example 42. Suppose that a variable (say sinusoidal) voltage V is applied to a parallel-
plate capacitor, the yellow part in the following figure. The capacitor gets the polarization
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charge

q =

ˆ
ε0E ·

−→
dS = ε0EA = ε0

V

d
A = CV,

where C = ε0A/d is the capacitance of the capacitor. The current flowing through the
wire of the circuit equals I = dq/dt = CdV/dt. However this (conduction) current can
not pass through the capacitor. The circulation of B along the closed curve C shown

in the figure is given by µ0I + µ0ID where I =
´
S
J ·
−→
dS and ID =

´
S
JD ·

−→
dS are the

usual and displacement currents passing through any surface S which bounds C. When
S = S1, I = C dV

dt
and ID = 0. When S = S2, then I = 0 and

ID = ε0

ˆ
S2

∂E

∂t
·
−→
dS = ε0

d

dt

˛
S2−S1

E ·
−→
dS =

dq

dt
= C

dV

dt
.

One sees that I + ID is the same for S = S1 and S = S2, as it must be. �

Remark 43. In electrodynamics, the electric field inside conductors might not vanish.
The reason is that when the fields are changing, the charges in conductors might not have
enough time to rearrange themselves to make the field zero. The only general statement
is that electric fields in conductors produce currents.

5.1.3 Maxwell’s equations, Wave equation

The fundamental axioms of electrodynamics in the vaccum are:

∇ · E =
ρ

ε0
, ∇ ·B = 0, ∇× E = −∂B

∂t
, ∇×B = µ0J + µ0ε0

∂E

∂t
.

These are called Maxwell’s equations. They are accompanied by the continuity equation

∇ · J +
∂ρ

∂t
= 0,

(Example 7) and the Lorentz law

F = qE + qv ×B.

In order to solve the Maxwell’s equation in R3, one bring the potential functions into
the scene. Since ∇ ·B = 0, B can be expressed as

B = ∇× A. (5.5)
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Since

∇× E = −∂B
∂t

= − ∂

∂t
(∇× A) = −∇× ∂A

∂t
,

it follows that E can be expressed as

E = −∇Φ− ∂A

∂t
.

Plugging these two representation into the two other Maxwell’s equations gives

µ0J −µ0ε0
∂

∂t

(
∇Φ +

∂A

∂t

)
= µ0J +µ0ε0

∂E

∂t
= ∇×B = ∇× (∇×A) = ∇(∇·A)−∇2A,

ρ

ε0
= ∇ · E = −∇ ·

(
∇Φ +

∂A

∂t

)
= −∇2Φ− ∂

∂t
(∇ · A).

We rewrite them as

∇2A− µ0ε0
∂2A

∂t2
= −µ0J +∇

(
∇ · A+ µ0ε0

∂Φ

∂t

)
,

∇2Φ +
∂

∂t
(∇ · A) = − ρ

ε0
.

We have freedom in choosing the divergence of A (changing A to A+∇f does not change
(5.5), whatever scalar field f is), so we assume

∇ · A+ µ0ε0
∂Φ

∂t
= 0. (5.6)

This is called the Lorentz gauge. Inserting this into our previous equations gives

�2A = −µ0J, �2Φ = − ρ
ε0
. (5.7)

where the second-order differential operator

�2 := ∇2 − 1

c2

∂2

∂t2
(5.8)

is called d’Alembertian, and

c :=
1

√
µ0ε0

≈ 3× 108 meter

second

coincides with the speed of light. The equation �2u = f appears in all linear, oscillatory
phenomena, and is called the inhomogeneous wave equation [Sim, Pages 303–4, 372–
3].
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Theorem 44. (a) A solution of the wave equations (5.7) is given by

Φ
(−→
R, t

)
=

1

4πε0

ˆ ρ
(−→
R ′, t−R0/c

)
R0

dV, (5.9)

A
(−→
R, t

)
=
µ0

4π

ˆ J
(−→
R ′, t−R0/c

)
R0

dV. (5.10)

(b) A solution of the wave equations (5.7) in the time-harmonic case e
√
−1ωt is given

by

Φ̃
(−→
R
)

=
1

4πε0

ˆ
e−
√
−1kR0

R0

ρ̃
(−→
R ′
)
dV, (5.11)

Ã
(−→
R
)

=
µ0

4π

ˆ
e−
√
−1kR0

R0

J̃
(−→
R ′
)
dV, (5.12)

where k := ω
c

is the so-called wave number, and the tilde is used to denote the phasors1

or the Fourier transform

Φ̃
(−→
R,ω

)
= F

(
Φ
(−→
R, t

))
=

1√
2π

ˆ
R

Φ
(−→
R, t

)
e−
√
−1ωtdt,

Φ
(−→
R, t

)
= F−1

(
Φ̃
(−→
R,ω

))
=

1√
2π

ˆ
R

Φ̃
(−→
R,ω

)
e
√
−1ωtdω.

Proof. (a) Immediate from (b) by the Fourier transform. Direct arguments are given in
[NB, Section 15.2] or [Fey, Volume II, Chapter 21].

(b) Under the Fourier transform, the wave equations (5.7) become(
∇2 + k2

)
Ã = −µ0J̃ ,

(
∇2 + k2

)
Φ̃ = − ρ̃

ε0
,

the so-called Helmholtz equations. Setting

G(
−→
R ) :=

1

4π

e−
√
−1kR

R
,

according to Theorem 20, we have (∇2 + k2)G(
−→
R ) = −δ, therefore(

∇2 + k2
)

Φ̃(
−→
R ) =

1

ε0

(
∇2 + k2

) ˆ
ρ(
−→
R ′)G(

−→
R −

−→
R ′)dV =

1

ε0

ˆ
ρ(
−→
R ′)

(
∇2 + k2

)
G(
−→
R −

−→
R ′)dV = − 1

ε0

ˆ
ρ(
−→
R ′)δ(

−→
R −

−→
R ′)dV = −ρ(

−→
R )

ε0
.

We have shown (∇2 + k2) Φ̃ = −ρ/ε0. Decomposing into cartesian components proves

(∇2 + k2) Ã = −µ0J̃ . �

The formulas (5.9), (5.10) are called retarded potentials, because of the time delay
R0/c: To compute the potentials at time t, we must use the values of sources at earlier
times t − R0/c, and that the influences propagate with the speed of light. When R0 �
c (or ω = 0 in formulas (5.11), (5.12)), electrodynamics reduces to electrostatics or
magnetostatics.

1[Che, Sections 7.7.1–2].
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5.2 Flow of energy

Consider the following computation:

−∇ ·
(
E × B

µ0

)
= −(∇× E) · B

µ0

+

(
∇× B

µ0

)
· E =

∂B

∂t
· B
µ0

+

(
J + ε0

∂E

∂t

)
· E

=
∂

∂t

(
|B|2

2µ0

+
ε0|E|2

2

)
+ J · E.

We have

• u := |B|2
2µ0

+ ε0|E|2
2

is the amount of energy saved per unit volume by the magnetic and

electric fields [Jac, Section 6.7].

• J · E, depending on the situation, is the amount of energy dissipated per unit volume
per second in conductors (if J is the conduction current density given by conductivity
σ times E), or the energy used per unit volume per second to accelerate charges (if J
is the convection current density given by volume charge density ρ times the velocity),
or minus the amount of energy produced by a source per unit volume per second. The
reason is that the amount of mechanical work done by the electromagnetic field on the
infinitesimal charge dq = ρdV per unit time is given by

(ρE + ρv ×B) ·
−→
dldV

dt
= E · (ρv)dV + 0 = J · EdV.

Therefore, by the law of conservation of energy,

ˆ
−∇ ·

(
E × B

µ0

)
dV =

˛
S

E × B

µ0

·
−→
dS

is the amount of electromagnetic energy that passes per second through per unit area.
The vector field

P = E × B

µ0

, (5.13)

is called the Poynting vector. In the time-harmonic case,

P = Re
(
Ẽe
√
−1ωt

)
× Re

(
B̃

µ0
e
√
−1ωt

)
=

(
Ẽe
√
−1ωt + Ẽ∗e−

√
−1ωt

)(
B̃e
√
−1ωt + B̃∗e−

√
−1ωt

)
4µ0

=
1

2µ0
Re
(
Ẽ × B̃e2

√
−1ωt + Ẽ × B̃∗

)
,

so the average of P is given by

〈P 〉 =
1

2
Re

(
Ẽ × B̃∗

µ0

)
. (5.14)
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5.3 Electromagnetic radiation

To explain the possibility of energy transmit by electromagnetic waves, we will analyze
the simplest model: Hertzian dipole. It consists of an infinitesimal conducting wire of
length dl which terminates in two small conductive spheres (capacitive end-loading), and
carries a uniform, sinusoidal current i = Re(I exp

√
−1ωt). The retarded potential (5.12)

is given by

A = ẑ
µ0Idl

4π

e−
√
−1kR

R
,

where k = ω/c = 2π/λ is the wave number. Therefore, the electric and magnetic fields
and their far-field approximations (kR = 2πR/λ� 1) are given by

B = ∇× A = −ϕ̂µ0Idl

4π
k2 sin θ

(
1√
−1kR

+
1(√
−1kR

)2

)
e−
√
−1kR

≈ ϕ̂
√
−1

µ0Idl

4π
k sin θ

e−
√
−1kR

R
,

E =
∇×B√
−1ωµ0ε0

= −Idlη0k
2

4π
e−
√
−1kR×(

R̂2 cos θ

(
1

(
√
−1kR)2

+
1(√
−1kR

)3
)

+ θ̂ sin θ

(
1√
−1kR

+
1

(
√
−1kR)2

+
1(√
−1kR

)3
))

≈ θ̂
√
−1

Idl

4π
kη0 sin θ

e−
√
−1kR

R
,

where η0 =
√
µ0/ε0.

The most important observation here is that: The the far-field approximations of
electric and magnetic fields are orthogonal to each other, with the same phase, and their
magnitudes vary inversely with the distance from the source, namely 1/R. Therefore, the
time-averaged Poynting vector (5.14) is nonzero, and varies like 1/R2, hence its integral
over large-radius spheres is finite, which means that energy is radiated from the Herzian
dipole. This is in contrast with our cases in electrostatics and magnetostatics. (A static
charge has no magnetic field and its electric field varies like 1/R2. A steady current
produces electric and magnetic fields both vary like 1/R2. In both cases the integral of
the Poynting vector (5.13) over large-radius spheres is negligible, which means no energy
is transmitted from these structures.)
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A masterful, elementary description of the formation of electromagnetic waves is given
in [Fey, Volume II, Section 18.4]: “How the electromagnetic energy is radiated? The
answer is: by the combined effects of the Faraday law ∇ × E = −∂B/∂t, and the new
term of Maxwell ∇ × B = −µ0ε0∂E/∂t. They cannot help maintaining themselves.
Suppose the magnetic field were to disappear. There would be a changing magnetic field
which would produce an electric field. If this electric field tries to go away, the changing
electric field would create a magnetic field back again. So by a perpetual interplay–by
the swishing back and forth from one field to the other–they must go on forever. It is
impossible for them to disappear. They maintain themselves in a kind of a dance–one
making the other, the second making the first–propagating onward through space.”

5.4 Special relativity considerations

A reasonable, general principle in physics– suggested by Einstein’s special theory of
relativity– is that the laws of physics should give the same results in all inertial reference
frames, namely, with respect to observers moving with constant velocity (= no accelera-
tion) with respect to each other. (In the realm of mechanics, this had been suggested by
Newton.) Here are some situations that such considerations appear in electromagnetics:

• The Lorentz force qE + qv × B experienced by a point charge q depends on the
inertial frame chosen. To be more specific, assume that a unit point charge, in
constant velocity with respect to the laboratory table, is in the magnetic field B
of a steady current. The charge experiences the force v × B. With respect to a
reference installed on the charge, there is no v × B, so it is reasonable to assume
that the magnetic field B in the former frame has transformed to the electric field
E = v × B in the latter. We give an explanation for this transformation in this
chapter. (A direct, brilliant, elementary explanation is given in [Fey, Volume II,
Section 13.6].)

• Maxwell discovered that the speed of the propagation of electromagnetic waves in
vacuum equals 1/

√
µ0ε0 ≈ 3 × 108 m

s
, which coincides with the speed of light mea-

sured different experiments. This miraculous coincidence between experiments on
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charges (ε0), currents (µ0), and light left him no doubt that light is an electro-
magnetic wave. However, this discovery posed a big question: The speed of the
electromagnetic wave is 1/

√
µ0ε0 in all inertial frames, and this contradict with

the Galilean law of addition of velocities, which is itself based on the classical,
fundamental perceptions of the Euclidean space and absolute time.

Some notations used throughout this section. We assume two inertial reference frames
O,O′, with parallel axes, whose origins coincided at the initial time t = 0, but afterwards
O′ is moving with constant speed v along the z-axis. The spatial cartesian coordinates
and time of a common event (or phenomenon) that O and O′ measure are denoted by
(x, y, z, t) and (x′, y′, z′, t′), respectively. We also set

β :=
v

c
, γ :=

1√
1− β2

.

According to the classical mentality, the measurements in O and O′ are related by
the Galilean transformation:

(x′, y′, z′, t′) = (x, y, z − vt, t) .

According to this transformation, the speed of a light signal propagating in the z direction,
measured in O and O′ should be related by

c = c′ + v.

However, the electromagnetic wave equation describing the propagation of light in vacuum
(Section 5.1.3) says

c = c′.

The problem is that the d’Alembertian differential operator is not invariant under Galilean
transformations:

�2f =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
− 1

c2

∂2f

∂t2
= �′2f +

v2

c2

∂2f

∂t′2
− 2v

c2

∂2f

∂t′∂z′
.

However:

Theorem 45. (a) The d’Alembertian differential operator is invariant under the Lorentz
transformation given by

(x′, y′, z′, t′) =
(
x, y, γ(z − vt), γ

(
t− vc−2z

))
.

The inverse transform is given by

(x, y, z, t) =
(
x′, y′, γ(z′ + vt′), γ

(
t′ + vc−2z′

))
.

(b) The Lorentz transformation leaves the quadratic form x2 +y2 +z2−c2z2 invariant,
namely

x2 + y2 + z2 − c2t2 = x′2 + y′2 + z′2 − c2t′2.
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Proof. (a) Let us find constant A,B,C,D such that the transformation

x′ = x, y′ = y, z′ = Az +Bct, ct′ = Cz +Dct,

leaves the d’Alembertian invariant. By the chain rule,

fxx = fx′x′ , fyy = fy′y′ ,

fz = Afz′ +
C

c
ft′ , ft = Bcfz′ +Dft′ ,

fzz = A

(
Afz′z′ +

C

c
fz′t′

)
+
C

c

(
Aft′z′ +

C

c
ft′t′

)
= A2fz′z′ +

2AC

c
fz′t′ +

C2

c2
ft′t′ ,

ftt = B2c2fz′z′ + 2BDcfz′t′ +D2ft′t′ .

Therefore,

�2f = fxx + fyy + fzz −
1

c2
ftt

= fx′x′ + fy′y′ +
(
A2 −B2

)
fzz +

2(AC −BD)

c
fz′t′ +

C2 −D2

c2
ft′t′ .

This shows that �2f = �′2f exactly when

A2 −B2 = 1, AC −BD = 0, D2 − C2 = 1.

One can easily check that these relations are satisfied for the Lorentz transformation.
(b) Similar arguments work. �

Einstein suggested that: The space and time measurements of the observers O,O′

are, in reality, related by the Lorentz transformation. This was a revolutionary idea in
physics. Assuming this mentality, it is reasonable to agree that:

• Time dilation. For an event occurring in the origin of O′, we have

0 = z′ = γ(z − vt) =⇒ z = vt =⇒ t′ = γ
(
t− vz/c2

)
= γ

(
t− tv2/c2

)
= t/γ.

Doing two measurements,

|t′2 − t′1| = |t2 − t1| /γ < |t2 − t1| .

In words: An observer will measure the moving clock as ticking slower than a clock
that is at rest in the observer’s own reference frame.

• Length contraction. The length of a rod which is at rest with respect to O′, and it
situated on the z′-axis from z′1 to z′2, becomes smaller when measured with respect
to O:

l′ = |z′2 − z′1| = |γ(z2 − vt)− γ(z1 − vt)| = γ |z2 − z1| = γl > l.
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• What could be a mathematical framework to formalize Einstein’s idea? In Chapter
2, we defined vectors as triples of real numbers which under the rotations of coordi-
nate systems behave the same way as the components of the position vector (x, y, z)
behave. The fundamental invariant quantity here is the square length x2 + y2 + z2.
If physical laws are expressed in the language of vector calculus, then we can make
sure that they give the same results under the rotation of coordinates. To answer
the question above, let us denote the spatial coordinates x, y, z by x1, x2, x3, and
the time variable t by x4 =

√
−1ct. We do so, because then, the d’Alembertian

operator is given by �2 =
∑4

µ=1 ∂
2/∂x2

µ, and the quadratic form which is invari-

ant under the Lorentz transform becomes
∑4

µ=1 x
2
µ. Then, the Lorentz point

xµ = (x1, x2, x3, x4) changes as

x′µ =
4∑

ν=1

aµνxν , aµν :=


1 0 0 0
0 1 0 0
0 0 γ

√
−1βγ

0 0 −
√
−1βγ γ

 , (5.15)

under the Lorentz transform. Note that the matrix aµν is orthogonal in the sense
that

4∑
µ=1

aµνaµλ =

{
1, ν = λ,

0, ν 6= λ.

Equivalently, the inverse transformation is given by

xµ =
4∑

ν=1

x′νaνµ.

To simplify notations, we accept the Einstein summation convention: Always
sum over repeated indices. Then, (5.15) is written as

x′µ = aµνxν .

Those physical quantities which does not change under the Lorentz transform are
called Lorentz scalars. Lorentz vectors (or four-vectors) are those quantities
Aµ = (A1, A2, A3, A4) which under the Lorentz transform change exactly the same
way as the Lorentz position vector (x1, x2, x3, x4) changes:

A′µ = aµνAν .

For example, if Φ is a Lorentz scalar field, then

�Φ :=

(
∂Φ

∂xµ

)
µ=1,2,3,4

,

called the Lorentz gradient of Φ, is a Lorentz vector field, because

∂Φ

∂x′µ
=

∂Φ

∂xν

∂xν
∂x′µ

= aµν
∂Φ

∂xν
.
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On the other hand, if Aµ is a Lorentz vector field, then

� · Aµ :=
4∑

µ=1

∂Aµ
∂xµ

,

called the Lorentz divergence of Aµ, is a Lorentz scalar field, because

∑
µ

∂A′µ
∂x′µ

=
∑
µ,ν

∂A′µ
∂xν

∂xν
∂x′µ

=
∑
µ,ν

∂A′µ
∂xν

aµν =
∑
ν

∂

∂xν

(∑
ν

A′µaµν

)
=
∑
ν

∂Aν
∂xν

.

Therefore, if Φ is a Lorentz scalar field, then

�2Φ := � · (�Φ) =
4∑

µ=1

∂2Φ

∂x2
µ

=
∂2Φ

∂x2
+
∂2Φ

∂y2
+
∂2Φ

∂z2
− 1

c2

∂2Φ

∂t2
,

called the Lorentz Laplacian (or d’Alembertian) of Φ, is a Lorentz scalar field.
Lorentz tensors of rank two are those quantities Tµν , consisting of 16 compo-
nents, which under the Lorentz transform change as

T ′µν = aµλaνσTλσ.

For example, if Aµ is a Lorentz vector field, then

Tµν :=

(
∂Aµ
∂xν

)
µ,ν=1,2,3,4

is a Lorentz tensor of rank two, because

∂A′µ
∂x′ν

=
∂

∂x′ν
(aµλAλ) = aµλ

∂Aλ
∂x′ν

= aµλ
∂Aλ
∂xσ

∂xσ
∂x′ν

= aµλaνσ
∂Aλ
∂xσ

. (5.16)

Lorentz tensors of higher rank can be defined similarly. The upshot of all these
is that: For physical laws to give the same result in inertial frames, they show be
expressed in terms of Lorentz tensors.

Next, we are going express Maxwell’s equations (Section 5.1.3) in terms of Lorentz
tensors. The continuity equation

∇ · J +
∂ρ

∂t
= 0

can be expressed as
� · Jµ = 0,

if we introduce the source Lorentz vector field

Jµ =
(
J1, J2, J3,

√
−1cρ

)
.
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Accordingly, the Lorentz gauge (5.6) can be expressed as

� · Aµ = 0,

if we introduce the potential Lorentz vector field

Aµ =
(
A1, A2, A3,

√
−1Φ/c

)
.

Then, the equations (5.7) are combined into

�2Aµ = −µ0Jµ for each µ = 1, 2, 3, 4.

The definitions

B = ∇× A, E = −∇Φ− ∂A

∂t

combine into

Fµν :=
∂Aµ
∂xν
− ∂Aν
∂xµ

=


0 B3 −B2 −

√
−1E1/c

−B3 0 B1 −
√
−1E2/c

B2 −B1 0 −
√
−1E3/c√

−1E1/c
√
−1E2/c

√
−1E3/c 0

 (5.17)

The main observation here is that: Fµν is a Lorentz-tensor field of rank two, called the
field-intensity Lorentz vector field. The reason is that, based on computations
(5.16), we have

F ′µν =
∂A′µ
∂x′ν
− ∂A′ν
∂x′µ

= aµλaνσ
∂Aλ
∂xσ

− aνσaµλ
∂Aσ
∂xλ

= aµλaνσFλσ.

The axioms

∇ · E =
ρ

ε0
, ∇×B = µ0J + µ0ε0

∂E

∂t

combine into
∂Fµν
∂xν

= µ0Jµ for each µ = 1, 2, 3, 4,

and the axioms

∇ ·B = 0, ∇× E = −∂B
∂t

combine into

∂Fµν
∂xλ

+
∂Fνλ
∂xµ

+
∂Fλµ
∂xν

= 0 for each pairwise distinct µ, ν, λ = 1, 2, 3, 4.

All these show that: From the viewpoint of the special theory of relativity, not E,B
but their combination (5.17) is the essential notion. In different inertial frames, electric
and magnetic field transform into each other. The transformation rule for E,B comes
from the transformation rule for the field-intensity Lorentz tensor field Fµν :

F ′µν = aµλaνσFλσ.
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Writing it up, we have{
(E ′1, E

′
2, E

′
3) = (γ(E1 − cβB2), γ(E2 + cβB1), E3) ,

(B′1, B
′
2, B

′
3) = (γ(B1 + βE2/c), γ(B2 − βE1/c), B3) ,

or, equivalently,

E ′‖ = E‖, B′‖ = B‖, E ′⊥ = γ (E⊥ +−→v ×B⊥) , B′⊥ = γ
(
B⊥ − c−2−→v × E⊥

)
,

where −→v = vẑ, and ‖,⊥ denote the components of vectors parallel and perpendicular to
v, respectively. Therefore,

E ′ = E‖ + γ (E⊥ +−→v ×B⊥) =
E · −→v
v2
−→v + γ

(
E − E · −→v

v2
−→v +−→v ×

(
B − B · −→v

v2
−→v
))

= γ (E +−→v ×B)− (γ − 1)−→v E ·
−→v

v2
,

and similarly for B′: {
E ′ = γ (E +−→v ×B)− (γ − 1)

−→v ·E
v2
−→v ,

B′ = γ
(
B − −→v ×E

c2

)
− (γ − 1)

−→v ·B
v2
−→v .

(5.18)

Exercise: Derive the transformation rule for the charge and current densities ρ, J from
the transformation rule for the Lorentz vector field Jµ.

Example 46. Consider a thin, infinitely-long cylinder along the z-axis, with a uniform
linear charge density λ, and a steady, uniformly distributed current I. With respect to

the observer O at rest with respect to the cylinder, based on the formulas derived in
Sections (3.1) and (4.1), we have the electric and magnetic fields given by

E =
λ

2πε0r
r̂, B =

µ0I

2πr
ϕ̂.

With respect to the observer O′ moving with velocity v along the z-axis, according to the
transformation rules (5.18), the electric and magnetic fields are given by

E ′ =
γ

2πr

(
λ

ε0
− µ0Iv

)
r̂, B′ =

γ

2πr

(
µ0I −

vλ

c2ε0

)
ϕ̂.

This shows that if v = λc2/I (respectively, v = I/λ), then the electric (respectively,
magnetic) effects disappear. �
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Example 47. Consider a point charge q moving with constant velocity v along the z-axis.
With respect to the observer O′ installed on the charge, based on the formulas derived
in Sections (3.1) and (4.1), we have the electric and magnetic potentials and fields are
given by

Φ′ =
q

4πε0R′
, A′ = 0, E ′ =

q

4πε0R′3
−→
R ′, B′ = 0.

Using the transformation rule of the Lorentz scalar field Aµ and the Lorentz vector field
Fµν , the electric and magnetic potentials and fields with respect to the observer O are
given by

Φ =
γq

4πε0R′
, A =

γµ0vq

4πR′
ẑ, E =

qγ3(1− β2)

4πε0R′3
(rr̂ + (z − vt)ẑ) , B =

µ0vqγr

4πR′3
ϕ̂.

�

Exercise: Read the example in [Fey, Volume II, Section 13.6], and explain it in your
own words.

Exercise: Show that E · E − c2B ·B is a Lorentz scalar field.
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Chapter 6

Topics

6.1 Antennas

Reference: [Che, Chapter 11]

6.2 Monopole principal bundle

Reference: [Nab, Chapter 0], [Jam, Chapter 12]

6.3 The linking number of knots

Suppose two (smooth) closed oriented curves C,C ′ in the three dimensional space, which
do not intersect. Using electromagnetic theory, Gauss discovered a topological invariant
which describes the number of times that each curve winds around the other [Jam, Chap-
ter 12]. To derive this invariant, we assume a uniform and steady current I flowing along
C ′, and compute the circulation of the produced magnetic field along C. The magnetic
field is given by (4.3), so by the axiom (4.2), we have

nµ0I =

˛
C

B ·
−→
dl =

µ0

4π

˛
C

˛
C′

I
−→
dl ′ ×

−→
R 0

R2
0

·
−→
dl ,

where n denotes the number of times that the current I crosses a surface S whose bound-
ary is C. The integer-valued quantity

n =
1

4π

˛
C

˛
C′

−→
R 0 ×

−→
dl ·
−→
dl ′

R2
0

is called the linking number of knots C,C ′. In cartesian coordinates, the linking
number is given by the following expression

1

4π

˛
C

˛
C′

(x− x′) (dydz′ − dzdy′) + (y − y′) (dzdx′ − dxdz′) + (z − z′) (dxdy′ − dydx′)(
(x− x′)2 + (y − y′)2 + (z − z′)2) 3

2

.
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The linking number is an integer-valued topological invariant. Reversing the orienta-
tion of either of the curves negates the linking number, while reversing the orientation of
both curves leaves it unchanged.

Exercise: Prove that the winding number of an oriented closed curve in the xy-plane
equals its linking number with the z-axis.
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Appendix A

Table of conformal mappings [Chu,
Appendix 2]
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A′B ′ on parabola v2 = −4c2(u − c2).

x
AC

D

B

y

u

v

B ′
C ′

A′
D ′

FIGURE 4
w = 1/z.

xA
C

B

y

u

A′

B′

C ′

v

FIGURE 5
w = 1/z.

xC B A

D E F

y

uF ′
1

E ′D ′ C ′B ′ A′

v

FIGURE 6
w = exp z.



Brown-bapp02-v3 11/06/07 9:58am 454

454 Table of Transformations of Regions app. 2

uD ′ E ′ A′ B ′

C ′

1

v

x

DE

BA

C

y

FIGURE 7
w = exp z.

uD ′ E ′ A′ B ′

C ′

F ′

v

x

D

BA

E

F C

y

FIGURE 8
w = exp z.

xC

E A

D B

y

u
1

E ′ D ′ C ′ B ′ A′

v

FIGURE 9
w = sin z.

x

y

C

D

B

A

u

v

B ′ A′C ′

D ′

1
FIGURE 10
w = sin z.

x

C

F
A

B

E

D

y

uF ′
1

E ′D ′

C ′

B ′A′

v

FIGURE 11
w = sin z; BCD on line y = b (b > 0),

B ′C ′D′ on ellipse
u2

cosh2 b
+ v2

sinh2 b
= 1.



Brown-bapp02-v3 11/06/07 9:58am 455

Table of Transformations of Regions 455

x

i

A

B

C

D

E

y

u1 A′
E ′

C ′

D ′

B ′

v

FIGURE 12

w = z − 1

z + 1
.

u
1
C ′

E ′
A′

B ′

D ′
v

x
1

EDCBA

y

FIGURE 13

w = i − z

i + z
.

xx1x2

AC GE

F

B

D

y

u

v

F ′

A′ E ′
R0

C ′G ′

D ′

B ′

1 1–1

FIGURE 14

w = z − a
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1 + x1x2 +
√

(1 − x2
1 )(1 − x2

2 )

x1 + x2
,

R0 =
1 − x1x2 +

√
(1 − x2

1 )(1 − x2
2 )

x1 − x2
(a > 1 and R0 > 1 when − 1 < x2 < x1 < 1).
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√
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x1 + x2
,
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√
(x2
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= 1.
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.
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w = h

π
[(z2 − 1)1/2 + cosh−1 z].∗
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FIGURE 30

w = cosh−1
(

2z − h − 1

h − 1

)
− 1√

h
cosh−1

[
(h + 1)z − 2h

(h − 1)z

]
.

∗See Exercise 3, Sec. 122.
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