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0 Prologue (Optional)

Many dynamic phenomena in nature and (pure or applied) sciences could be described by differ-
ential equations. Here are some witnesses:

• Human population through time P(t), in many circumstances, obey either the logistic model

dP

dt
= kP(M− P),

where k and M are positive constants.

• The temperature T of a hot object placed in an environment of temperature C decreases
through time t according to

dT

dt
= −k(T − C),

where k is a positive constant.

• The population of rabbits x(t) and foxes y(t), through time t, in an isolated iceland with
unlimited food supply for rabbits, closely follows the following system of equations{

dx
dt

= x(a− by)
dy
dt

= −y(c− dx)
,

where a, b, c and d are positive constants. This is Lotka-Voterra’s prey-predator equation.

• Soap film surfaces are (locally) described by the following partial differential equation of
minimal surfaces: (

1 + u2
y

)
uxx − 2uxuyuxy +

(
1 + u2

x

)
uyy = 0.

• All classical electromagnetic and optical phenomena are governed by Maxwell’s equations:

∇ ·D = ρ

∇ · B = 0

∇× E = −∂B
∂t

∇×H = J+ ∂D
∂t

∇ · J+ ∂ρ
∂t

= 0

,

where
∇ := x̂

∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
,
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is the nabla operator. They express how electric (E and D) and magnetic (H and B) field
strengths and flux densities interact with themselves and with electric charge density (ρ) and
electric current (J). Electrical engineers use them to design circuits, antennas, control and
power devices, etc.

• Many equilibrium states in nature, for example electrostatic or magnetostatic phenomena,
are described by Laplace equation

∆u = 0,

where

∆ :=
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 ,

is the Laplacian operator.

• Many diffusion phenomena in nature, for example heat conduction in solids, is governed by
the heat equation

ut = ∆u.

• Many oscillatory phenomena in nature, for example vibrations of elastic strings or mem-
branes, are described by the wave equation

utt = ∆u.

• The dynamics of viscous1 fluids is described by Navier-Stokes equations. They are a collection
of nonlinear partial differential equations, describing the evolution of fluid’s velocity vector
field (u, v,w) and pressure p in terms of its density ρ, viscosity ν, and external forces. They
are used in the analysis and design of aircrafts, blood flow, air pollution, etc. Here is a version
of them satisfied inside homogeneous isotropic incompressible fluids under no external force:

ρ(ut + uux + vuy +wuz) = −px + ν∆u

ρ(vt + uvx + vvy +wvz) = −py + ν∆v

ρ(wt + uwx + vwy +wwz) = −pz + ν∆w

ux + vy +wz = 0

.

• The deviation u(x,y) of a thin elastic plate from its equilibrium horizontal position is gov-
erned by biharmonic equation:

uxxxx + 2uxxyy + uyyyy = 0.
1Viscosity accounts for friction between fluid molecules.

5



• Non-relativistic quantum effects of a single particle of mass m under the influence of a po-
tential function V(x,y, z) are described by the Schrödinger equation

i h
∂Ψ

∂t
= −

 h2

2m
∆Ψ+ VΨ,

where i is the imaginary unit,  h is the reduced Planck constant, and Ψ(x,y, z, t) is systems’s
wave function.

• Gravitational phenomena, for example the dynamics of solar system, are governed by Ein-
stein’s field equations. They are nonlinear system of partial differential equations describing
how the geometry of spacetime interacts with matter and energy.

• Atmospheric convection, more specifically the evolution of two-dimensional fluid layers uni-
formly warmed from below and cooled from above, is described by Lorentz system of ordi-
nary differential equations 

dx
dt

= σ(y− x)
dy
dt

= x(ρ− z) − y
dz
dt

= xy− βz

,

where σ, ρ and β are positive constants, and x, y and z are specific state variables.

I guess that is already enough to convince you of the ubiquity of differential equations in science
and engineering. The truth is that only very few of these equations have exact analytic general
solutions; however:

• Several simplified versions of these equations have exact or asymptotic analytic solutions,
and these solutions are of invaluable help to scientists and engineers in developing intuition
about the dynamics of the system under study.

• Different level of qualitative analysis is possible in all cases.

• Stable numerical solutions mostly exist. However, there are chaotic systems, for example the
Lorentz attractor, where numerical computations become unstable.

In these notes, after learning how to describe dynamic phenomena by differential equation in
Chapter 3, we discuss basic concepts and tools to analyze these equations analytically, qualitatively
and numerically. However we completely confine ourself to deterministic differential equations.
You are highly encouraged to take some complementary course on stochastic differential equations.
I have gathered all preliminaries in Chapter 1, and we will discuss each one in time of need during
the course.

6



1 Preliminaries

Natural numbers are positive integers

N = Z>0 = {1, 2, · · · }.

Nonnegative integers are
Z>0 = {0, 1, 2, · · · }.

1.1 Calculus

1.1.1 Real Variables

Having a set S of objects, a generic element of S is called a variable ranging over (or living on)
S. Variables are usually denoted by x, y, z, t, u, v, w, etc., whereas specific elements of a set are
usually denoted by a, b, c, A, B, C, α, β, γ, etc. Functions are usually denoted by f, g, F, G,
etc. When reading (or writing!) a mathematical statement which contains variables, one should
always make sure he/she understands where each variable lives.

The most important set in this course is the set of real numbers, denoted by R. Intuitively, each
real number corresponds to a point on the real line. There are no gaps in the real line. When made
abstract, this latter statement is called the completeness axiom for real numbers, and underlies
all existence theorems in this course, and elsewhere in mathematical analysis.

The set of points in the place and more generally in the n-dimensional space are denoted by R2

and Rn, respectively. Therefore

Rn = {(x1, · · · , xn) : xi ∈ R for each i}.

Most important subsets of R are intervals, for example

(0, 1) = {x ∈ R : 0 < x < 1}, [0, 1] = {x ∈ R : 0 6 x 6 1}.

The corresponding notion in higher dimensions are rectangles (in R2) and boxes (in Rn). For
example (0, 1)n denotes the sets of points (x1, · · · , xn) ∈ Rn with each xi strictly between 0 and 1.
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1.1.2 Smooth Functions

In this course, we mostly work with smooth real-valued functions on open boxes.2 Smoothness
means that (ordinary or partial) derivatives of all orders exist. At special sections we also consider
discontinuous, impulse, complex-valued, vector-valued or matrix-valued functions.

Example 1. Consider the function y = x2|x| defined for real variable x ranging on whole real line.
It has derivatives up to order 2 everywhere, but the third derivative does not exist at x = 0. �

1.1.3 Differentiation of Definite Integrals

Let F(x, t) be a real-valued function of two real variables, and u(x), v(x) be real-valued function of
a real variable. Under mild conditions:

d

dx

∫v(x)
u(x)

F(x, t)dt =
∫v(x)
u(x)

Fx(x, t)dt+
dv

dx
· F(x, v(x)) − du

dx
· F(x,u(x)).

1.1.4 Elementary Functions

Functions that are constructed by algebraic operations (namely, addition, subtraction, multiplica-
tion, division and composition) from power functions, trigonometric functions and their inverses,
exponentials and logarithms are called elementary functions. Most integrals, for example∫

e−t
2
dt,

∫
sin t
t
dt,

∫
dt

log t
,
∫
t

1
2 (1 + t)

1
3dt,

are not elementary. We will encounter many non-elementary functions in this course.

1.1.5 Binomial Integral (Optional)

The indefinite integral ∫
xA(B+ CxD)Edx,

where A, D and E are rational constants, and B and C are nonzero real constants, is called bino-
mial integral. With the algebraic change of variables

CxD = Bu,
2Specially there is no hole in our boxes. The study of differential equations in the presence of holes leads to

cohomology, which is beyond this course.
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it becomes
B

∫
uF(1 + u)Gdu, (1)

where F and G are new rational constants.

Theorem 1 (Chebyshev). The integral (1), where F and G are rational constants, and B is a nonzero
real constant, is elementary if and only if at least one of F, G, or F+G is integer.

We only show the if part. For the other direction refer to references given in [16, Appendix I].
Case I: F integer. Assuming G = G1

G2
with integers G1 and G2, then change of variables

1 + u = vG2,

makes (1) into an integral of a rational function, which we know is an elementary function [1, vol
I, section 6.23].

Case II: G integer. Assuming F = F1
F2

with integers F1 and F2, then change of variables

u = vF2,

makes (1) into an integral of a rational function, which is an elementary function.
Case III: F+G integer. Writing (1) as∫

uF+G
(

1 + u

u

)G
du,

change of variable
1 + u

u
= v,

reduces us to the first case.

1.1.6 Dependent and Independent Variables, Implicit Equations and Locally Defined Func-
tions

Let x, y and z be three real variables, some depending on the other. This dependence is usually
expressed by one or more equations. For example the equation

y = x2, (2)

determines y in terms of x. In mathematical terms, y is a function of x, with x the independent
variable, and y the dependent variable. As another example the equation

z = x2 + y2, (3)
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expresses dependent variable z as a function of independent variables x and y. It helps to visualize
these two functions as parabola and elliptic paraboloid, respectively.

As a different example, consider the equation of unit circle

x2 + y2 = 1. (4)

Here for each x there might be one, two or three corresponding values of y. There are several ways
to deal with this issue:

• Although y is not a function of x, mathematicians call y a multi-valued “function” of x. We
will encounter other examples of multi-valued functions in this course.3

• It is geometrically clear that if we add the extra assumption y > 0 to (4), then y is uniquely
determined in terms of x as a continuous function

x ∈ [−1, 1] 7→ y =
√

1 − x2 ∈ R.

This way we turned implicit equation (4) into explicit one y =
√

1 − x2. Alternatively we
could add assumption y 6 0, and get y = −

√
1 − x2. In this particular example we were

able to give y explicitly in terms of x, but this is not always possible or even useful in most
cases. For example, although the equation y5 + y = x, for each real x gives exactly one real
y (why?), there is no simple way to find y explicitly in terms of x.

• It is geometrically clear that for each point P = (x0,y0) on the unit circle, except for special
points (±1, 0), there is a small open interval I around x0, and unique smooth function y =

y(x) defined on x ∈ I, which passes through P, and satisfies (4). This function is said to
be locally-defined by equation (4) around point P. The good news is that, even without
drawing the graph of an implicit equation, or doing the tedious/impossible task of converting
it into an explicit equation, there is a mathematical criterion to decide when a general implicit
equation F(x,y) = 0 defines a local function y = y(x). Here is that criterion, one of the
deepest result in calculus.

Theorem 2 (Implicit Function Theorem). Let F(x,y) be a smooth real-valued function defined on an
open rectangle containing (x0,y0). If Fy(x0,y0) 6= 0, then there is an open interval I containing x0,
and unique smooth function y = f(x) defined on x ∈ I such that

f(x0) = y0, F(x, f(x)) = 0,

for each x ∈ I. Furthermore, f ′(x0) = −Fx(x0,y0)
Fy(x0,y0)

.
3It is beyond this course, but let us briefly mention that Riemann had the brilliant idea of turning multi-valued

“functions” into functions by doing surgery on their domain of definition.
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Exercise 1. Consider the curve defined by equation

y5 + y− x3 + 3x− 1 = 0.

(a) Find all the points on the curve where the tangent line is vertical. Find all the points on the
curve where the tangent line is horizontal.

(b) At what points on the curve you are sure that the equation locally determines y as a smooth
function of x? At what points on the curve you are sure that the equation locally determines x as a
smooth function of y?

(c) (Optional) Does the equation determines y as a function of x on the whole line? Does the
equation determines x as a function of y on the whole line?

1.1.7 Infinitesimals, Line Integrals

Let real variable z be a smooth function of real variables x and y, notationally z = F(x,y). Around
a fixed point (x0,y0), F(x,y) could be approximated by its linearizion:

F(x,y) ≈ F(x0,y0) + (x− x0)Fx(x0,y0) + (y− y0)Fy(x0,y0).

Moving F(x0,y0) to the left, we write this latter equation as

dz = zxdx+ zydy ,

and understand it as follows: when x and y are respectively perturbed by dx and dy, then z is
perturbed by zxdx+ zydy.

Exercise 2. Consider the following quantities:

3
√

1.0001, 0.0013 sin3(0.0012).

Clearly they approximately equal 0 and 1, respectively. Without using a calculator, find a better
approximation.

Let M(x,y) and N(x,y) be two real-valued functions of real variables x and y, and let C be a
directed curve in the plane. Then we could integrate the infinitesimal Mdx +Ndy along C. This
is done by first choose a parametrization (x,y) = (f(t),g(t)), t ∈ [a,b], for C, and then setting∫

C

M(x,y)dx+N(x,y)dy :=

∫b
a

(
M(f(t),g(t))f ′(t) +N(f(t),g(t))g ′(t)

)
dt.

Exercise 3. Integrate xdx+ ydy along the directed curve shown below.
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1.1.8 Gamma Function

Integration by parts shows that ∫∞
0
e−ttndt = n!,

for each natural number n. This motivated mathematicians to define the factorial of a real number
a by

a! :=
∫∞

0
e−ttadt. (5)

This integral converges when a > −1. The expression on the right hand side of (5) is also
denoted by Γ(a+ 1), and defines the Gamma function

Γ(x) =

∫∞
0
e−ttx−1dt, x ∈ (0,∞).

By integration by parts Γ(x + 1) = xΓ(x), which enables us to define Γ(x) for reals x except
nonpositive integers. Here is its graph.
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Exercise 4. Accepting
∫∞
−∞ e−x2

dx =
√
π, compute Γ

(
−3

2

)
.

1.2 Complex Numbers, Complex-Valued Functions

A complex number is a formal expression of the form a + bi, where a and b are real numbers,
and i is a crazy object, called the imaginary unit, pretended to satisfy i2 + 1 = 0.4 Two complex
numbers a + bi and a ′ + b ′i are equal exactly when a = a ′ and b = b ′. We also agree that
a + 0i = a and 0 + bi = bi. The set of all complex numbers is denoted by C. This is not just a set
but a number system in the sense that its elements are added, subtracted, multiplied and divided
according to:

(a+ bi)± (c+ di) = a± c+ (b± d)i, (a+ bi)(c+ di) = ac− bd+ (ad+ bc)i,

a+ bi

c+ di
=

(a+ bi)(c− di)

(c+ di)(c− di)
=
ac+ bd

c2 + d2 +
−ad+ bc

c2 + d2 i, if c+ di 6= 0.

These four operations of complex numbers has exactly the same corresponding algebraic prop-
erties of real numbers. For example, product is commutative, associative, and distributive over
addition:

z1z2 = z2z1, (z1z2)z3 = z1(z2z3), z1(z2 + z3) = z1z2 + z1z3.

Exercise 5. (a) Find a complex number z which solves equation z4 + 1 = 0. (b) Find all complex
numbers z which solve equation z4 + 1 = 0. [Hint. For (a), find z = x+ iy with z2 = i.]

Fix complex number z = a + bi. Real numbers a and b are, respectively, called the real part
and the imaginary part of z, and denoted by <z (or Re(z)) and =z (or Im(z)). The conjugate and
modulus (or absolute value) of z are defined by

z = a− bi ∈ C, |z| =
√
zz =

√
a2 + b2 ∈ [0,∞).

Intuitively, we think of complex number z = a + bi as the point (a,b) in the Cartesian plane.
Then, <z, =z, z and |z| are, respectively, the x-abscissa, y-abscissa, the reflection of zwith respect to

4Here comes a motivation for this pretension. The simplest equation not solvable in reals is x2 + 1 = 0. If we
momentarily imagine a number i satisfying this equation, namely i2 + 1 = 0, adjoining it to reals, namely forming
expressions like a + bi, with a and b reals, we will be able to solve all quadratic equations Ax2 + Bx + C = 0, with
A 6= 0, B and C real, even when ∆ = B2 − 4AC < 0; here are the solutions:

x =
−B±

√
−∆i

2A
.

The miraculous fact, discovered by Laplace and Gauss, is that these numbers a + bi, with a and b real, are even
enough to solve all higher degree equations anxn + · · · + a1x + a0 = 0, with an 6= 0,an−1, . . . ,a0 real, and n > 2
integer. Also refer to Exercise 5.
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x-axis, and the distance between z and the origin. The addition of complex numbers corresponds
to the addition of vectors using parallelogram law in physics. To find the geometrical interpretation
of multiplication of complex numbers, consider complex numbers z and z ′ with polar coordinates
(r, θ) and (r ′, θ ′), respectively, namely

z = r cos θ+ ir sin θ, z ′ = r ′ cos θ ′ + ir ′ sin θ ′.

Then the computation

zz ′ = (r cos θ+ ir sin θ)(r ′ cos θ ′ + ir ′ sin θ ′)

= rr ′(cos θ cos θ ′ − sin θ sin θ ′) + irr ′(cos θ sin θ ′ + sin θ cos θ ′)

= rr ′ cos(θ+ θ ′) + irr ′ sin(θ+ θ ′),

shows that the geometric interpretation of multiplying complex numbers by zwith polar coordinate
(r, θ) is rotation by θ around origin followed by dilation with factor r (or the other way around).
Specially, multiplication by i corresponds to rotation around origin by 90◦ counterclockwise. We
could also deduce

(cos θ+ i sin θ)n = cosnθ+ i sinnθ, (6)

for each real θ and integer n. This motivates us to define exponential ez of a complex number
z = x+ yi as:

ex+yi = ex(cosy+ i siny) .

This is Euler’s formula. Note that, if (r, θ) is the polar coordinates corresponding to complex
number z, then Euler’s formula exactly says that

z = reiθ ,

which is called the polar representation of a complex number.

Exercise 6. Prove ez1+z2 = ez1ez2 for each two complex numbers z1 and z2.

Exercise 7. (a) Equating real and imaginary parts in (6), prove that

cosnθ =

(
n

0

)
cosn θ−

(
n

2

)
cosn−2 θ sin2 θ+− · · · ,

sinnθ =

(
n

1

)
cosn−1 θ sin θ−

(
n

3

)
cosn−3 θ sin3 θ+− · · · .

(b) Prove that:

tannθ =

(
n
1

)
tan θ−

(
n
3

)
tan3 θ+− · · ·(

n
0

)
−
(
n
2

)
tan2 θ+− · · ·

.

(c) Find a nontrivial polynomial equation with integer coefficients satisfied by x = cos π7 .
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For each natural number n, and each complex number z = reiθ 6= 0, there are exactly n distinct
complex numbers which when raised to power n are equal to z. They are called n-th roots of z,
denoted by multi-valued notation n

√
z, and computed via

n
√
reiθ = n

√
rei

θ+2πk
n , k = 1, . . . ,n .

Exercise 8. (a) Compute all 8-th roots of 1, and show them in the complex plane. (b) Compute all
4th-roots of −1, and show them in the complex plane. (This is Exercise 5!)

If f(t) and g(t) are real-valued functions of real variable t, then h(t) := f(t) + ig(t) is called
a complex-valued function of t. Limit, continuity, differentiation, integration, etc., of h(t) is
defined componentwisely. For example, h(t) is called differentiable at point t = t0 if both f and g
are differentiable at the the same point t = t0; if so we write h ′(t) = f ′(t) + ig ′(t).

In these notes, by an scalar, we mean either a real or complex number. For example, a scalar-
valued function is a dependent variable ranging over R or C. By a vector, we always mean some
(ordered) tuple of scalars.

Exercise 9. (a) Show that for any complex number c,

d

dx
ecx = cecx,

∫
ecxdx =

1
c
ecx + [constant].

(b) Use part (a) to compute indefinite integrals∫
eax cos(bx)dx,

∫
eax sin(bx)dx.

1.3 Polynomials

An scalar-valued function of scalar variable z of the form

p(z) := anz
n + · · ·+ a1z+ a0, (7)

where ai, i = 0, . . . ,n, are scalars, and an 6= 0 is called a polynomial of degree n. Scalar z0 is a
root (or zero) of p if p(z0) = 0. This happens exactly when p(z) = (z − z0)q(z) where q(z) is a
polynomial of degree n− 1. If

p(z) = (z− z0)
mq(z), m ∈ N, q(z) polynomial, q(z0) 6= 0,

then z0 is a root of p(z) with multiplicity m. If m = 1, z0 is called a simple root. If m > 1, z = z0

is called a multiple (or repeated) root.
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Proposition 1. Scalar z0 is a root of polynomial p(z) with multiplicity m if and only if

p(z0) = p
′(z0) = · · · = p(m−1)(z0) = 0, p(m)(z0) 6= 0.

Theorem 3 (Fundamental Theorem of Algebra). A polynomial like (7) can be factored as

p(z) = an
∏

16k6N

(z− λk)
mk,

where mk, k = 1, . . .N, are natural numbers, summing up to n.

1.4 Linear Algebra

1.4.1 Vectors, Bases

Let v1, . . . , vk be real n-vectors, namely elements of Rn. They are called linearly independent
if there are no real numbers C1, . . . ,Ck, at least one nonzero, such that C1v1 + · · · + Ckvk = 0.
Otherwise they are linearly dependent. An n-vector w is a linear combination of v1, . . . , vk if
there are scalars C1, . . . ,Ck such that w = C1v1 + · · ·+ Ckvk. Here is a fundamental fact:

Theorem 4. Consider real n-vectors v1, . . . , vk. If two of the following properties hold then hold the
third.

(a) k = n; (b) v1, . . . , vk are independent; (c) Every n-vector can be written as a linear combina-
tion of v1, . . . , vk.

If all these properties hold, then the collection {v1, . . . , vk} is called a basis or fundamental system
for Rn.

Example 2. Show that {(1, 1), (1,−1)} is a basis for R2, but {(1, 1, 1), (−1, 2,−3), (1, 7,−3)} is not
a basis for R3. �

1.4.2 Matrices

For us a matrix is a rectangular array of scalars, say
A11 A12 . . . A1n

A21 A22 . . . A2n
...

... . . . ...
Am1 Am2 . . . Amn

 .

This is denoted by A, [Aij], or [Aij]m×n. The pair (m,n), or m × n, is the order of A, m the
number of rows, and n the number of columns. Two matrices have the same order if they have
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the same number of rows, and the same number of columns. Scalar Aij is the ij-th entry of A.
Two matrices of the same order are equal if all their corresponding entries equal. The transpose
of A, denoted by At, is the n ×m matrix whose ij-th entry is ji-th entry of A, for each i and j. If
n = 1 then A is a column vector, which could be identified with the corresponding point in Cm.
For typographical reasons we might sometimes denote it by [A11, . . . ,A1m]

t instead ofA11
...

A1m

 .

Dually, if n = 1 then A is a row vector. If m = n = 1 then A is identified with its single entry,
hence an scalar. Rows are numbered from above, and column from left. For example, for A above,

[Ai1,Ai2, . . . ,Ain],

is the i-th row, and 
A1j

A2j
...

Amj

 ,

is the j-th column. If v1, . . . , vn are column vectors in Cm, then them×nmatrix whose first column
is v1, second column v2, etc., is denoted by [v1, · · · , vn]. Dually, if v1, . . . , vm are row vectors in
Cn, then the m× n matrix whose first row is v1, second row v2, etc., is denoted by [v1; · · · ; vn]. If
m = n thenA is a square matrix of order n. An square matrixA = [Aij] is diagonal if off-diagonal
entries Aij, i 6= j, are all zero. An square matrix A = [Aij] is upper triangular if entries Aij, i > j,
are all zero.

A matrix A could be multiplied by a scalar c componentwise, namely (cA)ij = cAij. Two
matrices of the same order could be added or subtracted componentwisely, namely (A ± B)ij =
Aij±Bij. The matrix with all entries zero is called zero matrix, and denoted by 0. For two matrices
A = [Aij]m×n and B = [Bij]p×q, only if the number of columns of A equals the number of rows of B,
namely n = p, the product matrix C = AB = [Cij]m×q is defined as follows:

Cij =
∑

16k6p

AikBkj, i = 1, . . . ,m, j = 1, . . . ,q.

In other words, the ij-th entry of AB, is the i-th row of A “multiplied” componentwise by j-th
column of B.5

5There is a good reason for this strange-looking definition. Matrices are algebraic side of linear maps between
vector spaces, and we define matrix multiplication in this way to correspond to the composition of linear maps.
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Matrix multiplication is associative (AB)C = A(BC), distributive over addition A(B + C) =

AB+AC, but not commutative:[
1 0
0 0

] [
0 1
0 0

]
=

[
0 1
0 0

]
6=
[
0 0
0 0

]
=

[
0 1
0 0

] [
1 0
0 0

]
.

This might seem like a bad news at first, but it let matrices describe those operators in nature
which do not commute. Quantum mechanics is full of such operators.

For each n there is a unique n×n matrix In = [δij], called the identity matrix, and defined by

δij =

{
1, i = j

0, i 6= j
,

such that AIn = InA = A for each square matrix A of order n. A square matrix A of order n is
invertible (or nonsingular) if there is a square matrix B with AB = BA = I. Then B is called the
inverse of A, and denoted by A−1.

Exercise 10. Prove that inverses are unique if they exist.

Exercise 11. Check that matrix [
a b

c d

]
,

is invertible if and only if ad− bc 6= 0. If so then its inverse is given by

1
ad− bc

[
d −b

−c a

]
.

Exercise 12. Check that the matrices of the form[
a b

b −a

]
, a,b ∈ R,

are added, subtracted, multiplied and divided (A/B is defined as AB−1) exactly as complex numbers
a+ bi.

An application of matrices is that a linear system of m equations with n unknowns

yj = aj1x1 + aj2x2 + · · ·+ ajnxn, j = 1, . . . ,m,

could be concisely written as y = Ax where

x =


x1

x2
...
xn

 , y =


y1

y2
...
ym

 , A =


a11 a12 . . . a1n

a21 a22 a2n
...

... . . . ...
am1 am2 . . . amn

 .
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1.4.3 Determinants

For each natural number n, there is a unique function A 7→ |A| (also denoted by A 7→ det(A)),
called determinant, taking n × n matrices as input and spitting a scalar, satisfying the following
properties:

1. For each j = 1, . . . ,n, det is linear with respect to the j-th column while other columns are
held fixed. This means

det [v1, . . . , vj−1, vj + cw, vj+1, . . . , vn] = det [v1, . . . , vj−1, vj, vj+1, . . . , vn] +

+ cdet [v1, · · · , vj−1,w, vj+1, . . . , vn] ,

where v1, . . . , vn,w are n× 1 column matrices, and c is an scalar.

2. If two different columns are interchanged then det is multiplied by −1.

3. Identity matrix has determinant 1.

We have ∣∣a∣∣ = a,∣∣∣∣a b

c d

∣∣∣∣ = ad− bc ,

∣∣∣∣∣∣
a b c

d e f

g h i

∣∣∣∣∣∣ = a
∣∣∣∣e f

h i

∣∣∣∣− d ∣∣∣∣b c

h i

∣∣∣∣+ g ∣∣∣∣b c

e f

∣∣∣∣ , etc.

Exercise 13. Show that

∣∣∣∣∣∣
1 1 1
λ1 λ2 λ3

λ2
1 λ2

2 λ2
3

∣∣∣∣∣∣ = (λ1 − λ2)(λ2 − λ3)(λ3 − λ1).

Theorem 5. Let A and B be n× n matrices. Then:

1. |At| = |A|. Specially in the characterization of determinants above, “column” could be replaced
by “row”.

2. The determinant of an upper triangular matrix is the product of its diagonal elements.

3. |AB| = |BA|.

4. A is invertible if and only if |A| 6= 0.
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5. Real (respectively, complex) n-vectors v1, . . . , vn are a basis for Rn (respectively, Cn) if and only
if that n× n matrix whose j-th column, j = 1, . . . ,n, is vj has nonzero determinant.

6. Consider the linear system of equations Ax = b, where b is an n × 1 vector. Let ∆ denote the
determinant of A, and for each k = 1, . . . ,n, ∆k be ∆ where k-th column is replaced by b. Then
Cramer’s Rule says

∆xk = ∆k, for each k .

7. The homogeneous system Ax = 0, has a solution besides the trivial one x = 0, if and only of
|A| = 0.

8. For each i and j, the ij-th entry of A−1 is (−1)i+j

|A|
times the determinant of the matrix made from

A after removing i-th column and j-th row.

1.4.4 Eigenvalues and Eigenvectors

Let A be an n × n matrix. If there is a scalar λ and a nonzero vector x such that Ax = λx, then λ
is called an eigenvalue of A with corresponding eigenvector x. Eigenvalues of A are exactly the
roots of the characteristic polynomial

|λI−A| =

∣∣∣∣∣∣∣∣∣
λ−A11 −A12 . . . −A1n

−A21 λ−A22 −A2n
...

... . . . ...
−An1 −An2 . . . λ−Ann

∣∣∣∣∣∣∣∣∣
= λn − (A11 + · · ·+Ann)λn−1 +− · · ·+ (−1)n|A|.

Proposition 2. (a) Eigenvectors corresponding to distinct eigenvalues are independent.
(b) If λ is an eigenvalue of A with multiplicity m (namely λ is a root of multiplicity m of charac-

teristic polynomial of A), then there are at most m independent eigenvectors correspoding to λ.

Exercise 14. Find eigenvalues and eigenvectors of

3 2 4
2 0 2
4 2 3

.

Example 3. Consider the following matrices

A =

0 0 0
0 0 0
0 0 0

 , B =

0 1 0
0 0 0
0 0 0

 , C =

0 1 0
0 0 1
0 0 0

 , D =

0 0 0
0 0 0
0 0 1

 , E =

0 1 0
0 0 0
0 0 1

 .

Then:
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Matrix A has eigenvalues 0, 0, 0; eigenvalue 0 has three independent eigenvectors.
Matrix B has eigenvalues 0, 0, 0; eigenvalue 0 has at most two independent eigenvectors.
Matrix C has eigenvalues 0, 0, 0; eigenvalue 0 has at most one independent eigenvector.
MatrixD has eigenvalues 0, 0, 1; eigenvalue 0 has at most two independent eigenvectors; eigen-

value 0 has at most one independent eigenvector.
Matrix E has eigenvalues 0, 0, 1; eigenvalue 0 has at most one independent eigenvector; eigen-

value 0 has at most one independent eigenvector. �

1.5 Matrix-Valued Functions, Matrix Exponentials

If all entries of a matrix A are functions of a real variable t, then A is called a matrix-valued
function of t. Limit, continuity, infinit series, differentiation, integration, etc, of matrix-valued
functions are defined componentwisely. For example, matrix-valued function A(t) = [Aij(t)] is
called differentiable at point t = t0 if each entry Aij(t) is differentiable at the same point t = t0;
and we set A ′(t) =

[
A ′ij(t)

]
. If A and B are square matrix-valued functions of the same order, and

c is a constant scalar, then

d

dt
(cA) = c

dA

dt
,

d

dt
(A+ B) =

dA

dt
+
dB

dt
,

d

dt
(AB) =

dA

dt
B+A

dB

dt
.

Exercise 15. Let A(t) be a square matrix-valued function. Show that if A is both invertible and
differentiable at a point t = t0, then A−1 is also differentiable at t = t0, and given by(

A−1
) ′

= −A−1A ′A−1.

For square matrix A, it could be proved that the infinite series∑
n>0

(tA)n

n!
= I+ tA+

(tA)2

2!
+

(tA)3

3!
+ · · · ,

converges for each real t. It will be denoted by eAt, called matrix exponential. It is the unique
matrix-valued function X(t) satisfying

dX

dt
= AX, X(0) = I.

We find a formula for it in Section 8.4.2.

Exercise 16. Compute exponentials for matrices in Example 3.
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2 Introduction to Differential Equations

Recall our discussion in Section 1.1.6 about dependent and independt variables. The equations
in all examples there were algebraic, in the sense that only the algebraic operations of addition,
subtraction, multiplication, division and composition were used in their construction. If in addi-
tion to these algebraic operations, the equation involves (ordinary or partial) differentiations of
dependent variables with respect to independent variables, then we get a differential equation.
For example, each of the followings is a differential equation

dy

dx
= 2x, x+ y

dy

dx
= 0, 4z =

(
∂z

∂x

)2

+

(
∂z

∂y

)2

. (8)

The first two are ordinary differential equations (ODEs) because no partial derivative appears,
but the third one is a partial differential equation (PDE) because partial derivatives show up.
Every function which satisfies a differential equation is called its solution. For example, functions
given by (2) and (3), respectively, are solutions to the first and third equations in (8). The highest
order of differentiation in a differential equation is called its order. For example all equations in
(8) are of the first order.

The general form of an ODE is

F

(
x,y,

dy

dx
,
d2y

dx2 , . . . ,
dny

dxn

)
= 0, (9)

where x is real independent variable, y is scalar dependent varibale, n is the order, and F a scalar-
valued function of its arguments. This equation is called linear if F is a linear function of y and its
derivatives, hence an equation of the form

P0(x)y+ P1(x)y
′ + · · ·+ Pn(x)yn + Pn+1(x) = 0,

where Pk(x), k = 0, . . . ,n+ 1, are scalar-valued functions of x.
The general form of a PDE is

F

(
x1, . . . , xN,y,

∂y

∂x1
, . . . ,

∂y

∂xN
, . . . ,

∂y

∂xn
,
∂2y

∂x2
1
, . . .

)
= 0, (10)

where x1, . . . , xN are real independent variables, y is scalar dependent variable, and F a scalar-
valued function of its arguments. This equation is linear if F is a linear function of y and its partial
derivatives.
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2.1 The Nature of Solutions of Ordinary Differential Equations

The simplest differential equation is
dy

dx
= F(x),

where F is a real-valued function of real variable x. Just by the very definition of indefinite inte-
grals, this equation is solved as

y =

∫
F(x)dx+ C.

Thus solving this differential equation is equivalent to find an anti-derivative for F. In many cases
we are are not able to express this integral in terms of elementary function, and should accept it
as the ultimate answer. (Recall examples in Section 1.1.4.)

The next simplest differential equation is

dy

dx
= ky,

where k is a constant. It could easily be checked that y = Cekx, with constant C, satisfies the
equation. Are there any other solutions? The following one line argument shows that the answer
is NO. If y satisfies y ′ = ky, then u := ye−kx satisfies

u ′ = y ′e−kx − kye−kx = 0,

hence u is a constant function C, hence y = Cekx. We say that y = Ce−kx is the general solution
of y ′ = ky, in the sense that, firstly for each constant C, the function y = Cekx satisfies the
differential equation, and secondly, for each function y = f(x) satisfying our equation, there exists
a constant C such that f(x) = Cekx. Another way to put it is that, for any real number C, the initial
value problem

dy

dx
= ky, y(0) = C,

has a unique solution given by y = Cekx. We generally expect that the general solution of a
first-order ODE, contains only one constant C. We prove this for linear equations in Proposition 3,
however each of the following nonlinear equations(

dy

dx

)2

+ 1 = 0 or
(
dy

dx

)2

+ y2 = 0,

shows that this expectation does not hold in general.
As another example, let us consider ODE

d2y

dx2 = y.
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A little inspection shows that y = ex and y = e−x both satisfy our equation. Hence, by linearity,
y = C1e

x +C2e
−x, where C1 and C2 are constants, also satisfies the equation. Are there any other

solutions? The following one line argument shows that the answer is NO. If y satisfies y ′′ = y,
then

u := e−x(y+ y ′), v := ex(y− y ′),

satisfy

u ′ = −e−x(y+ y ′) + e−x(y ′ + y ′′) = 0, v ′ = ex(y− y ′) + ex(y ′ − y ′′) = 0,

hence u and v are constant function, say C1 and C2, respectively, namely

e−x(y+ y ′) = C1, ex(y− y ′) = C2,

hence
y+ y ′ = C1e

x, y− y ′ = C2e
−x,

hence y = C1e
x+C2e

−x. We won! We say that y = C1e
x+C2e

−x is the general solution to y ′′ = y.
As these examples show it is reasonable to expect that the general solution of a n-th order ODE

contains n constants. This will be proved for linear equations in Theorem 9.

Example 4. Let us now start with a family of functions containing general constant and try to find
a differential equation satisfied by all of them. As our first example, we start with the family

y = Cx−
C2

4
,

where C is a general constant. C could be called the parameter of the family. Each specific value
of parameter C gives a member of the family. Since C is a constant

0 =
d

dx

(
−
C2

4

)
=
d

dx
(y− Cx) = y ′ − C,

hence C = y ′. Putting this into our original equation gives

y = xy ′ −
1
4
(y ′)

2 .

As another example, consider the family

y = Ae2x + Be−3x,

where A and B are general constants. Since this family contains two constants we expect a second-
order ODE, so we compute

y ′ = 2Ae2x − 3Be−3x, y ′′ = 4Ae2x + 9Be−3x.
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From the two equations y = · · · and y ′ = · · · , we could find A and B, and then plug them into
y ′′ = · · · . We leave the computations to the reader. The answer will be y ′′ + y ′ − 6y = 0. Here is
a shorter way. Trying to eliminate A form y = · · · and y ′ = · · · , we have

u = y ′ − 2y = −3Be−3x − 2Be−3x = −5Be−3x,

but since we know u satisfies u ′ = −3u, we have

y ′′ − 2y ′ = −3(y ′ − 2y) = −3y ′ + 6y,

or equivalently y ′′ + y ′ − 6y = 0. �

Exercise 17. Let y = f(x) be a smooth solution of the differential equation

xy ′′ + x(y ′)2 = 1 − e−x,

for all real x. If f has an extremum at a point x = a, show that this extremum is a minimum.

Exercise 18 (Optional. Bug Family Reunion.). Four bugs sit at the corners of a square table of side
a. At the same instant they all begin to walk with the same speed, each moving steadily toward the
bug on its right. If a polar coordinate system is established on the table, with the origin at the center
and the polar axis along a diagonal, find the path of the bug that starts on the polar axis and the
total distance it walks before all bugs meet at the center. This is taken from [23, p. 44]. [Answer.
r = a√

2
e−θ. Total distance is a.]

2.2 The Nature of Solutions of Partial Differential Equations

Describing general solutions of PDEs, even linear ones, are much more harder than ODEs. One
of the rare cases, besides first-order linear PDEs, where general solution can easily be described is
one-dimensional wave equation

utt = uxx. (11)

One can easily check that, for any two second-differentiable real-valued functions f(z) and g(z)
of real variable z, the function

u(x, t) = f(x+ t) + g(x− t),

satisfies (11).

Exercise 19. Check that all the following functions satisfy the Laplace equation uxx + uyy = 0:

1, x, y, xy, x2 − y2, x3 − 3xy2, x4 − 6x2y2 + y4, x3y− xy3, . . . ,
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e±λy cos (λx) , e±λy sin (λx) , log
(
x2 + y2

)
, arctan

y

x
,(

x2 + y2
)±n2 cos

(
n arctan

y

x

)
,
(
x2 + y2

)±n2 sin
(
n arctan

y

x

)
,

where λ is a constant, and n is a natural number.

Exercise 20. Check that all the following functions satisfy the heat equation ut = uxx:

1, x, x2 + 2t, x3 + 6xt, t−
1
2e−

x2
4t , eλ

2t±λx, e−λ
2t cos (λx) , e−λ

2t sin (λx) ,

where λ is a constant.

2.3 Using Computers

Each three most famous numerical and symbolic computing softwates MATLAB, MAPLE and MATH-
EMATICA has numerous commands to deal with differential equations. One could simply use online
website http://www.wolframalpha.com to solve simple equations. For example typing

“solve y ′ = x+ y2”,

in its command line yields

y =
x

3
2

(
−c1J− 4

3

(
2x

3
2

3

)
+ c1J 2

3

(
2x

3
2

3

)
− 2J− 2

3

(
2x

3
2

3

))
− c1J− 1

3

(
2x

3
2

3

)
2x
(
c1J− 1

3

(
2x

3
2

3

)
+ J 1

3

(
2x

3
2

3

)) , (12)

where Jp is Bessel function of first kind introduced in page 94.

2.4 Separable First-Order Ordinary Differential Equations

Elementary functions and their integrals are not enough to express solutions of most ODEs even as
simple as

y ′ = x+ y2,

mentioned at page 26. A fundamental special class of first-order ODEs with explicit solution are
separable equations:

dy

dx
= G(x)H(y) ,

where x and y are real variables, and G and H are real-valued functions of x and y respectively.
This equation can readily be solved by the following procedure:

dy

H(y)
= G(x)dx =⇒

∫
dy

H(y)
=

∫
G(x)dx+ C.

This shows the miracle of using Leibniz’s symbol dy
dx

for the derivative of y with respect to x.
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Example 5. The differential equation

dy

dx
= 2xy2 − x3y2,

might not look separable at first sight, but really is, because after factoring common y2 expression
on the right hand side, we have

dy

dx
= y2(2x− x3), (13)

or equivalently ∫
dy

y2 =

∫
(2x− x3)dx. (14)

After integration
−1
y

= x2 −
x4

4
+ C,

or equivalently

y =
4

x4 − 4x2 − 4C
.

Replacing constant −4C by another constant K, we have

y =
4

x4 − 4x2 + K
,

as our solution.
But some solution is missing! The constantly zero function satisfies our differential equation

but is not among our family of solutions. How did we miss it? We missed it when we did division
by y2 getting from (13) to (14). �

Exercise 21. Solve dy
dx

= e2x−3y−1.
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3 Modeling of Dynamical Phenomena by Differential Equations

In engineering, biology, physics, chemistry, economics, politics, etc., people translate dynamic phe-
nomena into the language of differential equations. We illustrate this process in this chapter by
several examples.

3.1 Modeling by Ordinary Differential Equations

Example 6. Let P(t) denote human population of a country at time t. For simplicity of our model,
we assume an isolated country so that there is no immigration or emigration. A simple way to
model the dynamics of P is to assume that people are born (respectively, die) with rate BP (respec-
tively, DP), where where B and D are constants. Therefore in short time interval [t, t + dt], the
change in population is

dP = P(t+ dt) − P(t) = BP(t)dt−DP(t)dt,

hence P satisfies ODE
dP

dt
= kP,

where k = B − D is a constant. This is called the simple growth (or decay) model. This is a
separable first-order ODE, hence solved by method of Section 2.4 as

P(t) = P0e
kt,

where P0 = P(0) is the initial population.
Here comes a more sophiscated model. Either because of limited food supply or cultural rea-

sons, birth parameter B above is not a constant, but decreases as population grows. If we model
this by a simple linear model B = B1 − B2P, with B1 and B2 positive constants, then infinitesimal
variation of population is

dP = P(t+ dt) − P(t) = (B1 − B2P(t))P(t)dt−DP(t)dt,

hence P satisfies ODE

dP

dt
= (B1 −D− B2P)P =

1
B2

(
B1 −D

B2
− P

)
P,

or more conveniently
dP

dt
= kP(M− P),
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with positive constants k and M. This is called the logistic model. This is again separable, hence
solved as

P(t) =
P0M

P0 + (M− P0)e−kMt
, (15)

where again P0 = P(0) is the initial population. Some of these solutions, for different P0, are
depicted in the following figure.

Both the analytic solution (15) and the figure show that, with whatever initial population P0

you start with, P(t) approaches constant levelM as t→∞. ConstantM, called carrying capacity,
is the maximum population that the environment can sustain on a long-term basis. �

Example 7. It is reasonable to assume that the rate at which a hot body cools down is proportional
to the difference in temperature between it and its surroundings; this is usually called Newton’s
law of cooling. If t denotes time, T the temperature of a hot bject, a the environment temperature,
then the law above translates into

dT

dt
= −k(T − a),

where k is a positive constant. The minus sign accounts for temperature decrease. This is again
separable. �

Exercise 22. An object is heated to 110◦C, and then placed in an open area of temperature 10◦C.
After 1 hour its temperature is 60◦C. How much additional time is required for it to cool to 35◦C?

Example 8. Suppose that a small body of mass m kilograms is released at low height h meters
above earth surface. The motion is affected by the earth’s gravity with constant gravitational accel-
eration g (approximately 10 meters per second square), and air resistance force proportional, with
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constant k, to body’s velocity. If y(t) denotes the height of the body at time t then by Newtons’s
second law of motion

mÿ = −mg− kẏ,

where dot stands for time derivative. To find y(t), we need to solve the initial value problem

mÿ+ kẏ+mg = 0, y(0) = h, ẏ(0) = 0.

You can solve it using methods of Chapter 6. �

Example 9. There are two important electrical and mechanical systems modeled by the same kind
of differential equations.

RLC circuit. The following figure shows a series RLC circuit. We assume voltage v(t) is known,
and try to describe current i(t).

Maxwell equations could be used to show that6 as you pass along current i (measured in amperes)
through a resistance R (measured in ohms), an inductance L (measure in henries), or a capacitance
C (measured in farads), the voltage (measured in volts) drops, respectively, by

Ri, L
di

dt
, vC(0) +

1
C

∫ t
0
i(τ)dτ,

where vC(0) is the voltage on the capacitor at time t = 0. Resistors dissipate energy, but in-
ductances and capacitors save electromagnetic energy. Quantitatively, resistor R with current i
dissipates Ri2 joules per second in the form of heat, and inductance L (resp. capacitor C) with
current i (resp. voltage v) has already saved 1

2Li
2 (resp. 1

2Cv
2) joules of magnetic (resp. electric)

energy.
According to basic information above, if we pave the RLC circuit once along current i(t), we

get

v = Ri+ vC(0) +
1
C

∫ t
0
i(τ)dτ+ Li ′,

6[22, p. 170-172].
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and after differentiation
Li ′′ + Ri ′ +

1
C
i = v ′.

Mass-Spring-Dashpot system. The following figure shows a mass-spring-dashpot system. We
neglect friction. We assume external force f(t) is known, and try to describe x(t), the displacement
of mass from equilibrium motionless position.

Let us recall that a stretched or compressed spring exerts restorative force proportional to the
displacement from its equilibrium position. Dashpot or damper is a mechanical device resisting
motion by producing force proportional to the speed but acting in the opposite direction. By
Newton’s second law

mx ′′ = f− kx− cx ′,

or
mx ′′ + cx ′ + kx = f,

where k and c are respectively spring and damper’s constants. You can solve it using methods of
Chapter 6. �

Example 10. The following figure Let us model the motion of a pendulum consisting of a mass
m at the end of a rod of length l and negligible mass. Let θ denote the deviation angle form the
horizontal position.
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By applying Newton’s second law of motion at the direction tangent to circle of rotation

mg sin θ = −ml
d2θ

dt2
,

hence the evolution of θ is governed by the ODE

d2θ

dt2
= −k sin θ, (16)

where k = g
l

is a constant. This is nonlinear equation, but for small deviations θ, could be approx-
imated by linear equation

d2θ

dt2
= −kθ.

Later in Chapter 6, you will see that solutions to this latter linear equation are

θ = A coskt+ B sinkt,

with constants A and B. This shows that θ(t) repeats itself every

T =
2π
k

= 2π

√
l

g
,

seconds. �

Exercise 23 (Optional). If you are interested in mechanics, try to derive (16) by either of the following
ways: (a) Newton’s second law for rotation τ = Iα. (b) Conservation of energy. (c) Euler-Lagrange
equation ∂L

∂q
= d
dt
∂L
∂q̇

, L = T − V.

Example 11. Look at Figure 1. Each part shows two families of curves, each member of the one
family intersects all the members of the other family orthogonally. These are called orthogonal
families, and appear at numerous places is science. For example, in electrostatics, field lines and
iso-potential curves, and in thermodynamics, heat lines and isothermal curves and lines of heat
flow, are orthogonal families.

Let us discuss this notion with an example. The equation

x2 + y2 = R2, (17)

with R constant, expresses a circle of radius R in the plane centered at origin. When the parameter
R varies, we get a family of concentric circles. Let us try to find another family of smooth curves
orthogonal to this family at any point of intersection. Remember that two lines in the plane with
slopes m1 and m2 intersect orthogonally exactly when m2m1 = −1. This suggest a way to find the
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Figure 1: Some orthogonal families.

orthogonal family: first find the differential equation describing the original family; then replacing
y ′ by −1

y ′
gives the differential equation of the orthogonal family; solving this new equation gives the

orthogonal family. In our case, assuming that (17) gives y locally in terms of x, differentiating
both sides with respect to x gives 2x+ 2yy ′ = 0 or equivalently

x+ yy ′ = 0,

which is the ODE describing family of circles centered at origin. Therefore y ′ = y
x

or equivalently

xy ′ = y,

is the ODE describing orthogonal family. The solution to this separable equation is y = Cx, namely
lines passing through origin. �

Exercise 24. Let u(x,y) and v(x,y) be two smooth real-valued functions of real variables x and
y. Prove that one-parameter families u = C and v = K, with C and K constant parameters, are
orthogonal if and only if uxvx + uyvy = 0. [Hint: use implicit function theorem.]

3.2 Modeling by Systems of Ordinary Differential Equations

Example 12. Consider two points P and Q moving in xy plane. At time t = 0, P is at origin, and
then starts to move along y-axis with constant speed of unity. At time t = 0, Q is at (1, 0), and
then pursues P with constant speed of a times unity, hence the direction of motion of Q is always
toward Q. What is the curve of pursuit?
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Let (x(t),y(t)) denote the position of Q. Speed condition translates into

a =
ds

dt
=

√
dx2 + dy2

dt
=
√
ẋ2 + ẏ2,

where ds is infinitesimal arc-length, and pursue condition says

y− t

x
=
dy

dx
=
ẏ

ẋ
.

Since ẋ > 0, pursuit curve is discribed by the system
dx
dt

= −ax√
x2+(y−t)2

dy
dt

= a(t−y)√
x2+(y−t)2

.

These are studied in Chapter 9. �

Exercise 25 (Tractrix). Consider two points P and Q moving in xy plane. At time t = 0, P is at
origin, and then starts to move along y-axis with constant speed of unity. At time t = 0, Q is at (1, 0),
and then pursues P in a way that the distance between them is always 1. Find the equation of the the
curve of pursuit.

Example 13. This is copied from [23, p.434-436]. There is a constant struggle for survival among
different species living in the same environment. One kind of animal survives by eating another;
a second, by developing methods of evasion to avoid being eaten, and so on. As a simple example
of this universal conflict between the predator and its prey, let us imagine an island inhabited by
foxes and rabbits. The foxes eat rabbits, and the rabbits eat clover. We assume that there is so
much clover that the rabbits always have an ample supply of food. When rabbits are abundant,
foxes flourish their population grows, but after a while when foxes become too numerous and eat
too many rabbits, they enter a period of famine and their population begins to decline. As foxes
decrease, rabbits become relatively safe and their population starts to increase again. This triggers
a new increase in the fox population, and as time goes on we see an endlessly repeated cycle of
interrelated increases and decreases in the populations of the two species.

Let x(t) and y(t) denote the number of rabbits and foxes, respectively. If there where no foxes
dx
dt

= ax, where a is a positive constant. It is natural to assume that the number of encounters per
unit time between rabbits and foxes is jointly proportional to x and y. If we further assume that a
certain proportion of these encounters result in a rabbit being eaten, then we have

dx

dt
= ax− bxy,
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where b is another positive constant. With the same argument

dy

dt
= −cy+ dxy,

where c and d are positive constants. Therefore we have Lotka-Voterra’s prey-predator system of
ODEs {

dx
dt

= ax− bxy
dy
dt

= −cy+ dxy
,

studied in Chapter 9. �

Example 14. Consider two brine tanks connected shown in the following figure. Let us assume
that at time t, tank 1 contains x(t) pounds of salt in 100 gal of brine, and tank 2 contains y(t)
pounds of salt in 200 gal of brine. The brine in each tank is kept uniform by stirring all the time.
Also brine is pumped from each tank to the other at the rates indicated in the figure. In addition,
fresh water flows into tank 1 at 20 gal per min, and the brine in tank 2 flows out at 20 gal per min.

To derive the law governing evolution of x(t) and y(t), let us consider infinitesimal time interval
[t, t+ dt]. During this interval, the change in salt in tank 1 is

dx = x(t+ dt) − x(t) = dt min× 10
gal
min

× y(t)
200

lb
gal

− dt min× 30
gal
min

× x(t)
100

lb
gal

= (0.05y− 0.3x)dt,

hence
dx

dt
= −0.3x+ 0.05y.
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Similarly, one gets dy
dt

= 0.3x− 0.15y. Therefore the dynamics is governed by the ODE system{
dx
dt

= −0.3x+ 0.05y
dy
dt

= 0.3x− 0.15y
.

You can solve it using methods of Chapter 8. �

Example 15. Consider the mass-spring mechanical system shown in the following figure. Neglect
friction.

Variable f(t) shows the external force exerted onm2. Variable x1(t) denote the displacement of
m1 from its equilibrium position when there is no external force and motion. Similarly for x2(t).

Applying Newton’s second law of motion{
m1

d2x
dt2 = −k1x1 + k2(y− x)

m2
d2y
dt2 = −k2(y− x) + f(t)

.

You can solve it using methods of Chapter 8. �

Example 16. Let us analyze the electrical network shown in the following figure.

Paving the left loop along current i1 starting form point A, the change in potential is

0 = 100 − 2
di1

dt
− 50(i1 − i2) = 0,
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hence
di1

dt
= −25i1 + 25i2 + 50.

Paving the right loop along current i1 starting form point A, the change in potential is

0 = −50(i2 − i1) −
1

0.008

∫
i2dt− 25i2,

and after differentiation
di2

dt
=

2
3
di1

dt
−

5
3
i2,

and after inserting di1
dt

from our previous equation

di2

dt
=

−50
3
i1 +

45
3
i2 +

100
3

.

Therefore the dynamics is governed by the ODE system{
di1
dt

= −25i1 + 25i2 + 50
di2
dt

= −50
3 i1 +

45
3 i2 +

100
3

.

You can solve it using methods of Chapter 8. �

Example 17. Let us model the dynamical system consisting of N isolated bodies attracting them-
selves according to Newton’s law of gravitation. For each i = 1, . . . ,N, let the i-th body has mass
mi, and is situated at the point (xi,yi, zi) ∈ R3. for each i, the force

Fij =
∑
j6=i

Gmimj

((xj − xi)2 + (yj − yi)2 + (zj − zi)2)
3
2
((xj − xi)x̂+ (yj − yi)ŷ+ (zj − zi)x̂) ,

affecting on i-th body gives it acceleration

d2xi

dt2
x̂+

d2yi

dt2
ŷ+

d2zi

dt2
ẑ =

Fij

mi
.

Therefore system dynamics is governed by the system

d2xi
dt2 =

∑
j6=i

Gmj(xj−xi)

((xj−xi)2+(yj−yi)2+(zj−zi)2)
3
2
, i = 1, . . . ,N,

d2yi
dt2 =

∑
j6=i

Gmj(yj−yi)

((xj−xi)2+(yj−yi)2+(zj−zi)2)
3
2
, i = 1, . . . ,N,

d2zi
dt2 =

∑
j6=i

Gmj(zj−zi)

((xj−xi)2+(yj−yi)2+(zj−zi)2)
3
2
, i = 1, . . . ,N,

,

of 3N nonlinear second-order ordinary differential equations, called the N-body problem. Only
for N = 2 analytic solutions been found. When N > 2 numerical solutions become unstable. �
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3.3 Modeling by Partial Differential Equations

Example 18. Let us model the dynamics of temperature distribution on a thin cylindrical metal
rod of length L shown in the following figure.

We assume lateral surface is completely isolated, change of temperature is just because of heat
conduction in x direction. We also know the temperature at boundary points x = 0 and x = L. Let
u(x, t) denote the temperature at time t in place x. We are going to use two physical laws:

• Heat flows from hot regions to cold regions, and the amount of heat which passes per unit
time per unit area of a small flat surface in space is proportional to the rate of change of
temperature with respect to distance in a direction perpendicular to that surface. In mathe-
matical terms q = −k∇u, where q is heat per unit area per unit time, k is a constant, and
∇u = uxx̂ + uyŷ + uzẑ is the gradient of temperature. This reduces to q = −kux in our
one-dimensional problem.

• If the temperature of a body changes by heat exchange with environment, then this change
is proportional to the amount of heat exchanged. In mathematical terms, q = mc∆u, where
m is the body mass, c a constant, and ∆u the change in temperature.

Returning back to our problem, we consider infinitesimal changes dx and dt in x and t, respec-
tively. That part of the rod between x and x+ dx, which has mass proportional to dx, during time
interval [t, t+ dt], gets proportionally

(−ux(x, t) + ux(x+ dx, t))dt,

units of heat, and this makes temperature change

u(x, t+ dt) − u(x, t).

Therefore, after scaling units, we have

(−ux(x, t) + ux(x+ dx, t))dt = (u(x, t+ dt) − ux,t(x, t))dx,

or equivalently:
ut = uxx .
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This is called one-dimensional heat equation.
Let us consider a specific problem. We assume L = π, the boundary points x = 0 and x = π are

both kept at constant temperatures 0 and 0, and that the initial temperature distribution is f(x).
The problem is to find the solution of

PDE : ut = uxx, 0 < t <∞, 0 < x < π

BCs : u(0, t) = u(π, t) = 0, 0 6 t <∞
IC : u(x, 0) = 1, 0 < x < π

,

where abbreviations BCs and IC above, respectively, stand for bondary conditions and initial con-
dition. This is solved in Example 10.3.2. Also notice Exercise . �

Example 19. Let us model low-amplitude vibrations of a flexible string of length L shown in the
following figure.

Let u(x, t) denote the displacement at time t of the point with coordinate x of the string.
Experiments show that the tension force T is tangent to the string and proportional to

√
1 + u2

x.
Consider that part of the string between x and x+dx, which has mass approximately proportional
to dx. The force exerted on this portion along u-axis is approximately

−T sin(θ) + T sin(θ+ dθ) ≈ T (tan(θ+ dθ) − tan(θ)) = T (ux(x+ dx, t) − ux(x, t)) ,

hence by Newton’s second law√
1 + u2

x (ux(x+ dx, t) − ux(x, t)) = utt(x, t)dx,

or equivalently
utt =

√
1 + u2

xuxx.
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Assuming |ux| small, we get a linearized version

utt = uxx ,

called one-dimensional wave equation. Here we modeled transversal vibrations. One could show
longitudinal vibrations, for example sound waves, obey the same equation [24, section 2.1]. �

Example 20. Consider a small grain suspended on the surface layer of water. Because of collision
with water molecules, it follows a random path called Brownian motion. Let water surface is
distributed in region R in xy-plane. We want to find the time it takes for the particle to reach the
boundary ofD. This quantity for the particle in position (x,y) at time t is denoted by u(x,y, t). For
simplicity we assume the particle only could move in horizontal and vertical paces. The particle at
point (x,y) must have reached this point from one of its four neighbors

(x− dx,y), (x+ dx,y), (x,y− dy), (x,y+ dy),

with equal probability 1
4 for each neighbor. Therefore

u(x,y, t+ dt) = dt+
1
4
(u(x− dx,y, t) + u(x+ dx,y, t) + u(x,y− dy, t) + u(x,y+ dy, t)) .

Using Taylor expansion of the form

f(z+ dz) = f(z) + f ′(z)dz, f(z+ dz) = f(z) + f ′(z)dz+
1
2
f ′′(z)dz2,

we have

u+ utdt = dt+
1
4

(
u− uxdx+

1
2
uxxdx

2

)
+

1
4

(
u+ uxdx+

1
2
uxxdx

2

)
+

1
4

(
u− uydy+

1
2
uyydy

2

)
+

1
4

(
u+ uydy+

1
2
uyydy

2

)
,

which simplifies to

(ut − 1)dt =
1
4

(
uxxdx

2 + uyydy
2
)

.

If we assume
dt = Cdx2 = Cdy2,

for some constant C, then our equation becomes

ut = 1 + k(uxx + uyy),

for some positive constant k. This is two-dimensional heat equation. �

40



3.4 An Integro-differential Equation

Example 21. Does there exist a curve in the plane for which the time taken by an object sliding on
it, under gravity and without friction, to its lowest point is independent of the starting point? To
mathematically model this problem, consider the following figure, where C is our desired curve,
and the bead is released from the point (x,y), and slides to the lowest point (0, 0). As bead reaches

the point (u, v) on the curve, its kinetic energy is

1
2
m

(
dL

dt

)
= mg(y− v),

where L is the length of the curve between (x,y) and (u, v). Thus

dt =
dL√

2g(y− v)
=

√
1 +

(
du
dv

)2√
2g(y− v)

dv.

Therefore the time t taken to reach (0, 0) for (x,y) is

t =

∫y
0

√
1 +

(
du
dv

)2√
2g(y− v)

dv.

This shows that out desired curve u = u(v) satisfies

u(0) = 0,
∫y

0

√
1 +

(
du
dv

)2

√
y− v

dv = C,

for each y, and a constant C. We solve this equation in Section 5.3. �
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4 First-Order Ordinary Differential Equations

The general form of a first-order differential equation is

dy

dx
= F(x,y) , (18)

where x and y are real variables, and F is a real-valued function of x and y. There is simple
geometric way to think about this equation. Since (18) gives the evolution law of y under in-
finitesimal change of x, fixing any point P0 = (x0,y0) in plane, one could generally find a unique
curve y = f(x) passing through P0 and satisfying the equation. More geometrically, at each point
(x,y) on the curve, the slope f ′(x) = dy

dx
of the tangent line equals the prescribed value F(x,y).

This curve is called the integral curve of (18) passing through P0. Here is a step-by-step pro-
cedure to approximately construct this curve, visualized in the following figure. Fixing a small
positive number h, on interval [x0, x0 + h], the integral curve is approximated by the tangent line
y = y0 +F(x0,y0)(x−x0), until it reaches the endpoint P1 = (x1,y1), and then similarly on interval
[x1, , x1 + h], the integral curve is approximated by y = y1 + F(x1,y1)(x− x1), etc.

A byproduct of this construction is Euler’s method to numerically solve the initial value prob-
lem

dy

dx
= F(x,y), y(a) = b.
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To find a table of values of the solution y = f(x) on [a,b], choosing large natural number N, and
setting the pace h = (b−a)/N, and the nodes xn = a+nh, n = 0, 1, . . ., we compute the sequence

y0 = b, yn+1 = yn + hF(xn,yn), n = 0, 1, . . . .

Then yn approximates f(xn) for each n.

Example 22. Let us apply Euler’s method to the simple initial value problem

dy

dx
= ky, y(0) = C,

where k and C are constants To find an approximate value for y(x), we choose large integer N,
and set our pace h := x

N
, and nodes xn = nh, n = 0, . . . ,N. Then

y0 = C, yn+1 = yn + hkyn = (1 + hk)yn, n = 0, . . . ,N− 1,

hence

y(x) = y(xN) ≈ yN = (1 + hk)Ny0 = (1 + hk)NC =

(
1 +

xk

N

)N
C

By the formula

lim
N→∞

(
1 +

a

N

)N
= ea,

we deduce y(x) ≈ Cekx. �

To visualize 18 in one shot, through each point of a representative collection of points (x,y)
in the plane, we draw a short line segment with slope F(x,y). This gives a slope field of the
equation. The following figure shows the slope field and some integral curves of the logic equation
dy
dx

= y(1−y). You could use online calculator http://www.bluffton.edu/homepages/facstaff/
nesterd/java/slopefields.html to plot slope fields.

Exercise 26. Fix parameter ε > 0. Let t > 0 be time variable measured in seconds. Separately,
consider each of the following equations:

dx1

dt
= 1 + x1,

dx2

dt
= x2

2,
dx3

dt
= xε3 ,

dx4

dt
= 1 + x2

4,
dx5

dt
= 1 + x

5
2
5 ,

dx6

dt
= 1 + x

1
10
6 ,

dx7

dt
= 1 + x

3
2
7 ,

dx8

dt
= 1 + x1+ε

8 ,
dx9

dt
= ε(x9 − 2)2,

together with initial condition xi(0) = 1, for each i = 1, . . . , 9.
(a) Show that x1(t) eternally exists, namely x1(t) is a smooth function of t ranging on whole

(0,∞).
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Figure 2: Slope field and some integral curves of the logic equation dy
dx

= y(1 − y).

(b) Show that x2(t) blows up in some finite time T , namely there is T > 0 such that x2(T
−) =∞.

Find T . How does T change as A increases?
(c) For what values of parameter ε, does x3(t) blow blows up in finite time?
(d) Show that x4(t) blows up in less than π seconds.
(e) Show that x5(t) blows up in some finite time T . Can you say for sure that T < π? [Hint.

Compare with (d).]
(f) Show that x6(t) eternally exists. [Hint. Compare with (a).]
(g) Show that x7(t) blows up in some finite time T .
(h)(Optional) Is it true that for each value of parameter ε, x8(t) blows up in some finite time?
(i) Show that x9(t) eternally exists, but in contrast with functions in parts (a) and (f), it remains

bounded, namely there is some B > 0 such that |x9(t)| < B for all t > 0.

4.1 The Existence and Uniqueness of Solutions

Theorem 6 (Picard-Lindelöf-Peano). Let F(x,y) be a real-valued function of real variables x and y,
defined on some open rectangle U containing the point (x0,y0). If F is continuous on U, then the
initial value problem

dy

dx
= F(x,y), y(x0) = y0, (19)

has a local solution around x = x0, namely there is a function y(x) defined on some open interval I
containing a such that

dy

dx
= F(x,y(x)), y(x0) = y0,
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for each x ∈ I. If both F and Fy are continuous on U, then (19) has exactly one local solution around
x = x0, namely any two solutions match on some interval around x = x0.

For the proof refer to [17, p. 8-11], [4, chapter 6], [23, chapter 13], or [1, vol. II, Theorem
7.19].

Example 23. Consider the initial value problem

dy

dx
= y

1
3 , y(0) = 0. (20)

This is a separable equation, hence we write it as

y
−1
3 dy = dx, (21)

which after integration gives

y = ±
(

2
3
x− C

) 3
2

.

The initial condition forces C to vanish, hence y = ±
(

2
3x
) 3

2 . This analysis shows that both
functions

y1 =

{(
2
3x
) 3

2 , x > 0

0, x < 0
, y2 = −y1,

satisfy (20) on whole real line. Note that in writing (21), we did a division by y
1
3 , and so missed

the trivial solution y3 ≡ 0 of (20). Also for each constant C > 0, the functions

y4 =

{(
2
3(x− C)

) 3
2 , x > C

0, x < C
, y5 = −y4,

also satisfy (20). �

Exercise 27. Fix real numbers a and b, and open interval I around a. Consider the initial value
problem

y(a) = b, x
dy

dx
= 2y,

for each x ∈ I. Show that:
(a) If a = b = 0, the problem has infinitely many solutions.
(b) If a = 0 and b 6= 0, the problem has no solution.
(c) If a 6= 0, the problem has a unique solution if and only if I does not contain 0.
[Hint. It really helps to draw the family y = Cx2 you get from separation of variables, and the

trivial solution y ≡ 0 missed in this family.]
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Exercise 28. Let y = y(x) be the local solution of initial value problem

y ′ =
y2 + x

y2 + 1
, y(0) = 0.

(a) Show that 1 6 y ′ 6 x for all x > 0.
(b) Show that x 6 y for all x > 0. Show that y(x) does not blow up in finite x > 0, hence defines

a unique function on whole [0,∞).
(c) Show that x

y2 → 0 when x→∞.
(d) Show that y ′ approaches a constant when x→∞. Find that constant.
(e) Show that y

x
approaches a constant when x→∞. Find that constant.

[Hint. For each part use the previous one.]

Example 24. This example is from [1, vol. I, p. 342]. Let us try to investigate nonlinear ODE

y = xy ′ −
1
4
(y ′)

2 . (22)

A little inspection shows that y = x2 is a special solution. Thus it might be useful to change
dependent variable y to u = y − x2.7 Our new equation is then u = −1

4(u
′)2, or equivalently

u ′ = ±2
√
−u, which is separable, hence solved in the following way:∫

±2dx =
∫
(−u)−

1
2du =⇒ C± 2x = 2(−u)

1
2 =⇒ u = −

(
C

2
± x
)2

,

hence

y = x2 −

(
C

2
± x
)2

= −
C2

4
∓ Cx,

or after digesting ± into C, we get y = Cx − C2

4 . So far we have found two solutions for (22),
namely the special y = x2, and the one-parameter family y = Cx − C2

4 . The left part of the
following figure depicts them. One sees that the special solution, at each of its points, is tangent
to one member of the one-parameter family of solutions. This is called an envelope.

7As a general suggestion, if you know a particular solution yp to a differential equation, it might be helpful to
change dependent variable y to u = y/yp or u = y− yp.
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Are there any other solutions? Yes! Can you see them? One can find infinitely many other
solutions by piecing together members of the family with portions of the envelope, for example

y =


−2x− 1, x 6 −1

x2, −1 6 x 6 1
4

1
2x−

1
16 , x > 1

4

,

which is shown in the right part of the same figure. �

Exercise 29 (Optional). Prove that the envelope of the one parameter family of curves F(x,y,C) = 0
could be found by eliminating C from the two equations F = 0 and ∂F

∂C
= 0.

Exercise 30. Consider the equation y2 + (y ′)2 = 1. Clearly constant functions y = 1 and y = −1,
and also y = sin(x+ C), C constant, are solutions. Manufacture infinitely many other solutions.

Exercise 31. Consider the equation

y ′ = (cot x) (
√
y− y) .

(a) Solve this equation.
(b) Consider the one-parameter family of solutions

(1 −
√
y)2 sin x = C.

Draw several members of this family, say C = 1, C = −1, C = 0.001, C = 2, C = −2. (I used
online plotter https: // www. desmos. com/ calculator .) Try to see solutions y ≡ 0 and y ≡ 1 as
degenerate members of this family. Are there other solutions?

For the rest of this chapter, we study several specal classes of first-order ODEs which can be
solved explicitly.

47

https://www.desmos.com/calculator


4.2 Homogeneous Equations

The differential equation (18), if F is homogeneous, namely

F(ax,ay) = F(x,y),

for each x, y and a, becomes separable after changing the dependent variable u to u = y
x

. Here is
the process. Replacing y by xu in equation (18), we get

u+ x
du

dx
= F(x, xu) = F(1,u),

which simplies into the separable equation

du

dx
=
F(1,u) − u

x
,

hence solved as ∫
du

F(1,u) − u
=

∫
dx

x
+ C.

Exercise 32. Find the orthogonal trajectories of the family of all circles passing through the origin
with their centers on the x-axis.

4.3 Linear Equations

A first-order differential equation of the form

dy

dx
+ P(x)y = R(x) , (23)

where P and R are real-valued functions of real variable x is called linear. Here comes a clever
trick to solve it. Multiplying both sides by a function µ(x), called an integrating factor, to be
determined later, our new equation is

µy ′ + µPy = µR.

If µ has the property that µPy = µ ′y, then our new equation could be written as (µy) ′ = µR,
which is simply solved as

µy =

∫
µRdx.

It only remains to find µ with desired property µPy = µ ′y, or even, µP = µ ′. This is a separable
equation, hence solved as∫

dµ

µ
=

∫
Pdx =⇒ log |µ| =

∫
Pdx =⇒ µ = ±Ce

∫
Pdx.

Our analysis proved the following result.
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Proposition 3. The general solution of equation (23) is

y = µ−1
∫
µRdx,

where µ = e
∫
Pdx.

Example 25. Let us solve the initial value problem
dy

dx
− ay = R(x), y(x0) = b,

where a and b are real constants, and R(x) a real-valued function. One integrating factor is
µ = e

∫
−adx = e−ax, hence the general solution to y ′ + ay = R(x) is

y = eax
∫
e−axR(x)dx = eax

(∫x
x0

e−aξR(ξ)dξ+ C

)
.

Enforcing the initial value y(x0), we get

b = Ceax0 =⇒ C = be−ax0,

thus finally

y = bea(x−x0) +

∫x
x0

ea(x−ξ)R(ξ)dξ . (24)

A formula worthy of remembrance. This clearly shows the effect of initial condition b and the
input R(x) on the output y(x). We see a generalization of this formula later in Chapter 8. �

4.4 Bernoulli Equation

A first-order differential equation of the form

y ′ = G(x)y+H(x)yα ,

where x and y are real variables, and α is a real number, is called a Bernoulli equation. It can
be converted to a linear equation by the following trick. We change the dependent variable y to u
related by y = uβ where β is a real number to be determined later. Our new equation is

βuβ−1u ′ = Guβ +Huαβ,

or equivalently, after division by uβ−1

βu ′ = Gu+Huαβ−β+1.

If we choose β = 1
1−α then this latter equation becomes linear, hence solvable by method of

Section 4.3.

Exercise 33. Solve y ′ = y − y3 using separability, and Bernoulli. Make sure that the answers of two
methods coincide.
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4.5 Exact Equations

There is another general way, besides the notation y ′ = F(x,y) and drawing slope fields, to repre-
sent and gain intuition about first-order ODEs, which we now discuss. Thinking of dy

dx
as the ratio

of two infinitesimals, we rewrite our equation dy
dx

= F(x,y) into

M(x,y)dx+N(x,y)dy = 0 , (25)

where M ≡ F(x,y) and N ≡ −1. Forgetting about F, sometimes, a first-order ODE is given directly
by (25), whereM and N are smooth functions of x and y. The technical advantage we gain by this
representation is that the expression Mdx+Ndy could be integrated along curves in the plane. It
is called a differential 1-form in higher mathematics.

Equation (25) is called exact if My = Nx. If this happens then the Green’s theorem [1, Vol II,
11.10] shows that, fixing some point (x0,y0) in the plane, the line integral

V(x,y) =
∫ (x,y)

(x0,y0)

Mdx+Ndy, (26)

does not depend on the path connecting (x0,y0) to (x,y), and (therefore) satisfies Vx = M and
Vy = N. Equation (25), is then equivalent to

0 = Vxdx+ Vydy = dV,

hence solved as V(x,y) = C, with arbitrary constant C. This is an implicit equation between x
and y, which in case of need, could be analyzed by implicit function theorem to give y locally in
terms of x. Function V is called the potential of the form Mdx +Ndy. Potential could be found
by computing (26) for a simple curve (say the straight line) connecting (x0,y0) to (x,y), or by the
process explained in following example.8

Example 26. Consider the differential equation

dy

dx
= −

ey

xey + 2y
. (27)

This is not separable, linear, homogeneous or Bernoulli; however if we rewrite it as

eydx+ (xey + 2y)dy = 0,

8Here is the analogy to mechanics. If a force field F = (M,N) satisfy My = Ny, then the work done by it on closed
curves is zero. Such forces are called conservative, and can be more easily analyzed by their potential functions V
defined through F = ∇V. Then V = C gives equipotential curves.
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it turns out to be exact, because

∂

∂y
(ey) = ey =

∂

∂x
(xey + 2y) .

We want to find function V(x,y) with

Vx = e
y, Vy = xey + 2y.

Integrating the first equation with respect to x (so y is assumed fixed momentarily), gives

V = eyx+ f(y),

where f(y) is a function of y. Putting this latter form of V into the second equation Vy = xey + 2y
gives

eyx+ f ′(y) = xey + 2y,

hence f ′(y) = 2y, so f(y) = y2 + C, where C is a constant. The whole analysis shows that
eyx+ y2 = C is the general solution to our problem. �

Exercise 34. Rewrite equation (27) as dx
dy

= · · · , and solve it without your knowledge of exact
equations.

Exercise 35 (Optional). Find potential V in Example 26 via formula (26).

4.6 y ′ = F(ax+ by+ c)

The first-order equation of the form

dy

dx
= F(ax+ by+ c),

where F is a real-valued function of a real variable, and a, b and c are constants, can be reduced to
a separable equation. If b = 0 then it is already separable. If b 6= 0, changing dependent variable
y to u = ax+ by+ c, new equation is

d

dx

(
u− ax− c

b

)
= F(u),

or equivalently du
dx

= a+ bF(u), which is separable.

Exercise 36. Redo Exercise 21 using the method in this section.
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4.7 y ′ = F
(
ax+by+c
αx+βy+γ

)
Consider the first-order equation of the form

dy

dx
= F

(
ax+ by+ c

αx+ βy+ γ

)
,

where F is a real-valued function of a real variable, and a, b, c, α, β and γ are constants. If
aβ− bα = 0 then our equation is of the form y ′ = G(ax+ by+ c) or y ′ = G(αx+ βy+ γ), which
are treated in Section 4.6. If aβ− bα 6= 0, finding the unique solution (x0,y0) of the system{

ax+ by+ c = 0,

αx+ βy+ γ = 0,

and accordingly changing independent variable from x to X = x−x0, and dependent variable from
y to Y = y− y0, we get the equivalent equation

dY

dX
= F

(
aX+ bY

αX+ βY

)
,

which is homogeneous, and solvable by method of Section 4.2.

Example 27. Consider the differential equation
dy

dx
=

2x+ 3y− 1
4(x+ 1)

. (28)

Two lines 2x+3y−1 = 0 and x+1 = 0 intersect at (−1, 1), hence we introduce new independent
variable X = x+ 1, and dependent variable Y = y− 1. Then dy = dY and dx = dX, hence

dY

dX
=

2X+ 3Y
4X

,

which is homogeneous. Setting Y = Xu, we have

u+ X
du

dX
=

2 + 3u
4

,

or equivalently
du

dX
=

2 − u

4X
,

which is separable, so solved as∫
4du

2 − u
=

∫
dX

X
=⇒ log |2 − u|−4 = log |X|+ C =⇒ X(2 − u)4 = K.

Finally setting X = x+ 1 and u = y−1
x+1 gives

(2x− y+ 3)4 = K(x+ 1)3,

as our general solution. �
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4.8 When Dependent or Independent Variable Is Missing

A second-order differential equation has the general form

y ′′ = F(x,y,y ′), (29)

where F is a function of three variables x, y and y ′. In special cases, where F misses variable y or
x, namely is of the form F(x,y ′) or F(y,y ′), respectively, then the differential equation (29), could
be reduced to a first-order equation. This is shown by the following two examples.

Example 28. Consider differential equation

x2y ′′ = (y ′)2.

Introducing new dependent variable u = y ′ instead of y, our equation becomes x2u ′ = u2,
which is first-order and separable, hence solved as

du

u2 =
dx

x2 =⇒ −1
u

=
−1
x

+ C =⇒ u =
Kx+ 1
x

,

where K is a constant. �

Example 29. Consider differential equation

y ′′ + (y ′)2 = 2e−y.

Again introducing new dependent variable u = y ′, since

y ′′ =
du

dx
=
du

dy

dy

dx
=
du

dy
u,

our equation becomes
du

dy
u+ u2 = 2e−y.

which is a first-order and Bernoulli. �

Exercise 37. Solve the following equations: (a) y ′′ = 2yy ′. (b) y ′′ = 2(y ′)2 tany.

Exercise 38. In classical mechanics, the position x(t) of a particle restricted to move on one direction
x, under the influence of a conservative force F(x), satisfies differential equationmd2x

dt2 = F(x). Assume
that F = −kx where k is a positive constant.

(a) Solve the equation of motion.
(b) Show that x(t) is a periodic function, and find the smallest period.

Exercise 39. Show that if a small body is projected away from the earth in a direction perpendicular
to the earths surface with an initial velocity of more than 11.1 kilometers per second, then it will never
return back to earth. [Hint. Neglect air resistance, but take into account the variation of the earth’s
gravitational field with distance. Find earth’s radius, and gravitational constant online.]
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4.9 Integrating Factor

Consider the first-order differential equation (25). It could be proved9 that there is always a
function µ(x,y) such that the equation

Mµdx+Nµdy = 0,

is exact, hence solvable by method of Section 4.5. Any such function µ is called an integrating
factor, and finding it an specific problem under study is an art.

Example 30. Consider the differential equation

dy

dx
= −

2y+ 3xy2

3x+ 4x2y
.

This is not separable, linear, homogeneous or Bernoulli. To check exactness we write it in
infinitesimal form (

2y+ 3xy2
)
dx+

(
3x+ 4x2y

)
dy = 0. (30)

It is not exact because in

∂

∂y

(
2y+ 3xy2

)
= 2 + 6xy and

∂

∂x

(
3x+ 4x2y

)
= 3 + 8xy,

although both are of the form a+bxy, but the coefficients do not match. Some vague feeling might
tell you that an integrating factor of the form µ = xαyβ, with constants α and β to be determined
later, might fix this matching problem. Let us check. Exactness of

xαyβ
(
2y+ 3xy2

)
dx+ xαyβ

(
3x+ 4x2y

)
dy = 0

is equivalent to

∂

∂y

(
2xαyβ+1 + 3xα+1yβ+2

)
=
∂

∂x

(
3xα+1yβ + 4xα+2yβ+1

)
,

which, after taking derivatives and canceling xαyβ, is equivalent to

2(1 + β) + 3xy(2 + β) = 3(1 + α) + 4xy(2 + α),

which is satisfied for α = 1 and β = 2. We found integrating factor µ = xy2. Multiplying (30) by
µ, makes it exact (

2xy3 + 3x2y4
)
dx+

(
3x2y2 + 4x3y3

)
dy = 0, (31)

9[3, Problem 2.46] or [24, vol. I, p. 83].
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with no matching problem

∂

∂y

(
2xy3 + 3x2y4

)
= 6xy2 + 12x2y3 =

∂

∂x

(
3x2y2 + 4x3y3

)
.

Exact equation (31) can be solved by the method of Example 26 to give the general solution

x2y3 + x3y4 = C,

with constant C. �

Exercise 40. Solve equation

(3x2y+ y2)dx+ (2x3 + 3xy)dy = 0,

knowing that it has an integrating factor of the form µ = P(y), where P is a scalar-valued function of
a scalar variable. [Answer: x3y2 + xy3 = C.]

Exercise 41. Solve equation
ydx+

(
x− 2x2y3

)
dy = 0,

knowing that it has an integrating factor of the form µ = P(xy), where P is a scalar-valued function
of a scalar variable. [Answer: x−1y−1 + y2 = C.]
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5 Laplace Transform, Approximate Identities

Laplace tranform is a powerful tool in the analysis and design of linear systems specially those
expressed by differential and integral equations [21, chapter 9]. We define and discuss basic
properties of this transform in this chapter, and will see numerous applications in later ones.

Like differentiation or integration, Laplace transform L is a machine (operator, function, etc.)
swallowing functions of time variable t as input, and spitting functions of frequency variable s as
output, as visualized in the following figure.

There are different versions of Laplace transform, but we mostly use

L(f(t)) =

∫∞
0
f(t)e−stdt . (32)

To feel comfortable with this definition, let us start computing the Laplace transform of some
simple functions say t and cos(at), where a is a constant.

L(t) =

∫∞
0
te−stdt =

∫∞
0
td
(
−s−1e−st

)
=
[
−ts−1e−st

]∞
0 +

∫∞
0
s−1e−stdt integration by parts

= 0 +
[
−s−2e−st

]∞
0 = s−2. assuming <(s) > 0
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Similarly, by doing integration by parts twice, we have

L(cosat) =
∫∞

0
e−std

(
a−1 sin(at)

)
=
[
e−sta−1 sin(at)

]∞
0 +

∫∞
0
e−stsa−1 sin(at)dt =

= −sa−2
∫∞

0
e−std(cos(at)) = −sa−2

([
e−st cos(at)

]∞
0 + s

∫∞
0
e−st cos(at)dt

)
=

= −sa−2 (−1 + sL(cosat)) ,

assuming <(s) > 0. Therefore

L(cosat) =
s

s2 + a2 , <(s) > 0.

Exercise 42. Prove that L(sinat) = a
s2+a2 assuming <(s) > 0.

With similar computations we obtain Table 1, which lists the most encountered Laplace pairs,
together with the range of s where the transform exists.

f(t) F(s) Region of Convergence
1 1

s
<s > 0

ta, a > −1 a!
sa+1 <s > 0

eat 1
s−a

<(s− a) > 0
cos(at) s

s2+a2 <s > 0
sin(at) a

s2+a2 <s > 0
1

2at sin(at) s
(s2+a2)2 <s > 0

1
2a3 (sin(at) − at cos(at)) 1

(s2+a2)2 <s > 0
δ(t) 1 s ∈ C

Table 1: Most important Laplace pairs.

The last row of this table needs explanation. δ(t) is the Dirac delta (or unit impulse) function,
characterized by two properties below:∫∞

−∞ δ(t)dt = 0 and δ(t) = 0 for t 6= 0 .

No Riemann (or even Lebesgue) integrable function has these properties. Intuitively, it could
be thought as the limit of rectangular pulses

δε(t) =

{
ε−1, 0 < t < ε

0, t < 0 or t > ε
,
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as ε→ 0+. As a physical example, the linear charge density (measured in coulombs per meter) of
a single point unit charge situated at the origin of x-axis is described by δ(x), because firstly there
is no charge density outside origin, and secondly the total charge

∫∞
−∞ δ(x)dx should equal one

coulombs.
Alternatively δ(t) could be thought of as the formal derivative10 of the unit step function

u(t) =

{
0, t < 0

1, t > 0
.

Figure 3: Unit step and unit impulse functions [21, chapter 1].

More generally, if a function f(t) is differentiable everywhere except at finitely many disconti-
nuity points t1, . . . , tn, and that at point tk, k = 1, . . . ,n, the functions jumps jk units, then the
summand ∑

16k6n

jkδ(t− tk),

appears in f ′(t). For example, if f(t) = |t|, then

f ′(t) =

{
−1, x < 0

1, x > 0
, f ′′(t) = 2δ(t).

Another characteristic property of delta function is its sifting (or sampling) property:

f(t)δ(t− a) ≡ f(a)δ(t− a) ,

where a is a real constant, and f is an arbitrary smooth function. The integral version of sampling
property is

f(t) =

∫∞
−∞ f(τ)δ(t− τ)dτ ,

which expresses a function as linear combinations (superpositions) of impulses. Specially L(δ(t)) =

1 and L(δ(t− a)) = e−as.
10Technical terminology is distributional or weak derivative.
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Exercise 43 (Optional). (a) Justify

δ(−t) = δ(t), δ(2t) =
1
2
δ(t), tδ(t) = 0.

(b) Justify

δ
(
t2 − 1

)
=

1
2
δ(t+ 1) +

1
2
δ(t− 1).

(Hint: for part (b), use the definition δ(t) = limε→0+ δε(t), together with approximation
√

1± ε =

1± ε/2.)

5.1 Basic Properties

To make Laplace transform into a powerful tool in solving differential equations, besides a table of
Laplace transform of important functions (Table 1), we need to understand how Laplace transform
interacts with summation, differentiation, integration etc. Table 2 gather general properties of
Laplace transform.

For the Laplace transform to exist (namely the improper integral in the definition (32) to con-
verge), satisfy the properties in Table 2, and to be one-to-one (namely L(f) = L(g) imply f = g),
we need to restrict attention to some special class of admissible functions. One admissible class
usually used in elementary differential equations textbooks is the class of piecewise continuous
functions of exponential order. Piecewise continuity means on each bounded interval the function
has at most finitely many discontinuities, and all of them of jumped type (namely left and right
limit exists.). Function f(t) is called of exponential order if there exist real numbers a and M such
that

|f(t)| 6Meat,

for all t. This a is called an exponential order of f. For example every bounded function is of ex-
ponential order 0; however f(t) = exp

(
t2
)

is not of exponential order. An immediate consequence
of (5.1) is that F(s) = L(f(t)) exists for <s > a, and satisfies the estimation

|F(s)| 6
M

<s− a
,

for <s > a. Specially F(s) → 0 for <s → ∞. Most functions appearing in applied science and
engineering are admissible in this sense together with all their derivatives, so we could freely use
Table 2, and assume that L is one-to-one. These technical issues are addressed in optional Section
5.4, or you could refer to [13, chapter 7].

We start studying Table 2.
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f(t) F(s)

g(t) G(s)

af(t) + bg(t) aF(s) + bG(s) linearity
f(at), a > 0 1

a
F
(
s
a

)
time scale↔ frequency scale

f ′(t) sF(s) − f(0) d
dt
↔ s

f ′′(t) s2F(s) − sf(0) − f ′(0)
f(n)(t) snF(s) − sn−1f(0) − · · ·− f(n−1)(0)

(−t)nf(t) F(n)(s) t↔ d
ds∫t

0 f(τ)dτ
F(s)
s

∫
↔ 1

s
f(t)
t

∫∞
s
F(σ)dσ 1

t
↔
∫

f(t)eat F(s− a) modulation↔ shift
f(t− a)u(t− a), a > 0 e−asF(s) shift↔ modulation∫t

0 f(τ)g(t− τ)dτ F(s)G(s) convolution↔ multiplication

f(t) with period T 1
1−e−Ts

∫T
0 e

−stf(t)dt

If f(∞) exists then f(∞) = lims→0 sF(s). Final Value Theorem

Table 2: Basic properties of the Laplace transform.

1. The verification of the following properties are straightforward, and left as exercise for the
reader.

L(af+ bg) = aL(f) + bL(g), L (f(at)) =
1
a
F
( s
a

)
,

L
(
f(t)eat

)
= F(s− a), L (f(t− a)u(t− a)) = e−asF(s).

2. A magic of Laplace transform is that it makes the analytic operations of differentiation and
integration, respectively, into the simpler algebraic operations of multiplication and division:

L(f ′(t)) = sF(s) − f(0) , L

(∫ t
0
f(τ)dτ

)
=
F(s)

s
. (33)

Let us prove the first property.

L(f ′(t)) =

∫∞
0
e−stf ′(t)dt =

∫∞
0
e−std (f(t))

=
[
e−stf(t)

]∞
0 +

∫∞
0
se−stf(t)dt, integration by parts

= −f(0) + sF(s). f is of exponential order
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This proves the first identity. Replacing f(t) by
∫t

0 f(τ)dτ in this identity proves the second
identity. On the other hand sending s→ 0 in the identity we just proved, we obtain

−f(0) + lim
s→0

sF(s) = lim
s→0

∫∞
0
e−stf ′(t)dt =

∫∞
0
f ′(t)dt = f(∞) − f(0),

hence
f(∞) = lim

s→0
sF(s) ,

provided that f(∞) exists. This useful result, every engineer should have in mind, is called
the Final Value Theorem.

3. Also note that

F(n)(s) =
dn

dsn

∫∞
0
f(t)e−stdt =

∫∞
0
f(t)

dn

dsn

(
e−st

)
dt =

∫∞
0
f(t)(−t)ne−stdt = L ((−t)nf(t)) .

4. To prove

L

(
f(t)

t

)
=

∫∞
s

F(σ)dσ,

setting

g(t) :=
f(t)

t
, G(s) := L(g(t)),

using the property just proved, we have

F(s) = L(f(t)) = L(tg(t)) = −
dG(s)

ds
,

hence after integration

G(s) = −

∫s
s0

F(σ)dσ+ C,

where s0 is an arbitrary real number, and C = G(s0). Since f is assumed to be of exponential
order, G(∞) = 0, and after choosing s0 =∞, we have

G(s) = −

∫s
s0

F(σ)dσ+

∫∞
s0

F(σ)dσ =

∫∞
s

F(σ)dσ,

which is what we wanted.

5. For two functions f(t) and g(t) defined on t > 0, their convolution, is defined by

(f ∗ g)(t) =
∫ t

0
f(τ)g(t− τ)dτ .
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A black magic of Laplace transform is that it makes convolution into multiplication:

L(f ∗ g) = (Lf)(Lg) .

Its proof is a simple application of Fubini’s theorem [23, p. 399].

Exercise 44. Compute the following convolutions in two ways: definition, and the convolution prop-
erty.

t2 ∗ t3, eat ∗ cosbt, cosat ∗ sinbt.

Exercise 45. (a) Find the Laplace inverses of s
(s2+a2)2 and 1

(s2+a2)2 , where a is a constant. (b) Find
the Laplace inverses of 1

(s2+1)3 and s
(s2+1)3 . [Hint: use convolution property.]

Exercise 46. Show that the second identity in (33) is a special case of convolution property.

Example 31. (a) Consider rectangular pulses A(u(t−a)−u(t−b)) and A ′(u(t−a ′)−u(t−b ′)),
where we are assuming D := b − a > D ′ := b ′ − a ′. Show that their convolution is the triangular
pulse of Figure 4.

Figure 4: Convolution of two rectangular pulses.

�

Exercise 47. (a) Find a function which violates the assertion of the Final Value Theorem.
(b) Suppose f(t) is an admissible function containing no impulses or its derivatives at t = 0. Justify

the Initial Value Theorem:
f(0+) = lim

s→∞ sF(s).
Exercise 48. Compute: (a)

∫∞
0

sinx
x
dx. (b)

∫∞
0
e−x−e−2x

x
dx.

Exercise 49 (Optional). Find a closed formula for the function

f(x) :=

∫∞
0

cos(xu)

1 + u2 du,
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defined for real variable x > 0, following either of the following suggestions.
(a) Apply Laplace transform.
(b) Justify f ′′(x) = f(x). This gives f(x) = C1e

x + C2e
−x. Show that C1 = 0 and C2 = π

2 .

Exercise 50 (Optional). Consider the unit rectangular pulse f(t) = u(t)−u(t−1). For each natural
number n, let fn(t) be the function created by convolving f with itself n times.

(a) Prove that

fn(t) =
∑

06k6n

(−1)k
(
n

k

)
(t− k)n−1

(n− 1)!
u(t− k).

(Hint: work on s domain, and use convolution property.)
(b) Prove that fn(t) = 0 for t > n. (Hint: work on t domain, and apply induction.)
(c) For several small n, draw fn(t), and compare it with

gn(t) =
1

σn
√

2π
e
−

(t−µn)2

2σ2
n ,

where µn = n
2 and σ2

n = n
12 .

5.2 Approximate Identities, Heat and Poisson Kernels (Optional)

In the definition of the unit impulse δ(t) in (32), observe that δε(t) is a 1-parameter family of
functions all with unit area, which concentrate more and more around origin t = 0 as the pa-
rameter ε approaches zero. Any other family with these two properties is called an approximate
identity, and could be used to define δ(t) via formula (32). Here is a physical explanation behind
this amazing fact that δ(t) does not depend on details of the family δε(t) except the family being
an approximate identity [21, p. 36]:

“... any real physical system has some inertia associated with it and thus does not
respond instantaneously to inputs. Consequently, if a pulse of sufficiently short duration
is applied to such a system, the system response will not be noticeably influenced by
the pulse’s duration or by the details of the shape of the pulse, for that matter. Instead,
the primary characteristic of the pulse that will matter is the net, integrated effect of
the pulse—i.e., its area.11 For systems that respond much more quickly than others,
the pulse will have to be of much shorter duration before the details of the pulse shape
or its duration no longer matter. Nevertheless, for any physical system, we can always
find a pulse that is ”short enough.” The unit impulse then is an idealization of this
concept—the pulse that is short enough for any system.”

11Here, by the area of a pulse p(t), the authors mean
∫∞∞ p(t)dt, not

∫∞∞ |p(t)|dt.
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For example each of the following families is an approximate identity:{
1

2ε , |t| < ε

0, |t| > ε
,


1
ε
, |t| < ε

− 1
2ε , ε < |t| < 2ε

0, |t| > 2ε

,

{
1
ε
− |t|

ε2 , |t| < ε

0, |t| > ε
,

sin
(
ε−1t

)
πt

,
1

ε
√

2π
e−

t2

2ε2 ,
1
π

ε

t2 + ε2 .

It really helps to visualize these families That the area of each of the members in the last three
families is 1 can be deduced by substitution in the following definite integrals:

1 =
1
π

∫∞
−∞

sin x
x
dx =

1√
π

∫∞
−∞ e

−x2
dx =

1
π

∫∞
−∞

1
x2 + 1

dx.

All these examples are special cases of a general recipe: if ϕ(x) is a function with unit area,
then ϕε(x) := 1

ε
ϕ
(
x
ε

)
is an approximate identity.

Exercise 51. Use formula δ(t) = limω→∞ sin(ωt)
πt

to justify∫∞
−∞ e

itωdω = 2πδ(t) .

This is an important identity in Fourier analysis.

Exercise 52. Use formula δ(ξ) = limt→0+
1√
4π
t−

1
2e−

ξ2
4t to justify that

u(x, t) =
∫∞
−∞

1√
4π
t−

1
2e−

(x−ξ)2
4t f(ξ)dξ , (34)

solves the heat propagation in a long rod:{
PDE : ut = uxx, 0 < t <∞, −∞ < x <∞
IC : u(x, 0) = f(x), −∞ < x <∞ .

The function pt(x) = 1√
4π
t−

1
2e−

x2
4t is called heat kernel.

Exercise 53. Use formula δ(ξ) = limy→0+
1
π

ε
ξ2+ε2 to justify that

u(x,y) =
∫∞
−∞

1
π

y

(x− ξ)2 + y2 f(ξ)dξ ,

solves the Dirichlet problem on upper-half plane:{
PDE : uxx + uyy = 0, −∞ < x <∞, 0 < y <∞
BC : u(x, 0) = f(x), −∞ < x <∞ .

The function py(x) = 1
π

y
x2+y2 is called Poisson kernel.
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5.3 Tautochrone Problem

As an application of the convolution property of Laplace transform, we solve the tautochrone
problem introduces in Example 21. Recall that our desired curve in uv-plane was the one passing
through origin, and satisfying ∫y

0

f(v)√
y− v

dv = C, for any y,

where C is a constant and f(v) =
√

1 +
(
du
dv

)2
. The left hand side of this equation is a convolution,

so applying Laplace transform gives F(s)s−
1
2 = Cs−1, with refreshed constant C. This shows that√

1 +

(
dx

dy

)2

= f(y) =
C
√
y

,

with refreshed constant. This is a separable equation, hence solved as

x =

∫√
C2 − y

y
dy =

∫
2C2 cos2 θdθ = C2

(
θ+

sin 2θ
2

)
+A,

where we have set y = C2 sin2 θ. Constant A vanishes because the curves passes through origin.
Setting 2θ = ϕ, and C2/2 = B, we get the parametric description of our desired curve:

x = B (ϕ+ sinϕ) , u = B(1 − cosϕ).

This is a cycloid! Refer https://en.wikipedia.org/wiki/Tautochrone_curve for an anima-
tion of this problem.

5.4 Existence, Uniqueness and Inversion Formulas for Laplace Transform
(Optional)

Let f(t) be a real-valued function defined for t > 0. f is called piecewise continuous if on each
bounded interval it has at most finitely many discontinuities, and all of them are of jumped type
(namely left and right limit exists.) f is called of exponential order if there exists real number a
such that |f(t)| . eat for all t. This a is called an exponential order of f. f is called admissible
if it is both piecewise continuous and of exponential order. An admissible function has Laplace
transform for <s large enough s, because the first property make the function locally integrable,
and the second one makes its Laplace transform improper integral convergent.

We gather the fundamental statements about existence and uniqueness of Laplace transform in
the following theorem.
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Theorem 7. Let f(t) and g(t) be real-valued functions defined on t > 0.
(a) If F(s0) exists then F(s), <s > <s0, also exists. [12, p. 16]
(b) If f is admissible, then |F(s)| . 1/(<s − a) for <s > a, where a is an exponential order of f.

Specially F(s)→ 0 as <s→∞. Furthermore, F(s) is analytic on <s > a. [7, p. 188]
(c) If f and g are admissible with equal Laplace transforms on some half-plane <s > a (or even on

some real half-line s > a), then f(t) = g(t) are equal except possibly at their points of discontinuity.
Even at discontinuity point t = t0, we have that

f(t0−) + f(t0+)

2
=
g(t0−) + g(t0+)

2
.

[7, p. 201]
(d) If F(s) = G(s) on some <s > a, then f(t) = g(t) almost everywhere. [12, p. 21]
(e) Let ∫∞

0
e−C0t|f(t)|dt <∞,

for real C0. If f is of bounded variation on some neighborhood of t > 0, then

f(t+) + f(t−)

2
=

1
2πi

lim
T→∞

∫C+iT

C−iT

estF(s)ds,

for each real C > C0. If f is of bounded variation on some neighborhood to the right of t = 0, then

f(t+)

2
=

1
2πi

lim
T→∞

∫C+iT

C−iT

estF(s)ds,

for each real C > C0. This is called a complex inversion formula for Laplace transform. [12, p.
157]

(f) If f(t) is continuous, and of exponential growth

f(t) = lim
n→∞

(−1)n

n!

(n
t

)n+1
F(n)

(n
t

)
, t > 0.

This is called Post’s inversion formula for Laplace transform.
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6 Linear Ordinary Differential Equations

The general form of a linear ordinary differential equation of order n is

dny

dxn
+ Pn−1(x)

dn−1y

dxn−1 + · · ·+ P1(x)
dy

dx
+ P0(x)y = R(x) , (35)

where all Pi(x) and R(x) are real-valued functions of real-variable x ranging on some open (con-
nected) interval I. Equation (35) is homogeneous if R ≡ 0. The corresponding homogeneous
equation to (35) is

dny

dxn
+ Pn−1(x)

dn−1y

dxn−1 + · · ·+ P1(x)
dy

dx
+ P0(x)y = 0. (36)

Many general features of these equations already reveals itself in the special n = 2 case, namely
an equation of the form

y ′′ + P(x)y ′ +Q(x)y = R(x) , (37)

with corresponding homogeneous equation

y ′′ + P(x)y ′ +Q(x)y = 0, (38)

and just because of notational simplicity, it is on these two latter equations that we mostly concen-
trate in this chapter.

6.1 The Existence and Uniqueness of Solutions

Here is the fundamental existence and uniqueness result for linear equations.

Theorem 8. In equation (35), let all Pi and R be continuous scalar-valued functions of real variable
x ranging on open interval I. For any x0 ∈ I, and any scalars Ai, i = 0, . . . ,n − 1, there is a unique
function y(x) satisfying the initial value problem

y(n) + Pn−1(x)y
(n−1) + · · ·+ P1(x)y

′ + P0(x)y = R(x), y(i)(x0) = Ai, i = 0, . . . ,n− 1,

on whole x ∈ I.

This is proved in [23, chapter 13], [4, chapter 6], [1, vol II, Theorem 6.3].

Example 32. Recall our discussion about equation

d2y

dx2 = y, (39)
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in Section 2.1. There we proved that y = C1e
x + C2e

−x, with C1 and C2 constants, is the general
solution. Here is another argument for this using the uniqueness part of Theorem 8. Let u be an
arbitrary solution of (39), and set

A := u(0), B := u ′(0), C1 :=
A+ B

2
, C2 :=

A− B

2
, v(x) = C1e

x + C2e
−x.

Now the function u and v are equal, because both satisfy the initial value problem

y ′′ + y = 0, y(0) = A, y ′(0) = B.

�

6.2 Structure Theorem

Example 32 revealed some power of Theorem 8. Arguing in the same lines we will obtain the
following theorem which completely determines the structure of solutions of (37).

Theorem 9. Let y1 and y2 be two solutions of equation (38).
(a) If y1 and y2 are (linearly) independent12, then

y = C1y1 + C2y2 ,

with contants C1 and C2, gives the general solution of (38). The collection {y1,y2} is called a basis or
fundamental system for equation (38).

(b) y1 and y2 are independent if and only if their Wronkian

W(y1,y2) =

∣∣∣∣y1 y2

y ′1 y ′2

∣∣∣∣ ,
is nowhere-zero, if and only if W(y1,y2) is nonzero in at least one point.

(c) If y1 and y2 are independent, and u is a (particular) solution of (37), then

y = C1y1 + C2y2 + u ,

is the general solution of (37).

Proof. (b) Since

W ′ = y1y
′′
2 − y ′′1 y2 = y1(−Py

′
2 −Qy2) − (−Py ′1 −Qy1)y2 = −PW,

12Namely there exists no constants C1 and C2, at least one nonzero, such that C1y1 + C2y2 ≡ 0.
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we have W = Ce−
∫
Pdx. This proves that W either vanishes nowhere or vanishes everywhere.

Also note that under any of the dependency conditions y2 = ky1 or y1 = ky2, with k a constant,
Wronskian vanishes. Conversely, assume that Wronskian vanishes at some point x = x0, and we
need to show that y1 and y2 are dependent. Putting aside the trivial case y1 ≡ 0, we could assume
y1(x0) 6= 0 for some x0. Since the function u := y2(x0)y1(x) − y1(x0)y2(x) and v ≡ 0 both satisfy
the initial value problem

y ′′ + Py ′ +Qy = 0, y(x0) = y
′(x0) = 0,

by uniqueness part of Theorem 8, u ≡ 0, and this witnesses the dependency of y1 and y2.
(a) Let y be an arbitrary solution of (38). By the previous part, one can find x0 such that

W(y1,y2)(x0) 6= 0. Thus the linear system[
y1(x0) y2(x0)

y ′1(x0) y ′2(x0)

] [
C1

C2

]
=

[
y(x0)

y ′(x0)

]
,

has solution for C1 and C2. Now C1y1+C2y2 and y both satisfy one common initial value problem,
hence equal.

(c) Trivial. �

Remark 1 (Optional). If you are familiar with bump functions, you could easily construct two
linearly independent smooth functions y1 and y2 on the whole real line whose Wronskian vanishes
everywhere. Another example of this phenomena is the two functions y1 = x3 and y2 = x2|x|. This
shows that the assertion of Theorem 9.b may not hold for arbitrary smooth functions, but only for
those functions satisfying a common linear differential equation. �

Fundamental Theorems 8 and 9 has corresponding analogues for n-th order equation (35).
In particular, if y1, . . .yn are solutions to homogeneous equation (36), then they are (linearly)
independent13 if and only if their Wronkian

W(y1, , . . . ,yn) =

∣∣∣∣∣∣∣∣∣
y1 y2 . . . yn
y ′1 y ′2 . . . y ′n
...

... . . . ...
y
(n−1)
1 y

(n−1)
2 . . . y

(n−1)
n

∣∣∣∣∣∣∣∣∣ ,
is nonzero at a point (or equivalently, nowhere zero).

13Namely there exists no constants C1, . . . ,Cn, at least one nonzero, such that C1y1 + · · ·+ Cnyn ≡ 0.
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6.3 Finding a Fundamental System of Solutions for a Second-Order Homo-
geneous Linear Equation Having One Solution at Hand

If one knows a nowhere-zero solution y1 of the homogeneous equation (38), then one could find
another solution, independent of y1, by the following trick due to Liouville. We try to find function
u(x) such that y = y1u also satisfies equation (38), namely

0 = Q (y1u) + P(y
′
1u+ y1u

′) + (y ′′1u+ 2y ′1u
′ + y1u

′′) =

= (Qy1 + Py
′
1 + y

′′
1 )u+ Py1u

′ + 2y ′1u
′ + y1u

′′ = (Py1 + 2y ′1)u
′ + y1u

′′.

Therefore we should have
du ′

u ′
= −

Py1 + 2y ′1
y1

dx,

which after integration becomes

logu ′ = −

∫
Pdx− 2 logy1,

hence
u =

∫
y−2

1 e−
∫
Pdx.

Retracing back, our analysis shows that

y2 = y1

∫
y−2

1 e−
∫
Pdxdx,

is another solution to equation (38). To check independency of y1 and y2, we compute their
Wronskian

W(y1,y2) = y1(y
′
1u+ y1u

′) − y ′1y1u = y2
1u
′ = e−

∫
Pdx,

which never vanishes. We gather what we have proved in the following proposition.

Proposition 4. If y1 is a nowhere-zero solution of the homogeneous equation (38), then another
independent solution is given by

y2 = y1

∫
y−2

1 e−
∫
Pdxdx .

Exercise 54. (a) Find the general solution of xy ′′ − (x + 2)y ′ + 2y = 0 knowing that y = ex is one
particular solution. (b) Find the general solution of (1 − x2)y ′′ − 2xy ′ + 2y = 0 knowing that y = x

is one particular solution.
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6.4 Constant Coefficient Equations

Theorem 9 tells us to find the general solution of a homogeneous linear n-th order ODE, we need
to find a fundamental system of solutions, namely a collection of n independent solutions. One
of the rare cases where we can do this explicitly is the constant-coefficient equation, namely an
equation of the form

y(n) + an−1y
(n−1) + · · ·+ a0y = 0 , (40)

where a0, . . . ,an−1 are constants.
Let us start by solving

d2y

dx2 +
dy

dx
− 6y = 0.

Based on examples in Section 2.1, let us see if exponential function y = erx, where r is a constant,
satisfies our equation. The computation(

d2

dx2 +
d

dx
− 6
)
erx = (r2 + r− 6)erx = (r− 2)(r+ 3)erx,

shows that e2x and e−3x satisfy our differential equation. The Wronskian∣∣∣∣ e2x e−3x

2e2x −3e−3x

∣∣∣∣ = −5e−x,

is nonzero, hence the collection {e2x, e−3x} is a fundamental system, so y = C1e
3x + C2xe

3x is the
general solution.

Let us now work on
d2y

dx2 + 6
dy

dx
+ 9y = 0.

Again we test exponential functions of the form y = erx, where r is a constant. The computation(
d2

dx2 + 6
d

dx
+ 9
)
erx = (r2 + 6r+ 9)erx = (r+ 3)2erx,

shows that e−3x satisfy our differential equation. But to find the general solution we another
solution independent of e3x. How to find that? Proposition 4 gives the other one as

e3x
∫
e6xe−6xdx = e3xx.

The Wronskian ∣∣∣∣ e−3x xe−3x

−3e−3x (1 − 3x)e−3x

∣∣∣∣ = e−6x,

is nonzero, hence the collection {e−3x, xe−3x} is a fundamental system, so y = C1e
−3x +C2xe

−3x is
the general solution.
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Proposition 5. In constant-coefficient equation (40), assume that the characteristic polynomial

p(r) = rn + an−1r
n−1 + · · ·+ a1r+ a0,

factors as

p(r) =

N∏
k=1

(r− rk)
mk.

Then {
erkx, erkxx, . . . , erkxxmk−1 : k = 1, . . . ,N

}
,

is a fundamental system of solutions.

Remark 2. Here comes an alternative clever perturbative argument to discover xerx, when r is a
characteristic root of multiplicity 2, of (40). Let us think of multiple root r and r as limit degenerate
case of two simple roots r and r+ h where h is very small. Since both erx and

e(r+h)x = erxehx ≈ erx(1 + hx),

are solutions of ODE, so is their difference divided by scalar h, which is erxx �

Example 33. For equation
y(5) − 2y(4) + y(3) = 0,

since the characteristic polynomial is

r5 − 2r4 + r3 = r3(r− 1)2,

the collection
{1, x, x3, ex, xex},

is a fundamental system. �

Example 34. For equation
y ′′ + y = 0,

since the characteristic polynomial is

r2 + 1 = (r− i)(r+ i),

we get fundamental solutions

eix = cos x+ i sin x, e−ix = cos x− i sin x,
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so the general solution is

y = C1(cos x+ i sin x) + C2(cos x− i sin x).

Everything is OK, but since our differential equation was given in real coefficients, it might be
more suitable to express the solution in terms of real-valued functions. That is easy if we notice
that, because of linearity of the equation

1
2

(
eix + e−ix

)
= cos x,

1
2i

(
eix − e−ix

)
= sin x,

are also solutions, and they independent because their Wronskian∣∣∣∣ cos x sin x
− sin x cos x

∣∣∣∣ = 1,

is nonzero. Therefore
y = C1 cos x+ C2 sin x,

is also the general solution. �

Exercise 55. Find the general solution of y(5) + y = 0.

Exercise 56. Consider the differential equation

y ′′ + ay ′ + by = 0,

where a and b are real constants. Prove that all solutions y(x) of this equation approaches 0 as
x→∞ if and only if both a and b are positive.

Exercise 57. (a) Find a constant coefficient linear ODE of least order such that y = x3 − 2x2 + 1 is
one of its solutions.

(b) Find a constant coefficient linear ODE of least order such that y = x sin x is one of its solutions.
(c) Find a constant coefficient linear ODE of least order such that y = (x2 + 1) sin x is one of its

solutions.
(d) Can you find a first-order linear homogeneous ODE of the form y ′+p(x)y = 0 with continuous

p such that y = x sin x is one of its solutions on interval (−1, 1)?
(e) Can you find a second-order linear homogeneous ODE of the form y ′′ + p(x)y ′ + q(x)y = 0

with continuous p and q such that y = x sin x is one of its solutions on interval (−1, 1)?
(f) Can you find a third-order linear homogeneous ODE of the form y ′′′+p(x)y ′′+q(x)y ′+r(x)y =

0 with continuous p, q and r such that y = x sin x is one of its solutions on interval (−1, 1)?
[Answer and Hint. (d, e) No! Use uniqueness part of Theorem 8. (f) Yes! Find it by inspection.]
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6.5 The Method of Variation of Parameters

Here comes a beautiful idea of Lagrange to find a particular solution of inhomogeneous equation
(37) having the general solution

y = C1y1 + C2y2,

of the corresponding homogeneous equation (38). We try to find function u1(x) and u2(x) such
that

y = u1y1 + u2y2,

satisfies (37). This means

R = Q(u1y1 + u2y2) + P(u1y
′
1 + u2y

′
2) + (u1y

′′
1 + u2y

′′
2 )

+ P(u ′1y1 + u
′
2y2) + 2(u ′1y

′
1 + u

′
2y
′
2) + (u ′′1 y1 + u

′′
2 y2)

= P(u ′1y1 + u
′
2y
′
2) + (u ′1y

′
1 + u

′
2y
′
2) + (u ′1y1 + u

′
2y2)

′,

which is true if {
u ′1y1 + u

′
2y2 = 0

u ′1y
′
1 + u

′
2y
′
2 = R

,

which has solution u ′1 = −Ry2
y1y

′
2−y

′
1y2

u ′2 = Ry1
y1y

′
2−y

′
1y2

.

We have proved the first part of the following theorem; the second parts is proved similarly.

Proposition 6. (a) If {y1,y2} is a fundamental system for solutions for the homogeneous equation
(38), then a particular solution to the inhomogeneous equation (37) is given by

yp = y1

∫
−y2

W
Rdx+ y2

∫
y1

W
Rdx ,

where W is the Wronskian of y1 and y2.
(b) If {y1, . . . ,yn} is a fundamental system for solutions for the homogeneous equation (35), then

a particular solution to the inhomogeneous equation (36) is given by yp = u1y1 + · · ·+ unyn where
u1, . . . ,un are solutions of the linear equation

y1 . . . yn
y ′1 . . . y ′n
... . . . ...

y
(n−1)
1 . . . y

(n−1)
n


u
′
1
...
u ′n

 =


0
...
0
R

 .
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Example 35. Let us use this method to find a particular solution of the differential equation

y ′′ − 2y ′ + y =
ex

1 + x2 .

The corresponding homogeneous differential equaltion is y ′′ − 2y ′ + y = 0, with charactersitic
polynomial r2 − 2r + 1 = (r − 1)2, which has root r = 1 with multiplicity 2. Thus y1 = ex and
y2 = xex are two independent solutions of the homogeneous equation. Their Wronskian is

W =

∣∣∣∣y1 y2

y ′1 y ′2

∣∣∣∣ = ∣∣∣∣ex xex

ex ex(x+ 1)

∣∣∣∣ = e2x(x+ 1) − e2xx = e2x.

A particular solution to the inhomogeneous equation is

y = ex
(∫

−xex

e2x

ex

1 + x2 dx

)
+ xex

(∫
ex

e2x

ex

1 + x2 dx

)
= ex

(∫
−x

1 + x2 dx

)
+ xex

(∫
1

1 + x2 dx

)
= −

1
2
ex log

(
1 + x2

)
+ xex tan−1 x.

In Examples 36 and 39, we solve this equation with two other methods. �

6.6 The Operator Method of Heaviside

We give an alternative quick way to solve constant coefficient linear equation

y(n) + an−1y
(n−1) + · · ·+ a0y = R(x) , (41)

where R(x) is a scalar-valued function of real variable x. Let us think of differentiation as an
operator D acting on functions, hence for any function f we denote f ′(x) by Df. We could compose
D with itself k times, k a positive integer, and get Dk = d

dxk
. We think of D0 as inert (identity)

operator 1 (also denoted by I or 11), which leaves its input inact. D−1 (also denoted by 1
D

) is the
reverse operation of integration: (

D−1f
)
(x) =

∫
f(x)dx.

Also for operators acting on the space of functions and spitting out functions, we could add,
subtract and compose them with each other in the natural way. With all this in mind, the equation
(40) could be interpreted as(

Dn + an−1D
n−1 + · · ·+ a1D+ a0

)
y = R,

or even p(D)y = R, where

p(r) = rn + an−1r
n−1 + · · ·+ a1r+ a0, (42)

is the characteristic polynomial.
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Proposition 7. Let the characteristic polynomial (42) of equation (41) be factored as

p(r) =

n∏
k=1

(r− rk),

where rk are complex numbers. Then

y =

(
n∏
k=1

1
D− rk

)
R =

(
n∏
k=1

erkx
1
D
e−rkx

)
R = ernx

1
D
e−rnx · · · er1x

1
D
e−r1xR ,

is the general solution of (41).

Example 36. Let us apply this method to Example 35. A particular solution is

yp = ex
1
D
e−xex

1
D
e−x

ex

1 + x2 = ex
1
D

1
D

1
1 + x2

= ex
1
D

∫
dx

1 + x2 = ex
∫

tan−1 xdx

= ex
(
x tan−1 x−

∫
xdx

1 + x2

)
, integration by parts

= ex
(
x tan−1 x−

1
2

log
(
1 + x2

))
,

which is the same result. �

6.7 The Method of Laplace Transform, Analysis of Discontinuous and Peri-
odic Inputs

Laplace transform gives another way to solve the constant coefficient differential equation (41),
specially when R(x) has discontinuities, which is a common situation in engineering where R(x)
contains a pulse, mathematically modeled by Heaviside step or Dirac delta functions. We show this
by several examples.

Example 37. Recall Example 25. We assume x0 = 0. Applying Laplace transform, we get the
algebraic equation

sY − b+ aY = L(R),

where Y = Ly. Therefore

Y =
b+ L(R)

s+ a
,
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hence

y = L−1

(
b

s+ a

)
+ L−1

(
1

s+ a
L(R)

)
= be−ax +

∫x
0
e−a(x−ξ)R(ξ)dξ.

�

Example 38. To solve
y ′′ + 4y = 9x sin x, y(0) = 1, y ′(0) = 4,

applying Laplace transform, we get

s2Y − s− 4 + 4Y = −
d

ds
L (9 sin x) = −

d

ds

9
s2 + 1

=
18s

(s2 + 1)2 ,

hence

Y =
s+ 4
s2 + 4

+
18s

(s2 + 4)(s2 + 1)2 =
s

s2 + 4
+

4
s2 + 4

+
2s

s2 + 4
+

−2s
s2 + 1

+
6s

(s2 + 1)2 ,

which we have done partial fraction decomposition in the last line. Therefore

y = L−1Y = 3 cos(2x) + 2 sin(2x) − 2 cos x+
1
2
x sin x.

�

Example 39. Let us use Laplace transform to give another solution to the differential equation in
Example 35. Applying Laplace transform, we get

(s2 − 2s+ 1)Y − sA+ 2A− B = L

(
ex

1 + x2

)
,

where Y = L(y), A = y(0), and B = y ′(0). Therefore

Y =
As+ B− 2A

(s− 1)2 +
1

(s− 1)2L

(
ex

1 + x2

)
=

C1

s− 1
+

C2

(s− 1)2 +
1

(s− 1)2L

(
ex

1 + x2

)
.

Therefore

y = L−1(Y) = C1e
x + C2e

xx+ xex ∗ ex

1 + x2 = C1e
x + C2e

xx+

∫x
0
(x− ξ)ex−ξ

eξ

1 + ξ2dξ =

= C1e
x + C2e

xx+ ex
∫x

0

x− ξ

1 + ξ2dξ = C1e
x + C2e

xx+ xex tan−1 x−
1
2
ex log

(
1 + x2

)
.

Notice that we did not need to find Laplace transform of ex

1+x2 . �
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More generally we have:

Proposition 8. A particular solution of equation (41), or more precisely, the unique solution to initial
value problem {

y(n) + an−1y
(n−1) + · · ·+ a0y = R(x)

y(0) = y ′(0) = · · · = y(n−1)(0) = 0
, (43)

is given by convolution integral

y(x) =

∫x
0
R(ξ)h(x− ξ)dξ, h(x) = L−1

(
1

sn + an−1sn−1 + · · ·+ a1s+ a0

)
.

Note that h(x) above is y(x) for input R(x) := δ(x). That is why h(x) is called the unit impulse
response of IVP (43). Proposition 8 is one in a collection of results under the name of Duhamel’s
(or Superposition) Principle.

Exercise 58. Show that the unique solution to initial value problem

y ′′ + y = R(x), y(0) = y ′(0)

is given by convolution integral y(x) =
∫x

0 R(ξ) sin(x− ξ)dξ.

Example 40. Consider initial value problem{
y ′′ − 2y ′ + y = δ(x− 2)

y(0) = 0, y ′(0) = 0
, (44)

applying Laplace transform, we get

s2Y − 2sY + Y = e−2s,

hence

Y =
e−2s

(s− 1)2 .

Therefore
y = L−1Y = (x− 2)ex−2u(x− 2). (45)

Let us check that the solution just found satisfies the original initial value problem. By product
rule for differentiation, and the identities

d

dx
u(x− a) = δ(x− a), f(x)δ(x− a) = f(a)δ(x− a),
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valid for each constant a, and each function f(t), we compute

y ′ =
(
(x− 2)ex−2

) ′
u(x− 2) + (x− 2)ex−2δ(x− 2) = ex−2(x− 1)u(x− 2) + 0,

y ′′ =
(
(x− 1)ex−2

) ′
u(x− 2) + (x− 1)ex−2δ(x− 2) = ex−2xu(x− 2) + δ(x− 2),

which you can readily check satisfies the initial value problem we started with.
Now let us solve problem (44) directly without using Laplace transform. Our problem splits

into two subproblems:{
y ′′ − 2y ′ + y = 0, 0 < x < 2

y(0) = 0, y ′(0) = 0
,

{
y ′′ − 2y ′ + y = 0, 2 < x <∞
y(2+) = ?, y ′(2+) = ?

,

where we also need to find the value of y(x) and y ′(x) for x = 2+. The first subproblem has unique
solution y(x) = 0 for 0 6 x < 2. To solve the first subproblem, we should first compute y(2+) and
y ′(2+). Specially y(2−) = y ′(2−) = 0. Firstly, note that y(x) does not jump at x = 2, because
otherwise u(x− 2) appears in y(x), hence δ(x− 2) in y ′(x), hence δ ′(x− 2) in y ′′(x); however our
main differential equation in (44) witnesses that this is not the case. Therefore

y(2+) = y(2−) + 0 = 0.

Secondly, integrating our main differential equation in (44) from x = 2− to x = 2+ gives

(y ′(2+) − y ′(2−)) − 2 (y(2+) − y(2−)) +

∫2+

2−
y(x)dx = 1,

or equivalently
y ′(2+) − y ′(2−) − 2× 0 + 0 = 1,

hence
y ′(2+) = y ′(2−) + 1 = 1.

The general solution to second subproblem is y = C1e
x + C2e

xx, and enforcing y(2+) = 0,
y ′(2+) = 1 gives y = (x − 2)ex−2. Putting all these together, we retrieve our previous solution
(45). �

Example 41. This example comes from [13, p. 477], after a correction. Consider the circuit in
Figure 5, with E = 90 volts, R = 110 ohms, L = 1 henries, and C = 0.001 farads. We assume that
there is no energy in the inductance and capacitance. Only on time interval [0, 1] switch is open,
hence the voltage applied across the RLC part is modeled by

v(t) = E(u(t) − u(t− 1)).
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Figure 5: Circuit analyzed in Example 41. Switch is open only on time interval [0, 1].

To find the variation of resulting current i(t) in the circuit, we note that i(t) satisfies initial
value integro-differential equation

L
di

dt
+ Ri+

1
C

∫ t
0
i(τ)dτ = v(t), i(0) = 0. (46)

Note that i(0) = 0 is because there is no initial energy in inductance. Also since there is no initial
energy in capacitor, initial voltage vC(0) is zero, and the voltage drop across capacitance is

vC(0) +
1
C

∫ t
0
i(τ)dτ =

1
C

∫ t
0
i(τ)dτ.

Applying Laplace transform to (46), assuming Li = I, we have

LsI+ RI+
I

Cs
= E

(
1
s
−
e−s

s

)
,

hence

I =
90 (1 − e−s)

s2 + 110s+ 1000
=

90 (1 − e−s)

(s+ 10)(s+ 100)
= (1 − e−s)

(
1

s+ 10
−

1
s+ 100

)
=

(
1

s+ 10
−

1
s+ 100

)
− e−s

(
1

s+ 10
−

1
s+ 100

)
.

Therefore

i(t) = L−1(I(s)) =
(
e−10t − e−100t

)
u(t) −

(
e−10(t−1) − e−100(t−1)

)
u(t− 1)

=


0, t < 0

e−10t − e−100t, 0 < t < 1

e−10t − e−10(t−1) − e−100t + e−100(t−1), t > 1

.

�
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Example 42. This example comes from [13, p. 480]. Consider the initial value problem

d2x

dt2
+ 4

dx

dt
+ 20x = f(t), x ′(0) = x(0) = 0,

where f(t) is the 2π-periodic square wave given by{
20, 0 6 t < π

−20 π 6 t < 2π
,

on time interval [0, 2π]. Applying Laplace transform, we get

s2X+ 4sX+ 20 =

∫2π
0 f(t)e−stdt

1 − e−2πs

=

∫π
0 20e−stdt−

∫2π
π

20e−stdt
1 − e−2πs =

20
s

(1 − e−πs)
2

1 − e−2πs

=
20
s

1 − e−πs

1 + e−πs
,

hence

X =
20

s (s2 + 4s+ 20)
1 − e−πs

1 + e−πs

=
20

s ((s+ 2)2 + 42)
(1 − e−πs)

(
1 − e−πs + e−2πs −+ · · ·

)
, geometric series

=
20

s ((s+ 2)2 + 42)

(
1 − 2e−πs + 2e−2πs −+ · · ·

)
.

Therefore
x(t) = f(t) − 2f(t− π)u(t− π) + 2f(t− 2π)u(t− 2π) − + · · · ,

where

f(t) = L−1 20
s ((s+ 2)2 + 42)

= L−1

(
1
s
+

−(s+ 2) − 2
(s+ 2)2 + 42

)
= 1 − cos(4t)e−2t −

1
2

sin(4t)e−2t.

To find a closed formula for x(t) in each interval [nπ, (n+ 1)π], n = 0, 1, 2, . . ., setting

g := cos(4t)e−2t +
1
2

sin(4t)e−2t, α := e2π,
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we have

x(t) = (1 − g) − 2(1 − αg) + 2(1 − α2g) − + · · ·+ 2(−1)n(1 − αng)

= (1 − 2 + 2 −+ · · ·+ 2(−1)n) −
(
1 − 2α+ 2α2 +− · · ·+ 2(−1)nαn

)
g

= (−1)n −

(
1 − 2α

1 − (−α)n

1 + α

)
g = (−1)n +

α− 1
α+ 1

g−
2α
α+ 1

(−α)ng

=

(
α− 1
α+ 1

g

)
+

(
(−1)n −

2α
α+ 1

(−α)ng

)
.

Therefore on t ∈ [nπ, (n+ 1)π], we have

x(t) = x1(t) + x2(t),

where

x1(t) =
α− 1
α+ 1

(
cos(4t)e−2t +

1
2

sin(4t)e−2t

)
,

is the damped transient part, and

x2(t) = (−1)n
(

1 −
2α
α+ 1

(
cos(4t)e−2(t−nπ) +

1
2

sin(4t)e−2(t−nπ)

))
,

is the steady-state part. Note that x(t) is 2π-periodic, the cycle [0, 2π] is shown in the following
figure.

�

Exercise 59. Solve the initial value problem

y ′′ + y =
∑
n>1

δ(x− nπ), y(0) = 0, y ′(0) = 0.

Exercise 60. In all of the examples in this section, justify the prediction of Final Value Theorem.
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6.8 The Method of Undetermined Coefficients

Consider equation (41). If R(x) is of the special form in the left column of the following table, then
it is guaranteed that there is a particular solution of (41) of the form in the corresponding right
column of the same table.

R(x) y

d-poly xm (d-poly)
eax Axmeax

cosbx or sinbx xm(A cosbx+ B sinbx)
(d-poly)eax cosbx or (d-poly)eax sinbx xmeax((d-poly)cosbx+(another d-poly)sinbx)

The table needs some explanation:

1. “d-poly” stands for “a polynomial of degree d”.

2. Integer m in different rows of the second column, respectively, equals the order of r = 0,
r = a, r = ib or r = a+ bi as the root of the characteristic polynomial (42).

3. Clearly the last row contains the other rows as special case.

Example 43. Consider the equation

y ′′′ − y ′′ − y ′ + y = (12x+ 14)ex.

Since r = 1 is a repeated root with multiplicity m = 2 of the characteristic polynomial

r3 − r2 − r+ 1 = (r− 1)2(r+ 1),

the equation has a particular solution of the form

y = exx2 (Ax+ B) = ex
(
Ax3 + Bx2

)
,

where A and B are constants. Satisfying this indefinite form into the equation gives

(12x+ 14)ex = y− y ′ − y ′′ + y ′′′

= ex
(
Ax3 + Bx2

)
− ex

(
Ax3 + (3A+ B)x2 + 2Bx

)
− ex

(
Ax3 + (6A+ B)x2 + (6A+ 4B)x+ 2B

)
+ ex

(
Ax3 + (9A+ B)x2 + (18A+ 6B)x+ 6A+ 6B

)
,
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hence after eliminating ex, and equating similar powers of x, we have{
12A = 12

6A+ 4B = 14
,

hence A = 1 and B = 2. Therefore y = ex
(
x3 + 2x2

)
is a particular solution. �

Exercise 61. Find a particular solution of each of the following equations: (a) y ′′′ + 2y ′′ = x4. (b)
y ′′ + 2y ′ + y = e−x + xex.

6.9 Resonance

Recall Example 9, where we modeled RLC circuit and mass-spring-dashpot system with nonhomo-
geneous constant-coefficient second order ODE

y ′′ + ay ′ + by = R(t). (47)

Electrical and mechanical engineers study this equation in detail. Here I just want to mention
the important phenomenon of resonance occurring to this equation when the exciter is a simple
sinusoidal, say

R(t) = A cos(ωt+ϕ) = B cos(ωt) + C sin(ωt),

where amplitude A, angular frequency ω, and initial phase ϕ are constants. Resonance happens
when iω is very close to a root of characteristic polynomial r2 + ar+ b, namely when

a ≈ 0, ω ≈
√
b.

If this happens then by Section 6.8, the solution of (47) is of the form

y = C1e
r1t + C2e

r2t︸ ︷︷ ︸
y1

+ t (D cos(ωt) + E sin(ωt))︸ ︷︷ ︸
y2

,

where

r1 =
−a+

√
a2 − 4b

2
, r2 =

−a−
√
a2 − 4b

2
,

are both either negative real, or complex with negative real part. Thus after a while, y1 fades, and
y ≈ y2 (Exercise 56). However because of t multiplier, y2 becomes unbounded at some times.
This is called resonance, which must seriously be taken into account in the design of bridges or
buildings, avoiding catastrophic failure of the structure.

More generally in equation

y(n) + an−1y
(n−1) + · · ·+ a0y = A cos(ωt+ϕ),
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if iω is a characteristic root, namely satisfies

(iω)n + an−1(iω)n−1 + · · ·+ a1(iω) + a0 = 0,

then resonance happens.

6.10 Euler-Cauchy Equation

An equation of the form

x2d
2y

dx2 + ax
dy

dx
+ by = R(x) ,

where a and b are constants, and g(x) is scalar-valued function of scalar x, is called Cauchy-Euler
(or equidimensional equation). It reduces to a constant coefficient linear equation by changing
independent variable x to z = log x. Since

dy

dx
=
dy

dz

dz

dx
=
dy

dz

1
x

,

d2y

dx2 =
d

dx

(
dy

dz

1
x

)
=
d

dx

(
dy

dz

)
1
x
+
dy

dz

−1
x2 =

d

dz

(
dy

dz

)
dz

dx

1
x
+
dy

dz

−1
x2 =

d2y

dz2

1
x2 −

dy

dz

1
x2 ,

the new equation is
d2y

dz2 + (a− 1)
dy

dz
+ by = R (ez) .

This trick equally works for the higher-order equation

xn
dny

dxn
+ an−1x

dn−1y

dxn−1 + · · ·+ a0y = g(x), (48)

which we now explain. Introducing change of variable z = log x, and differential operators

Dx :=
d

dx
, Dz :=

d

dz
,

exactly as before one could show that

Dx =
1
x
Dz, D2

x =
1
x2Dz(Dz − 1), . . . , Dnx =

1
xn

∏
06k6n−1

(Dz − k).

This way equation (48) reduces to constant coefficient linear equation(
a0 + a1Dz + a2Dz(Dz − 1) + · · ·+

∏
06k6n−1

(Dz − k)

)
y = R (ez) .

6.11 Some Qualitative Analysis

To be added. ???
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7 Power Series Methods

The solutions of most differential equations appearing in practice can not be expressed by ele-
mentary functions and their integrals.14 Solving such differential equations then means to decide
on appropriate simple building block functions, and then represent the solution in terms of these
blocks. This is analogous to building new words to make more advanced sentences. In this chapter
we use power functions xn, n = 0, 1, 2, . . ., or their shifted versions

(x− x0)
n, x0 ∈ R, n = 0, 1, 2, . . . ,

(by convention, we consider (x − x0)
0 as constant function 1.) as our building blocks, and we try

to represent functions by infinite series like∑
n>0

an(x− x0)
n , (49)

with scalar sequences (an) (these are called power series), or generalizations like

|x− x0|
r
∑
n>0

an(x− x0)
n , (50)

with real numbers r (these are called Frobenius series).

Exercise 62. Geometric series 1
1−x =

∑
n>0 x

n, valid for |x| < 1, is maybe the most important power
series. Justify it.

Exercise 63. Recall the construction of basic elementary functions namely polynomials, (1 + x)α, ex,
log(1 + x), sin x, cos x, arctan x by power series.

A scalar-valued function f(x) of a real variable which equals a power series like (49) on some
interval |x−x0| < R, R > 0, is called (real) analytic at x0. A function defined on |x−x0| < R which
agrees on 0 < |x− x0| < R with some analytic function at x0, is said to have an analytic extension
to |x− x0| < R; and with an abuse of language, these functions are considered to be analytic at x0.
A function is called analytic on an open interval if it is analytic at all points of that interval.

14 Even conversely, elementary functions could be defined by differential equation. For example, sin x is the unique
solution of the initial value problem

y ′′ + y = 0, y(0) = 0, y ′(0) = 1,

or the power function y = (1 + x)α is the unique solution of the initial value problem

(1 + x)y ′ = αy, y(0) = 1.
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Example 44. Consider

f(x) := ex =
∑
n>0

xn

n|
, g(x) :=

sin x
x

=
1 − x3

3! +
x5

5! −+ · · ·
x

, h(x) :=
∑
n>1

nnxn.

Function f(x) is analytic at x = 0, because the series converges for each x ∈ R. Function g(x)
is considered to be analytic at x = 0, because it equals 1 − x2

3! + x4

5! − + · · · convergent for each
x ∈ R. Function h(x) is not analytic at x = 0, because root test shows that it is convergent only at
x = 0. �

Remark 3 (Optional). It is a non-trivial fact [19, Proposition 1.2.3] that a power series
∑
an(x −

x0)
n convergent on |x − x0| < R, R > 0, is analytic on |x − x0| < R. The converse is also true:

an analytic function on |x − x0| < R, R > 0, has a power series representation
∑
an(x − x0)

n

convergent on |x− x0| < R. (reference ???) �

Those properties of analytic functions that we need are gathered in the following propositions.

Proposition 9. (a) Polynomials, ex, sin x, cos x are analytic on R. Rational functions (namely quo-
tient of polynomials) are analytic on R except those roots of the denumerator whose multiplicity is
strictly bigger than their multiplicity as (potential) roots of numerator. log(1 + x) and (1 + x)α

(α ∈ R) are analytic on |x| < 1.
(b) Let f and g be analytic at x0. Then f ± g, f × g are analytic at x0. f/g is analytic at x0 if

g(x0) 6= 0.
(c) If f is analytic at x0, and g is analytic at f(x0), then g ◦ f is analytic at x0.

Proposition 10. Consider the power series
∑
n>0 an(x − x0)

n, and let R, called the radius of con-
vergence, be either of the following limits (in case they exist or equal∞)

R = lim
n→∞

∣∣∣∣ anan+1

∣∣∣∣ or R = lim
n→∞ |an|

− 1
n .

(a) If 0 < R <∞, then the power series converges for |x− x0| < R, and diverges for |x− x0| > R.
(b) If R = 0, then the power series diverges for all x ∈ R except x = x0.15

(c) If R =∞, then the power series converges for all x ∈ R.

Proposition 11. Let f be analytic at x0 with representation

f(x) =
∑
n>0

an(x− x0)
n,

15Note that in this case the power series is useless, and does not define an analytic function at x0.
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valid on |x− x0| < R, for some positive R. Then:
(a)

f ′(x) =
∑
n>1

nan(x− x0)
n−1,

∫x
x0

f(ξ)dξ =
∑
n>0

an

n+ 1
(x− x0)

n+1,

valid on the same interval.
(b) f is smooth on the same interval, and an = f(n)(x0)

n! for each n. These are called Taylor
coefficients of f at x0.

(c) If f(x) =
∑
n>0 bn(x− x0)

n valid on the same interval, then an = bn for each n.

Part (a) is [1, vol. I, p. 432]; other parts follow immediately.

Exercise 64. There exists smooth non-analytic functions. Prove that the following function is smooth
on R but not analytic at x = 0.

f(x) =

{
e−

1
x , x > 0

0, x 6 0
.

(Hint. Prove that f(n)(0) = 0 for n = 0, 1, 2, . . ..)

In Sections 7.1 and 7.2, we concentrate on linear second-order differential equations of the
form

y ′′ + P(x)y ′ +Q(x)y = 0, (51)

where P and Q are real-valued functions of real variable x which ranges on some interval I =

(x0 − R, x0 + R) or its punctured version I = (x0 − R, x0 + R) \ {x0}, for some real x0 and positive
real R. Some of the most important such equations with non-elementary solutions are the Airy
equation

y ′′ + xy = 0, (52)

the Bessel equation
x2y ′′ − xy ′ +

(
x2 − p2

)
y = 0, (53)

where p is a real constant,16 the Legendre equation

(1 − x2)y ′′ − 2xy ′ + p(p+ 1) = 0, (54)

where p is a real constant,17, the Hermite Equation

y ′′ − 2xy ′ + 2py = 0, (55)

where p is a real constant.18 Bessel and Legendre functions appear in the study of Laplacian in
cylindrical and spherical coordinates. Hermit functions appear in the study of quantum oscillator.

16When p is half of an odd integer, the Bessel Equation has one elementary solution.
17When p is an integer, the Legendre equation has one polynomial solution, and another non-elementary one.
18When p is a nonnegative integer, the Hermite Equation has one polynomial solution, and another non-elementary

one.
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7.1 Linear Second-Order Ordinary Differential Equation: Nonsingular Points

Now we study equation (51) around good point x0, in the following sense. A point x0 is called
nonsingular (or ordinary) for equation (51), defined on I = (x0 − R, x0 + R), if both P and Q are
analytic at x0 (or have an analytic extension to I), otherwise x0 is a singular point.

Theorem 10. Consider equation (51) on I = (x0 − R, x0 + R), R > 0, and assume

P(x) =
∑
n>0

pn(x− x0)
n, Q(x) =

∑
n>0

qn(x− x0)
n,

valid on I. Then (51) has two independent solutions

y1(x) =
∑
n>0

an(x− x0)
n, y2(x) =

∑
n>0

bn(x− x0)
n,

valid and satisfying equation on I.

Easy proof could be found in [1, vol. II, p. 169], or [23, p. 208].

Remark 4 (Optional). A general theme is that a system of ODEs or PDEs with analytic data has
analytic solutions. Refer to [11, vol. I, 10.5.3] or [24, vol II, 6.4]. However Hans Lewy found a
linear PDE with smooth data having no solution.

�

Example 45. Let us use this theorem to solve

y ′′ + y = 0, (56)

around nonsingular point x = 0. Replacing y by
∑
n>0 anx

n, and y ′′ by

d

dx

d

dx

∑
n>0

anx
n =

d

dx

∑
n>1

nanx
n−1 =

∑
n>2

n(n− 1)anxn−2,

we have

0 =
∑
n>2

n(n− 1)anxn−2 +
∑
n>0

anx
n =
∑
n>0

(n+ 2)(n+ 1)an+2x
n +
∑
n>0

anx
n

=
∑
n>0

((n+ 2)(n+ 1)an+2 + an) x
n,

hence
(n+ 2)(n+ 1)an+2 + an = 0,
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for all n > 0. This recursively determines an, n > 2, in terms of a0 and a1, as follows:

a2 = −
1
2
a0, a3 = −

1
3!
a1, a4 = −

1
4× 3

a2 =
1
4!
a0, a5 =

1
5!
a1, etc.

Therefore, we have shown that

y = a0

(
1 −

x2

2!
+
x4

4!
−+ · · ·

)
+ a1

(
x−

x3

3!
+
x5

5!
−+ · · ·

)
,

satisfies (56). Notice that the powers series in parentheses are cos x and sin x, respectively. �

Exercise 65. BR, page 116. deriving properties of sin and cos with y”+y=0. ???

Exercise 66. Determine a lower bound for the radius of convergence of series solutions of the differ-
ential equation (

1 + x2
)
+ 2xy+ exy = 0,

around the point x = −1
2 .

Example 46. As another example for the application of Theorem 10, we solve

y ′′ +
1

2x+ 3
y ′ + exy = 0, (57)

around nonsingular point x = 1. It is slightly easier to change independent variable x to t = x− 1.
Then the equivalent problem is to solve

d2y

dt2
+

1
2t+ 5

dy

dt
+ et+1y = 0,

around nonsingular point t = 0. Replacing y by
∑
n>0 ant

n, and using the following power series
representations of coefficients

1
2t+ 5

=
1
5

1
1 + 2t

5

=
1
5

∑
n>0

αntn, α = −
2
5

, |t| <
5
2

and
et+1 =

∑
n>0

e

n!
tn, t ∈ R

we have

0 =
∑
n>2

n(n − 1)antn−2 +

(
1
5

∑
n>0

αntn

)(∑
n>1

nant
n−1

)
+

(∑
n>0

e

n!
tn

)(∑
n>0

ant
n

)
,
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or equivalently

0 = 2a2 + 6a3t+ · · ·+
1
5

(
1 + αt+ α2t2 + · · ·

)
(a1 + 2a2t+ · · · )+

+ e

(
1 + t+

1
2
t2 + · · ·

)(
a0 + a1t+ a2t

2 + · · ·
)

.

Comparing coefficients of similar tn on both sides, we have

0 = 2a2 +
1
5
a1 + ea0, 0 = 6a3 +

1
5
(2a2 + αa1) + e(a1 + a0), etc.,

hence
a2 = −

e

2
a0 −

1
10
a1, a3 = −

1
15
a2 −

α+ 5e
30

a1 −
e

6
a0, etc.,

which recursively determines an, n > 2, in terms of a0 and a1. What Theorem 10 guarantees is
that, then

y =
∑
n>0

ant
n =
∑
n>0

an(x− 1)n,

converges at least for |x− 1| < 5
2 , and solves (46). �

Remark 5. Theorem 10, gives a lower bound for R where the power series representation of y1

and y2 are valid on |x − x0| < R, and satisfy equation (51). You could show that the Legendre
equation (54), when p is nonnegative integer, has a polynomial solution (of degree p); although
the other independent solution has radius of convergence 1. �

Exercise 67. Consider the differential equation

x2y ′ − y+ x = 0,

around nonsingular point x = 0. Prove that it has no analytic solution at x = 0. [Hint. Assume it has
analytic solution y =

∑
n>0 anx

n, and show that an = (n− 1)! for n > 1. Continue.]

7.2 Linear Second-Order Ordinary Differential Equation: Regular Nonsin-
gular Points

Now we study equation (51) around bad but not that much bad point x0, in the following sense. A
point x0 is called regular singular for equation (51), defined on I = (x0 −R, x0 +R) \ {x0}, if either
P or Q or both has no analytic extension to (x0−R, x0+R), but both (x−x0)P(x) and (x−x0)

2Q(x)

have analytic extension to (x0 − R, x0 + R). Why we study such points? Firstly because many
important points for practical equations are of this type, and secondly because we can completely
analyze them by the following theorem.
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Theorem 11 (Frobenius). Consider equation (51) on I = (x0 − R, x0 + R) \ {x0}, R > 0, and assume

(x− x0)P(x) =
∑
n>0

pn(x− x0)
n, (x− x0)

2Q(x) =
∑
n>0

qn(x− x0)
n,

valid on I.19 Let r1 and r2 be roots of the indicial equation

r(r− 1) + p0r+ q0 = 0 . (58)

(a) If r1 − r2 is not an integer, then (51) has two independent solutions

y1(x) = |x− x0|
r1
∑
n>0

an(x− x0)
n, (a0 = 1) , (59)

y2(x) = |x− x0|
r2
∑
n>0

bn(x− x0)
n, (b0 = 1),

valid and satisfying equation for 0 < |x− x0| < R.
(b) If r1 − r2 is a nonnegative integer, then (51) has two independent solutions

y1(x) = |x− x0|
r1
∑
n>0

an(x− x0)
n, (a0 = 1),

y2(x) = |x− x0|
r2
∑
n>0

bn(x− x0)
n + Cy1(x) log |x− x0|, (b0 = 1) , (60)

valid and satisfying equation for 0 < |x− x0| < R. Furthermore, C 6= 0 when r1 = r2.20

Proof could be found in [8, p. 177] or [4, p. 282-5]. For the corresponding theorem for
higher-order (instead of second-order) equations refer [10, section 4.8].

Remark 6 (Optional). Most references, equivalently, instead of equation (51), state Frobenius
theorem for equation

x2y ′′ + xp(x)y ′ + q(x)y = 0,

assuming that p and q be analytic at x0. In our formulation we followed [4]. �
19More strictly, we should have said that (x− x0)P(x) and (x− x0)

2Q(x) have analytic extensions to (x0 − R, x0 + R)

given by power series on the right hand side.
20 [8, p. 165] says that, when r1 6= r2, the second independent solution y2 could have the form

y2(x) = |x− x0|
r1+1

∑
n>0

bn(x− x0)
n + y1(x) log |x− x0|.
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Remark 7. As a motivation for indicial equation (58), power singularity in (59), and log singularity
in (60), let us study the simplest differential equation featuring regular singular points, namely
Euler-Cauchy ODE

y ′′ +
p

x
y ′ +

q

x2y = 0, (61)

where p and q are scalars. This was studied in Section 6.10, but here we follow an alternative
approach. The power function y = xr, r ∈ C, satisfies (61) exactly when

0 = r(r− 1)xr−2 + prxr−2 + qxr−2 = xr−2 (r(r− 1) + pr+ q) ,

which happens exactly when
r(r− 1) + pr+ q = 0.

Now let r1 and r2 be the roots of this quadratic equation. If r1 6= r2, then y = C1x
r1 + C2x

r2 is
the general solution of (61) on (0,∞); otherwise if r1 = r2 = 1−p

2 , then

y = C1x
r1 + C2x

r1

∫
x−2r1e−

∫ p
xdxdx = C1x

r1 + C2x
r1

∫
x−2r1−pdx = C1x

r1 + C2x
r1 log(x).

�

Example 47. Let us try to solve Bessel equation (53) around x = 0. (This is the most important
point in practical applications of the Bessel equation.) Rewriting our equation as

y ′′ +
1
x
y ′ +

(
1 −

p2

x2

)
y = 0,

defined on (−∞,∞) \ {0}, the desired point x = 0 turns out to be regular singular, because both 1
x

and 1 − p2

x2 are non-analytic at x = 0, but after multiplication by x and x2, both become analytic:

x
1
x
= 1, x2

(
1 −

p2

x2

)
= −p2 + x2.

Indicial equation
r(r− 1) + r− p2 = 0,

has roots r1 = p and r2 = −p. Without loss og generality we assume p > 0. By Theorem 11, our
equation has a solution of the form

y = xp
∑
n>0

anx
n =
∑
n>0

anx
n+p, a0 = 1,
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valid and satisfying equation on x > 0. Plugging this into Bessel equation,

0 = x2
∑
n>0

(n+ p)(n+ p− 1)anxn+p−2 + x
∑
n>0

(n+ p)anx
n+p−1 + (x2 − p2)

∑
n>0

anx
n+p

= xp

(∑
n>0

(n+ p)(n+ p− 1)anxn +
∑
n>0

(n+ p)anx
n + (x2 − p2)

∑
n>0

anx
n

)

= xp

(∑
n>0

n(n+ 2p)anxn +
∑
n>0

anx
n+2

)

= xp

(
(1 + 2p)a1x+

∑
n>0

((n+ 2)(n+ 2 + 2p)an+2 + an) x
n+2

)
,

hence
a1 = 0, an+2 =

−an
(n+ 2)(n+ 2 + 2p)

,

for each n > 0. Therefore

y1 = xp

(
1 +
∑
n>1

(−1)n

n!(1 + p)(2 + p) · · · (n+ p)

(x
2

)2n
)

.

In mathematical tradition 1
2Pp!y1 is denoted by Jp(x), and is called the Bessel function of first

kind of order p. Hence we have shown that

Jp(x) =
∑
n>0

(−1)n

n!(n+ p)!

(x
2

)2n+p
,

is a solution of Bessel equation on (0,∞). Further use of Theorem 11, gives another independent
solution. Interested reader can refer to [8, p. 168-178]. The end result is as follows. The general
solution to Bessel equations on (0,∞) is

y =

{
C1Jp(x) + C2J−p(x), p 6∈ Z
C1Jn(x) + C2Kn(x), p = n ∈ Z>0

,

where Kn(x), the Bessel function of second kind of order n, is

Kn(x) = Jn(x) log x−
1
2

n−1∑
m=0

(n−m− 1)!
m!

(x
2

)2m−n

−
1
2

∑
m>0

(−1)m(hm + hm+n)

m!(m+ n)!

(x
2

)2m+n

,

where h0 = 0 and hm = 1 + 1
2 + · · · + 1

m
for m positive integer. Notice Figure 6. On way to

distinguish between Bessel functions of first and second kinds is their behavior at origin:

J0(0+) = 1, Jp(0+) = 0, J−p(0+) =∞, K0(0+) = Kp(0+) = −∞,

for p > 0. �
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Figure 6: Bessel Functions.

7.3 First-Order Ordinary Differential Equations

We now want to solve first-order equations y ′ = F(x,y) using power series method. First we need
to make sense of F to be analytic. Let F(x,y) be a real-valued function of real variables x and y,
defined on some open rectangle around point P0 = (x0,y0). This function is (real) analytic at P0

if it equals a double power series like∑
m,n>0

amn(x− x0)
m(y− y0)

n = a00 + a10(x− x0) + a01(y− y0) + a11(x− x0)(y− y0) + · · · ,

on some (nonempty) open rectangle around P0.
We have the following uniqueness result:

Proposition 12. If two double power series∑
m,n>0

amn(x− x0)
m(y− y0)

n and
∑
m,n>0

bmn(x− x0)
m(y− y0)

n,

are equal on some open rectangle around (x0,y0), then amn = bmn for each m and n.

Theorem 12. Let F(x,y) be an analytic function at point (x0,y0). Then the unique local solution
y = y(x) of the initial value problem

dy

dx
= F(x,y), y(x0) = y0,

is analytic at x0.

Easy proof could be found in [4, p. 127-8].
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Example 48. To solve equation y ′ = y2 + x around (0, 0), we plug y =
∑
n>0 anx

n into it.
Therefore

a1 + 2a2x+ 3a3x
2 + · · · = x+

(
a0 + a1x+ a2x

2 + a3x
3 + · · ·

)2
,

hence
a1 = a2

0, 2a2 = 1 + 2a0a1, 3a3 = 2a0a2 + a
2
1, etc.,

which gives all an, n > 1, in terms of a0:

a1 = a2
0, a2 =

1
2
+ a3

0, a3 =
1
3
a0 + a

4
0, etc..

Therefore

y = a0

(
1 + a2

0x+

(
1
2
+ a3

0

)
x2 +

(
1
3
a0 + a

4
0

)
x3 + · · ·

)
,

solves our equation. �

Remark 8 (Optional). Equations y ′ = y2±x or y ′ = y2±x2 are closely related to Bessel equation!
This is already reflected in computer-generated solution (12). Refer to [25, p. 126]. �
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8 Systems of First-Order Ordinary Differential Equations I: Ba-
sics and Linear Equations

As we have seen in Chapter 3, some dynamic phenomena are described by systems of ordinary
differential equations. In this chapter and the next we study such equations. We confine ourself to
first-order systems of the form

dxi

dt
= Fi(t, x1, . . . , xn), i = 1, . . . ,n , (62)

where Fi(t, x1, . . . , xn), i = 1, . . . ,n, are real-valued functions of real variables t, x1, . . . , xn. These
are among the most important objects studied in analysis and geometry. We usually think of t as
time, and xi, i = 1, . . . ,n, are called state variables. The evolution of system (62) through time
is called a flow.

Many higher-order systems appearing in practice reduce to first-order system (62) by a trick we
explain with an example. Consider the system{

y ′′ = F(t,y,y ′, z, z ′, z ′′)

z ′′′ = G(t,y,y ′, z, z ′, z ′′)
,

where F and G are real-valued functions of six real variables, and primes denote differentiation
with respect to time variable t. Introducing new variables

x1 := y, x2 := y ′, x3 := z, x4 := z ′, x5 := z ′′,

our second-order system reduces to the first-order one:

x ′1 = x2

x ′2 = F(t, x1, x2, x3, x4, x5)

x ′3 = x4

x ′4 = x5,

x ′5 = G(t, x1, x2, x3, x4, x5)

.

Exercise 68. (a) Find a first-order system of the form (62) describing linear ODE (35).
(b) Reduce the governing equations of N-body problem into a system of first-order equations. To

save life denote the distance between i-th and j-th bodies(
(xj − xi)

2 + (yj − yi)
2 + (zj − zi)

2
) 1

2 ,

by rij.
(c) Can you find a first-order system of the form (62) describing system (67) below?
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Besides from Section 8.1, in this chapter we concentrate on linear ODE systems:

dxi

dt
= Pi1(t)x1 + · · ·+ Pin(t)xn + Ri(t), i = 1, . . . ,n , (63)

where Pij and Ri are real-valued functions of t ranging on some open interval I. Some aspects of
nonlinear equation are studied in the next chapter. If all Ri ≡ 0, then (63) is called homogeneous.
The corresponding homogeneous equation to (63) is

dxi

dt
= Pi1(t)x1 + · · ·+ Pin(t)xn, i = 1, . . . ,n. (64)

Life is saved denoting linear system (63) in matrix notation

dx

dt
= P(t)x+ R(t) , (65)

where

x =


x1

x2
...
xn

 , P(t) =


P11(t) P12(t) . . . P1n(t)

P21(t) P22(t) P2n(t)
...

... . . . ...
Pn1(t) Pn2(t) . . . Pnn(t)

 , R =


R1(t)

R2(t)
...

Rn(t)

 .

Note that here x and R are vector-valued functions of t, and P a matrix-valued one. Corre-
sponding homogeneous system is then

dx

dt
= P(t)x. (66)

Example 49. Let us solve the system{
x ′′ + x+ y ′ − 2y = t

x ′′ − x+ y ′ + y = 3
. (67)

Representing the differential operator d
dt

by D, our system now looks like the algebraic one:{
(D2 + 1)x+ (D− 2)y = t

(D2 − 1)x+ (D+ 1)y = 3
,

and we could use Cramer’s rule to deduce∣∣∣∣D2 + 1 D− 2
D2 − 1 D+ 1

∣∣∣∣ x = ∣∣∣∣t D− 2
3 D+ 1

∣∣∣∣ , ∣∣∣∣D2 + 1 D− 2
D2 − 1 D+ 1

∣∣∣∣y =

∣∣∣∣D2 + 1 t

D2 − 1 3

∣∣∣∣ ,
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or equivalently (
3D2 + 2D− 1

)
x = t+ 7,

(
3D2 + 2D− 1

)
y = t+ 3.

Applying methods of Chapter 6, we get{
x = C1e

t
3 + C2e

−t − t− 9

y = C3e
t
3 + C4e

−t − t− 5
. (68)

Are we done? So far we have shown that solutions of (67) are of the form (68), and it re-
mains to answer whether for all choices of constants C1,C2,C3,C4, functions in (68) satisfy (67).
Plugging (68) into (67), we have{(

10
9 C1 −

5
3C3

)
e
t
3 + (2C2 − 3C4)e

−t = 0(
−8
9 C1 +

4
3C3

)
e
t
3 = 0

, (69)

which gives

C3 =
2
3
C1, C4 =

2
3
C2.

Therefore in matrix notations[
x

y

]
=

[
C1e

t
3 + C2e

−t − t− 9
2
3C1e

t
3 + 2

3e
−t − t− 5

]
= C1e

1
3t

[
1
2
3

]
+ C2e

−t

[
1
2
3

]
−

[
t+ 9
t+ 5

]
, (70)

is our general solution. �

We wanted to follow a systematic method in previous example. One might be able to solve
special systems with easier methods, as shown in the following exercise.

Exercise 69. Solve system (67) in the following way. Subtract two equation to get

y =
2
3
(2x− t+ 3). (†)

In first equation, replace y with right hand side of (†) to get a second-order ODE satisfied by x, which
gives the general solution for x, with two constants. Then find y with (†).

8.1 The Existence and Uniqueness of Solutions

Here comes the most fundamental theorem in whole course, the generalization of Theorem 6.
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Theorem 13 (Picard-Lindelöf-Peano). Let Fi(t, x1, . . . , xn), i = 1, . . . ,n, be real-valued functions
defined on an open box U containing the point (a,b1, . . . ,bn).

(a) If all Fi are continuous on U, then the initial value problem

dxi

dt
= Fi(t, x1, . . . , xn), xi(a) = bi, i = 1, . . . ,n,

has a local solution around t = a, namely there are functions xi(t), i = 1, . . . ,n, on some open
interval I containing a such that

dxi

dt
= Fi(t, x1(t), . . . , xn(t)), xi(a) = bi, i = 1, . . . ,n, (71)

for each t ∈ I.
(b) If all Fi and ∂Fi

∂xj
are continuous on U, then (71) has a unique local solution around t = a,

namely any two n-tuple of solutions match on some interval around t = a.
(c) If all Fi are analytic then the system (62) has only analytic solutions.

Part (a) is proved in most general references for differential equations or even real analysis
books, say [23, chapter 13], [1, vol. II, Theorem 7.19]. Part (b) is proved in [17, p. 8-11] or [4,
chapter 6]. Part (c) is proved in [11, vol. I, 10.5.3].

Exercise 70. How many constants does the general solution of the system
x(5) + etx(3) + x− y(4) − y+ z(5) + 8z = t3 sin t

e−tx(4) + y(5) − 7z = t+ 5

x(3)y+ arctan
(
xy(3)

)
− z(6) = 3t2

,

contain?

8.2 Linear Systems

Theorems 8 and 9 find the following generalization in the context of systems of equations.

Theorem 14. In (63), let Pij(t), i, j = 1, . . . ,n, and R(t) be continuous scalar-valued functions of
real variable t ranging on open interval I. For any t0 ∈ I, and any scalars A1, . . . ,An, there are
unique scalar-valued functions xi(t), i = 1, . . . ,n, defined on whole t ∈ I satisfying

dxi(t)

dt
= Pi1(t)x1(t) + · · ·+ Pin(t)xn(t) + Ri(t), xi(t0) = Ai, i = 1, . . . ,n,

for each t ∈ I.
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This is proved in [23, chapter 13] or [4, chapter 6].

Theorem 15. Let xi, i = 1, . . . ,n, be solutions of homogeneous system (64). (Note that each xi is a
vector-valued function of real variable t ranging on some open interval.)

(a) If xi, i = 1, . . . ,n, are (linearly) independent21, then

x = C1x
1 + · · ·+ Cnxn ,

is the general solution of (64). This general solution could be concisely written as

x = ΨC ,

where Ψ :=
[
x1, . . . , xn

]
is the fundamental matrix (for each i = 1, . . . ,n, its i-th column is xi), and

C = [C1, . . . ,Cn]t is a vector of constants.
(b) xi, i = 1, . . . ,n, are independent if and only if their Wronkian

W(x1, . . . , xn) = det
[
x1, . . . , xn

]
,

is nowhere-zero, if and only if W(x1, . . . , xn) is nonzero at least in one point.
(c) If xi, i = 1, . . . ,n, are independent, and u is a particular solution of inhomogeneous system

(63), then
x = C1x

1 + · · ·+ Cnxn + u ,

is the general solution of (63).

This is proved with arguments similar Theorem 9, and reveals the structure of general solutions
to linear systems (63).

8.3 The Method of Variation of Parameters

Following the idea of Section 6.5, one can find a particular solution of inhomogeneous system
(65) having at hand the general solution x = ΨC of the corresponding homogeneous system (66).
We try to find vector-valued function u(t) =

[
u1(t), . . . ,un(t)

]t
such that x = Ψu satisfies (65),

namely
Ψ ′u+ Ψu ′ = PΨu+ R,

or equivalently Ψu ′ = R, which has solution u =
∫
Ψ−1R, hence

x = Ψ

∫
Ψ−1Rdt ,

satisfies (65).
21Namely there exists no constants Ci, i = 1, . . . ,n, at least one nonzero, such that

∑
Cix

i ≡ 0.
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8.4 Linear First-Order Constant-Coefficient Systems

In this section we solve constant-coefficient linear system of ODEs:

dxi

dt
= ai1x1 + · · ·+ ainxn + gi(t), i = 1, . . . ,n, (72)

where aij, i, j = 1, . . . ,n, are constant, gi, i = 1, . . . ,n, are scalar-valued function of t. We save
life denoting this in matrix notation

dx

dt
= Ax+ g , (73)

where

x =


x1

x2
...
xn

 , A =


a11 a12 . . . a1n

a21 a22 a2n
...

... . . . ...
an1 an2 . . . ann

 , g =


g1(t)

g2(t)
...

gn(t)

 .

We give different methods to solve this, and apply them all to the following simple example, so
that you can compare methods. 

dx
dt

= 5x+ 8y+ t
dy
dt

= −2x− 3y+ 1

x(0) = 16, y(0) = −10

. (74)

8.4.1 Elimination

Computing y = 1
8 (x

′ − 5x− t) from the first equation, and plugging into the second, we get:

x ′′ − 2x ′ + x = 3t+ 9,

which is solved as:
x = C1e

t + C2te
t + 3t+ 15,

using the method of undetermined coefficients. Then:

y =
1
8
(x ′ − 5x− t) =

−4C1 + C2

8
et −

C2

2
tet − 2t− 9.

Enforcing x(0) = 16 and y(0) = −10, we get C1 = 1 and C2 = −4. In matrix notation[
x

y

]
=

[
1 − 4t
−1 + 2t

]
et +

[
3t+ 15
−2t− 9

]
.
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8.4.2 Using Laplace Transform and Matrix Exponentials

Applying Laplace transform componentwisely to equation (73), we get

sX− x0 = AX+G,

where x0 = x(0) is the initial value of x, and X(s) and G(s) are Laplace transforms of x(t) and g(t),
respectively. Equivalently

(sI−A)X = x0 +G,

which is solved as
X = (sI−A)−1(x0 +G),

hence
x(t) = L−1

(
(sI−A)−1(x0 +G)

)
, (75)

solves (73).
Let us apply this formula to system (74). We have

X = (sI−A)−1(x0 +G) =

[
s− 5 −8

2 s+ 3

]−1 [
16 + 1

s2

−10 + 1
s

]
=

1
(s− 1)2

[
s+ 3 8
−2 s− 5

] [ 16s2+1
s2

−10s+1
s

]
=

=
1

(s− 1)2s2

[
16s3 − 32s2 + 9s+ 3
−10s3 + 19s2 − 5s− 2

]
=

[
15
s
+ 3
s2 +

1
s−1 + −4

(s−1)2

−9
s
+ −2
s2 + −1

s−1 + 2
(s−1)2

]
.

Therefore [
x

y

]
=

[
15 + 3t+ et − 4tet

−9 − 2t− et + 2tet

]
=

[
1 − 4t
−1 + 2t

]
et +

[
3t+ 15
−2t− 9

]
.

To find the time version of (75), recall matrix exponential function eAt of Section 1.5. Since

d

dt

(
eAt
)
=
d

dt

(
I+At+A2 t

2

2!
+A3 t

3

3!
+ · · ·

)
= A+A2t+A3 t

2

2!
+ · · · =

= A

(
I+At+A2 t

2

2!
+ · · ·

)
= AeAt,

the unique solution of
dx

dt
= Ax, x(0) = x0,

is x = eAtx0. Comparing with (75) shows that

eAt = L−1
(
(sI−A)−1

)
.
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Now we can derive the time version of (75):

x(t) = eAtx0 +

∫ t
0
eA(t−τ)g(τ)dτ , (76)

which exactly looks like scalar case (24)! This is maybe the most beautiful formula in this course.

Exercise 71. In equation (73) let the characterstic polynomial of A be

det(tI−A) = tn + cn−1t
n−1 + · · ·+ c1t+ c0.

Prove that each entry of xi of x satisfies the following differential equation(
dn

dtn
+ cn−1

dn−1

dtn−1 + · · ·+ c1
d

dt
+ c0

)
xi = 0.

8.4.3 Using Linear Algebra

In this section we give three alternative methods to solve (73). The first one is conditional, and
only applicable when matrix A is diagonalizable in the sense that there exists an invertible matrix
T with T−1AT diagonal. The second and third methods are are always applicable. These methods
are based on corrsponding theorems of linear algebra which we now state.

Theorem 16. An square matrix is diagonizable if and only it has a basis of eigenvectors. In more
detail, if T−1AT = D is diagonal, then each k-th column of T is an eigenvector of A corresponding
to eigenvalue Dkk; and conversely, if A has a basis on eigenvectors, then putting these eigenvectors
into columns of the matrix T , and putting their corresponding eigenvalues into diagonal entries of the
diagonal matrix D, gives A = PDP−1.

Theorem 17 (Schur). For every square matrix A there is an invertible matrix T such that T−1AT is
upper triangular.

Theorem 18 (Jordan). For every square matrix A there is an invertible matrix T such that T−1AT

is block diagonal, where each block, called a Jordan block, has equal entries in main diagonal, and
ones in the first diagonal above the main diagonal, and zeros elsewhere.

Jordan decomposition is certainly more special that Schur decomposition. Algorithms for them
is beyond this course.

Using Theorem 16. If A is diagonalizable as A = TDT−1, then changing variable y = T−1x, our
new equation becomes

Ty ′ = TDy+ g,
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or equivalently
y ′ = Dy+ h, h = T−1g,

which is a collection of n first-order constant coefficient equations. Here is an example. The matrix[
5 8
−2 −3

]
of system (74) is not diagonalizable (Exercise 73), so instead consider the following system:

dx1
dt

= x1 + 2x2 + t
dy
dt

= 2x1 + x2 + 1

x1(0) = −1, x2(0) = 2

. (77)

The matrix

A =

[
1 2
2 1

]
,

has eigenvalues −1 and 3 with correspondng eigenvectors [1,−1]t and [1, 1]t, respectively, hence

A = TDT−1, T =

[
1 1
−1 1

]
, D =

[
−1 0
0 3

]
.

Change of variables [
y1

y2

]
= y = T−1x =

1
2

[
1 −1
1 1

] [
x1

x2

]
our new system is 

y ′1 = −y1 +
t−1

2

y ′2 = 3y2 +
t+1

2

y1(0) = −3
2 , y2(0) = 1

2

.

Using Theorem 17. If A is upper triangulated by A = TUT−1, then changing variable y = T−1x,
exactly as before, our new equation becomes

y ′ = Uy+ h, h = T−1g,

which reversely look like

y ′n = Unnyn + hn, y ′n−1 = Un−1,n−1yn−1 +Un−1,nyn + hn−1, . . . ,

which are recurvely solved as

yn =
1

D−Unn
hn = eUnnt

1
D
e−Unnthn,
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yn−1 =
1

D−Un−1,n−1
(Un−1,nyn + hn−1) = e

Un−1,n−1t
1
D
e−Un−1,n−1t (Un−1,nyn + hn−1) ,

etc.
Using Theorem 18. Proceed exactly as the previous upper triangular case.

Remark 9 (Optional). Formula (76) shows that solving (73) is equivalent to computing matrix
exponential. This is done analytically using Jordan decomposition in [9, Theorem 3.10]. �

Exercise 72. (a) Diagonalize the matrix in Exercise 14. (b) Which of the matrices in Example 3 are
diagonalizable?

Exercise 73. (a) Show that for each scalar a, the matrix
[
a 1
0 a

]
is not diagonalizable. (b) Show that

the matrix
[

5 8
−2 −3

]
is not diagonalizable.

8.4.4 An Explicit Fundamental System of Solutions for Equation x ′ = Ax

Putting Structure Theorem 15 and the method of variation of parameter (Section 8.3) together, to
solve (73), it suffices to find n independent solutions of homogeneous equation

dx

dt
= Ax. (78)

But how does these independent solutions look like? Let us gather ideas by an example.

Example 50. Let us solve the system {
dx
dt

= x+ y
dy
dt

= 4x− 2y
,

by elimination method. From the first equation we find y = x ′ − x, and plugging this into the
second gives

x ′′ + x ′ − 6x = 0,

which has general solution
x = C1e

−3t + C2e
2t,

therefore

y = x ′ − x = −3C1e
−3t + 2C2e

2t − C1e
−3t − C2e

2t = −C1e
−3t + C2e

2t.
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Therefore in matrix notation[
x

y

]
=

[
C1e

−3t + C2e
2t

−4C1e
−3t + C2e

2t

]
= C1e

−3t

[
1
−4

]
+ C2e

2t

[
1
1

]
, (79)

is our general solution. �

So we guess solutions of (78) might look like

x = eλtu,

where λ is a scalar, and u a constant nonzero vector. (We neglect u = 0, because we are looking
for a fundamental system.) Let us check this guess. The function x = eλtu satisfies x ′ = Ax exactly
when

λeλtu = Aeλtu,

or equivalently
Au = λu,

namely exactly when λ is an eigenvalue of A with corresponding eigenvector u. To continue our
plan of finding a fundamental system of solution, let A has eigenvalues λk, k = 1, . . . ,n, counted
with multiplicity, with corresponding eigenvectors uk, k = 1, . . . ,n. Then our analysis above shows
that all eλktuk, k = 1, . . . ,n, are solutions. But are they independent? To answer this, we compute
Wronskian:

W
(
eλ1tu1, . . . , eλntun

)
= e(λ1+···+λn)t det

[
u1, . . . ,un

]
.

Thus we win if we could find a basis of eigenvectors for A, and from Section 1.4.4, we know that
this is possible exactly when A is diagonalizable.

For example, when all roots of the characteristic polynomial of A are simple, then by Proposi-
tion 2, corresponding vectors u1, . . . ,un are a basis, hence

eλ1tu1, . . . , eλntun,

is a fundamental system of solutions of x ′ = Ax. The main problem is when the characteristic
equation has repeated roots, and for some repeated eigenvalues we can not extract independent
eigenvector to the number of their multiplicity. For example, let λ be an eigenvalue of multiplicity
2, which has only one independent eigenvector u. Let us think of multiplicity 2 case as limit
degenerate case of two simple eigenvalues λ and λ + h where h is very small. We could also
assume that eigenvector corresponding to λ + h is u + v where v is also negligible. From our
previous analysis we know that both eλtu and

e(λ+h)t(u+ v) = eλteht(u+ v) ≈ eλt(1 + ht)(u+ v) ≈ eλt(u+ v+ htu),

107



are solutions of x ′ = Ax, hence also their difference divided by scalar h, namely

eλt
( v
h
+ tu

)
,

which is of the form
eλt (w+ tu) .

For higher multiplicities, similar arguments gives solutions of the form

eλt
(
w0 + tw1 +

t2

2!
w2 + · · ·+

tm

m!
wm

)
.

We have the following structure theorem, proved in [9, Theorem 3.7].

Theorem 19. Let A be a square matrix of order n. Let λi, i = 1, . . . ,k, be all distinct eigenvalues
of A, with corresponding multiplicities mi, i = 1, . . . ,k. Note that

∑
mi = n. By a linear algebra

theorem22, for each i, the generalized eigenvalue space corresponding to λi

Ei := {v ∈ Cn : (A− λi)
miv = 0} ,

is of dimension mi, so let uij, j = 1, . . . ,mi, be a basis for it. Then the collection{
eλitpij : i = 1, . . . ,k, j = 1, . . . ,mi

}
,

where

pij = uij + t(A− λi)uij +
t2

2!
(A− λi)

2uij + · · ·+
tmi−1

(mi − 1)!
(A− λi)

mi−1uij ,

is a fundamental system of solutions for (78).

Example 51. Let

A =

−2 1 0
0 −2 1
0 0 −2

 .

Then A has eigenvalue λ = −2 of multiplicity 3. Since (A + 2)3 = 0, the generalized eigenvalue
space is whole C3, with basis say

u1 = [1, 0, 0]t, u2 = [0, 1, 0]t, u1 = [0, 0, 1]t.

22[18, p. 237].
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So a fundamental system for x ′ = Ax consists of

e−2t

(
u1 + t(A+ 2)u1 +

t2

2
(A+ 2)2u1

)
= e−2t

1
0
0

 ,

e−2t

(
u2 + t(A+ 2)u2 +

t2

2
(A+ 2)2u2

)
= e−2t

t1
0

 ,

e−2t

(
u3 + t(A+ 2)u3 +

t2

2
(A+ 2)2u3

)
= e−2t

t
2

2
t

1

 .

�
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9 Systems of Ordinary Differential Equations II: Nonlinear Equa-
tions

We follow [23, chapter 11].
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10 First Touches on Partial Differential Equations

In this chapter we discuss the first most important analytic/numerical/qualitative methods to an-
alyze some special classes of PDEs. More specifically, we study heat, wave and Laplace equations
which respectively describe diffusion, oscillation and steady-state phenomena in physics. The cru-
cial issue of existence, uniqueness and regularity (namely smoothness) of solutions to PDEs is
beyond the scope of this course, and the interested reader could refer to [6] or [24].

10.1 Linear First-Order Partial Differential Equations

To be added. ???

10.2 Heat Equation in Infinite Rod

Recall that the heat propagation in a long rod{
PDE : ut = uxx, 0 < t <∞, −∞ < x <∞
IC : u(x, 0) = f(x), −∞ < x <∞ ,

was solved in Exercise 52 by convolution integral

u(x, t) =
∫
R
G(x− ξ, t)f(ξ)dξ, G(x, t) =

1√
4π
t−

1
2e−

x2
4t . (80)

We now use this solution to solve the following problem{
PDE : ut = uxx + h(x, t), 0 < t <∞, −∞ < x <∞
IC : u(x, 0) = 0, −∞ < x <∞ . (81)

The idea is to represent h(x, t), for each x, as linear combinations of unit impulses

h(x, t) =
∫∞

0
h(x, τ)δ(t− τ)dτ.

By linearity, if uτ(x, t), for each τ > 0, solves{
PDE : ut = uxx + h(x, τ)δ(t− τ), 0 < t <∞, −∞ < x <∞
IC : u(x, 0) = 0, −∞ < x <∞ . (82)

then
u(x, t) =

∫∞
0
uτ(x, t)dτ,
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solves (81). For 0 6 t < τ, uτ(x, t) solves

ut = uxx, u(x, 0) = 0,

hence uτ(x, t) = 0. Specially uτ(x, τ−) = 0. Integrating (82) from t = τ− to t = τ+, we get
uτ(x, τ+) = h(x, τ). Therefore for t > τ, uτ(x, t) solves

ut = uxx, u(x, τ+) = h(x, τ),

hence, by Exercise 52, uτ(x, t) =
∫
RG(x− ξ, t− τ)h(ξ, τ)dξ. The whole analysis shows that

u(x, t) =
∫∞

0
uτ(x, t)dτ =

∫ t
0

(∫
R
G(x− ξ, t− τ)h(ξ, τ)dξ

)
dτ,

or equivalently

u(x, t) =
∫ t

0

∫
R
G(x− ξ, t− τ)h(ξ, τ)dξdτ, G(x, t) =

1√
4π
t−

1
2e−

x2
4t , (83)

solves (81). This is another instance of Duhamel’s Principle.
Finally, adding (80) and (95), we have:

Theorem 20. The solution of{
PDE : utt = uxx + h(x, t), 0 < t <∞, −∞ < x <∞
IC : u(x, 0) = f(x), −∞ < x <∞ ,

is given by

u(x, t) =
∫
R
G(x− ξ, t)f(ξ)dξ+

∫ t
0

∫
R
G(x− ξ, t− τ)h(ξ, τ)dξdτ ,

where

G(x, t) =
1√
4π
t−

1
2e−

x2
4t ,

is called the heat kernel of R or the fundamental solution of one-dimensional heat equation.

10.3 Heat Equation in Finite Rod

We now consider the heat propagation in a finite rod in the form of the problem posed at the end
of Example 18: 

PDE : ut = uxx, 0 < t <∞, 0 < x < π

BCs : u(0, t) = u(π, t) = 0, 0 6 t <∞
IC : u(x, 0) = 1, 0 < x < π

. (84)
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10.3.1 Numerical Solution

First we give a numerical solution. Recall from calculus the following formulas for the first and
second derivative of a scalar-valued function f(z) of a real variable:

f ′(a) = lim
h→0

f(a+ h) − f(a)

h
, f ′′(a) = lim

h→0

f(a+ h) − 2f(a) + f(a− h)

h2 .

Therefore, to approximate f ′(a) and f ′′(a), using the values of f at point a, its right neighbor a+h,
and left neighbor a− h, with h small, we could use

f ′(a) ≈ f(a+ h) − f(a)

h
, f ′′(a) ≈ f(a+ h) − 2f(a) + f(a− h)

h2 .

We return back to our problem. Fixing a large natural number N, and a small time step δt,
gives us grid points

(xi, tj), i = 0, . . . ,N, j = 0, 1, . . . ,

where
xi = iδx, δx =

π

N
, tj = jδt.

Setting
ui,j := u(xi, tj),

our discretized heat equation will be

ui,j+1 − ui,j
δt

=
ui−1,j − 2ui,j + ui+1,j

δx2 ,

which we write as

ui,j+1 = ui,j + α (ui−1,j − 2ui,j + ui+1,j) , i = 1, . . . ,N− 1, j = 0, 1, . . . , (85)

with constant α = δt
δx2 . From boundary and initial conditions, we know the values

u0,j, uN,j, ui,0, i = 0, . . . ,N, j = 0, 1, . . . . (86)

It is clear one can use (85) and (86), to iteratively find

u1,1, u2,1, . . . , uN−1,1,u1,2, u2,2, . . . , uN−1,2, etc.
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10.3.2 Analytic Solution

We set out to give an anlytic solution for problem (84). This will take three steps.
Step I: Finding Modes. Observe that both PDE and BCs (but not IC) are linear, in the sense that

if several functions satisfy them then any linear combination of them also satisfy both. The idea
is then to find enough nonzero functions satisfying both PDE and BCs (theses are called modes),
and then try to make a linear combination of modes satisfy IC. Let us see where this idea leads us.

We start looking for separable modes, namely nonzero functions of the form u(x, t) = X(x)T(t)
satisfying both PDE and BCs. This functions satisfying PDE means XT ′ = X ′′T , or equivalently

T ′

T
=
X ′′

X
.

Since the left hand side of this equation is a function of t, and the right hand side a function of x,
so both equal a constant say λ. Since we want u satisfy BCs, we require X satisfy X(0) = X(π) = 0.
Three cases appear.

Case λ > 0. Then X = Ae
√
λx + Be

√
−λx. Enforcing X(0) = X(π) = 0, as you can easily check,

makes both A and B zero, hence no modes exists in this case.
Case λ = 0. Then X = A+ Bx, and again no modes exists in this case.
Case λ < 0. Then

X = A sin
(√
λx
)
+ BA cos

(√
λx
)

.

This functions satisfies X(0) = X(π) = 0, for B = 0 and λ = n integer.
Separable modes we found are

un(x, t) = e−n
2t sin(nx), n ∈ Z,

therefore based on what we have discussed in the first paragraph of this example, any linear
combination

u(x, t) =
∑
n∈Z

Cne
−n2t sin(nx),

satisfies PDE and BCs, and we hope to find constants Cn such that it also satisfies IC. Here is a
minor simplification. Since the right of our latter equation could be written as

(C1 − C−1)e
−t sin x+ (C2 − C−2)e

−4t sin 2x+ (C3 − C−3)e
−9t sin 3x+ · · · ,

we have equivalent linear combination

u(x, t) =
∑
n>1

Dne
−n2t sin(nx), (87)
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and it only remains to find constants Dn such that IC is fulfilled:

1 =
∑
n>1

Dn sin(nx), for all x ∈ (0, 1). (88)

Step II: Finding the Contributions of Different Modes Namely Coefficients Dn in (88). This seems
strange at first, namely expressing constant function 1 as linear combination of harmonics

sinnx, n = 1, 2, . . . ,

shown in the following figure.

It seems like these harmonics are unrelated or orthogonal in the sense that the integral of their
product on [0,π] is zero: ∫π

0
sin(nx) sin(mx)dx = 0, m 6= n.

This is confirmed by the following computation:∫π
0

sin(nx) sin(mx)dx =
∫π

0
(cos((n−m)x) + cos((n+m)x))dx =

=

[
sin((n−m)x)

n−m
+

sin((n+m)x)

n+m

]π
0
= 0.

To use this observation, we multiply both sides of (88) by sinmx, and integrating on [0,π],
hence to get ∫π

0
sin(mx)dx = Dm

∫π
0

sin2(mx)dx,
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hence

Dm =

∫π
0 sin(mx)dx∫π

0 sin2(mx)dx
=

[
cos(mx)
m

]π
0∫π

0
1−cos(2mx)

2 dx
=

{
2
m

, m odd

0, m even[
x
2 − sin(2mx)

4m

]π
0

=

{
4
mπ

, m odd

0, m even
.

What we have done in this step is that, if (88) holds then Dn better be given by

Dn =

{
4
nπ

, n odd

0, n even
.

We are left with the question of the validity of epresentation

1 =
4
π

(
sin x+

1
3

sin 3x+
1
5

sin 5x+ · · ·
)

, for all x ∈ (0, 1), (89)

namely does the infinite series on the right hand side converges to constant function 1 on for each
0 < x < π?

Step III: Validity of Representation (89). From the first time this question was asked, it took
mathematics a long while to answer it as YES! This is a technical issue beyond this course, but
discussed in optional Section 10.8. As mentioned there, as far as practical engineering applications
are concerned, there is no problem in representations like (89). The following figure shows how
good the partial sums of the series of the right hand side of (89) approximates constant function
1, where form left to right we have used partial sums with respectively 3, 6, 12 and 24 terms.

These steps overally show that

u(x, t) =
4
π

(
e−t sin x+

1
3
e−9t sin 3x+

1
5
e−25t sin 5x+ · · ·

)
,

solves our problem. The following figure shows u(x, t) for several different fixed times.

116



Remark 10 (Optional). A very important feature of heat equation is that with whatever rough IC
you start with, the solution becomes immediately smooth. This turn out to be very important in
pure mathematics, and gives rise to heat equation method in geometric analysis. The same smooth-
ing phenomenon completely fails for wave equation, where the singularities of initial conditions
generally propagate through time. Existence and uniqueness results for heat and wave equations
could be found in [6, chapter 10] and [24, section 6.1]. �

Exercise 74 (An Analogue Integrator). Consider the following system describing temperature distri-
bution in a rod of finite length π with lateral surfaces and two ends completely insulated.

PDE : ut = uxx, 0 < t <∞, 0 < x < π

BCs : ux(0, t) = ux(π, t) = 0, 0 6 t <∞
IC : u(x, 0) = f(x), 0 < x < π

,

where initial distribution f(x) is known. Intuition says that eternal distribution is u(x,∞) = C, a
constant function. (a) Justify the boundary conditions. (b) Prove that intuition is true. (c) Find C.
[Hint: Modes are e−n2t cos(nx), n = 0, 1, 2, . . .. Answer of (c) is 1

π

∫π
0 f(x)dx.]

10.4 Fourier Series

Series appeared in (88) is an special case of Fourier series, which we now explain. Let f(x)
be scalar-valued function of real variable x, which is T -periodic, namely there is some positive
constant T , called period, such that f(x + T) = f(x) for all x. Set ω0 = 2π

T
. The idea of Fourier

series is to represent f(x) by a linear combination of the most fundamental T -periodic functions:

1, cos (nω0x) , sin (nω0x) , n = 1, 2, . . . ,
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namely an infinite series representation

f(x) =
1
2
a0 +

∑
n>0

an cos(nω0x) + bn sin(nω0x) .

To find constant an and bn we use orthogonality relations∫
I

cos(mω0x) sin(nω0x)dx = 0,

∫
I

cos(mω0x) cos(nω0x)dx =

∫
I

sin(mω0x) sin(nω0x)dx =

{
T
2 m = n

0 m 6= n
,

where m and n are positive integers, and I is any interval of length T . Following exactly as before,
we get

an =
2
T

∫
I

f(x) cos(kω0x)dx, n = 0, 1, 2, . . . ,

bn =
2
T

∫
I

f(x) sin(kω0x)dx, n = 1, 2, 3, . . . .

Exercise 75. Express sawtooth 2-periodic wave, given by{
x+ 1, −1 6 x 6 0

−x+ 1, 0 6 x 6 1
,

in cycle [−1, 1], by its Fourier series.

10.5 Wave Equation in Infinite String

A long string satisfies the wave equation together with initial conditions describing its initial posi-
tion and velocity: {

PDE : utt = uxx, 0 < t <∞, −∞ < x <∞
ICs : u(x, 0) = f(x), ut(x, 0) = g(x), −∞ < x <∞ . (90)

To solve this problem, we consider the change of independent variables (x, t) to (α,β) with
α = x− t and β = x+ t. Chain rule for partial differentiation gives

ut = uααt + uββt = −uα + uβ,
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utt =
∂

∂t
(−uα + uβ) = (−uα + uβ)α αt + (−uα + uβ)β βt = uαα − 2uαβ + uββ,

and similarly uxx = uαα + 2uαβ + uββ. Therefore utt = uxx becomes uαβ = 0, which is easily
solved as

u(x, t) = F(α) +G(β) = F(x− t) +G(x+ t), (91)

where F(z) and G(z) are arbitrary smooth real-valued functions of real variable z. Imposing initial
conditions, we get F(x)+G(x) = f(x) and −F ′(x)+G ′(x) = g(x). Integrating the second equation,
and solving for F and G, we get

F(z) =
1
2

(
f(z) −

∫z
0
g(ζ)dζ− C

)
, G(z) =

1
2

(
f(z) +

∫z
0
g(ζ)dζ+ C

)
.

where C is a constant. Therefore

u(x, t) =
1
2

(
f(x− t) −

∫x−t
0

g(ζ)dζ+ C1

)
+

1
2

(
f(x+ t) +

∫x+t
0

g(ζ)dζ− C1

)
,

or equivalently

u(x, t) =
1
2
(f(x− t) + f(x+ t)) +

1
2

∫x+t
x−t

g(ξ)dξ . (92)

Note that the graph of f(x− t) as a function of x for some fixed t is the the graph of f(x) shifted
t units to the right. Therefore one could think of f(x− t) as a traveling wave to the right, namely
positive x. Similarly, f(x+ t) represents a wave traveling to the left.

Next we use (92) to solve{
PDE : utt = uxx + h(x, t), 0 < t <∞, −∞ < x <∞
IC : u(x, 0) = ut(x, 0) = 0, −∞ < x <∞ . (93)

The idea is to represent h(x, t), for each x, as linear combinations of unit impulses

h(x, t) =
∫∞

0
h(x, τ)δ(t− τ)dτ.

By linearity, if uτ(x, t), for each τ > 0, solves{
PDE : utt = uxx + h(x, τ)δ(t− τ), 0 < t <∞, −∞ < x <∞
IC : u(x, 0) = ut(x, 0) = 0, −∞ < x <∞ , (94)

then
u(x, t) =

∫∞
0
uτ(x, t)dτ,
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solves (93). For 0 6 t < τ, uτ(x, t) solves

utt = uxx, u(x, 0) = ut(x, 0) = 0,

hence uτ(x, t) = 0. Specially uτ(x, τ−) = ∂
∂t
uτ(x, τ−) = 0. Firstly, note that uτ(x, t) does not jump

at t = τ, because otherwise δ ′′(t − τ) appears in ∂2

∂t2u
τ(x, t); however the PDE in (94) witnesses

that this is not the case. Therefore uτ(x, τ+) = 0. Secondly, integrating the PDE in (94) from
t = τ− to t = τ+, we get ∂

∂t
uτ(x, τ+) = h(x, τ). Therefore for t > τ, uτ(x, t) solves

utt = uxx, u(x, τ+) = 0,
∂

∂t
uτ(x, τ+) = h(x, τ),

hence, by (92)

uτ(x, t) =
1
2

∫x+(t−τ)

x−(t−τ)

h(ξ, τ)dξ.

The whole analysis shows that

u(x, t) =
∫∞

0
uτ(x, t)dτ =

∫ t
0

(
1
2

∫x+(t−τ)

x−(t−τ)

h(ξ, τ)dξ

)
dτ,

or equivalently

u(x, t) =
1
2

∫ t
0

∫x+(t−τ)

x−(t−τ)

h(ξ, τ)dξdτ, (95)

solves (93). This is another instance of Duhamel’s Principle.
Finally, adding (92) and (95), we have:

Theorem 21. The solution of{
PDE : utt = uxx + h(x, t), 0 < t <∞, −∞ < x <∞
ICs : u(x, 0) = f(x), ut(x, 0) = g(x), −∞ < x <∞ ,

is given by

u(x, t) =
1
2
(f(x− t) + f(x+ t)) +

1
2

∫x+t
x−t

g(ξ)dξ+
1
2

∫ t
0

∫x+(t−τ)

x−(t−τ)

h(ξ, τ)dξdτ .
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10.6 Wave Equation in Finite String

Let us now study the dynamics of finite length string with fixed ends via its mathematical model
PDE : utt = uxx, 0 < t <∞, 0 < x < L

BCs : u(0, t) = u(L, t) = 0, 0 6 t <∞
ICs : u(x, 0) = f(x), ut(x, 0) = g(x), 0 < x < L

. (96)

Either using formula (91), or the method of separation of variables and Fourier series of Section
10.3.2, we get the following solution.

Theorem 22. In problem (96), first make f and g odd on [−L,L], and then make them 2L-periodic,
namely extend f and g to the functions f∗ and g∗ satisfying

f∗(z) = −f∗(−z) = f∗(z+ 2L), g∗(z) = −g∗(−z) = g∗(z+ 2L).

Then the solution to problem (96) is given by

u(x, t) =
1
2
(f∗(x− t) + f∗(x+ t)) +

1
2

∫x+t
x−t

g∗(ξ)dξ.

Example 52. Figure 7 draws the solution u(x, t) to problem (96) at some selected times, for f(z)
a triangular pulse, and g(z) ≡ 0. Note that f(z) is not smooth at z = L

2 , and this singularity
propagates through time, and the wave equation, in contrast with heat equation, has no smoothing
effect on the initial data. �

Exercise 76. Consider the following problem which describes wave propagation in a semi-infinite
string with one end fixed.

PDE : utt = uxx, 0 < t <∞, 0 < x <∞
BCs : u(0, t) = f(t), u(∞, t) = 0, 0 6 t <∞
ICs : u(x, 0) = ut(x, 0) = 0 0 < x <∞ . (97)

(a) Solve this problem using formula (91). (b) Solve this problem applying Laplace transform with
respect to t. [Answer. u(x, t) = f(t− x)H(t− x), where H(z) is the unit step function.]

10.7 Laplace Equation

Laplace equation, in dimension two, is

uxx + uyy = 0, (98)
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Figure 7: The solution to problem (96), for f(z) a triangular pulse, and g(z) ≡ 0. Taken from [20,
p. 546].
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where u is a scalar-valued function of real variables x and y. Such u is called a harmonic function.
Steady-state temperature distribution, electric potential in charge-free space, etc. are examples of
harmonic functions.

There are some simple geometric intuitions behind (98), formulated in the form of mean value
theorem and maximum (or minimum) principle, which we now discuss. If any of the second deriva-
tives uxx or uyy has a positive sign, the other must be negative. Geometrically, this means if u
has positive curvature in any coordinate direction, it must have negative curvature in the other
direction. Therefore all the critical points of u (points where ux = uy = 0) must be saddle points,
not maxima or minima. Therefore the extrema of a harmonic function must be on the boundary of
the region.

Recall that the Dirichlet problem for upper-half plane{
PDE : uxx + uyy = 0, −∞ < x <∞, 0 < y <∞
BC : u(x, 0) = f(x), −∞ < x <∞ , (99)

was solved in Exercise 53 by convolution integral

u(x,y) =
∫∞
−∞

1
π

y

(x− ξ)2 + y2 f(ξ)dξ. (100)

This solution is not unique, since adding a constant times y or 3x2y − y3 is agian a solution,
however if f is bounded, then (100) is the unique bounded solution of (99). There is an elegent
probabilistic interpretation of (100) which we now describe. ???

10.8 The Convergence of Fourier Series (Optional)

Let f(x) be real-valued function of real variable x defined on some interval I = [a,b]. Set

T = b− a, ω0 =
2π
T

,

and
Sn(x) =

1
2
a0 +

∑
16k6n

ak cos(kω0x) + bk sin(kω0x), n = 0, 1, 2, . . . ,

where
ak =

2
T

∫
I

f(x) cos(kω0x)dx, bk =
2
T

∫
I

f(x) sin(kω0x)dx, k = 0, 1, 2, . . . ,

and

σn(x) =
S0(x) + S1(x) + · · ·+ Sn(x)

n+ 1
, n = 0, 1, 2, . . . ,

and

F(x) =
f(x+) + f(x−)

2
.
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Theorem 23. With notations as above, We have:
(a) If f is piecewise continuously differentiable on I23, or more generally of bounded variation on

I24, then Sn(x)→ F(x) as n→∞. (Dirichlet-Jordan Theorem [2, 11.12])
(b) If

∫
I
|f| exists in Lebesgue sense, then σn(x) → F(x) for each x ∈ I where F(x) exists. (Fejér

Theorem [2, 11.15])
(c) If

∫
I
|f|2 exists in Lebesgue sense, then Sn(x)→ f(x) for almost every x ∈ I. (Carleson Theorem

[15, 3.6.14])
(d) If

∫
I
|f|2 exists in Lebesgue sense, then

∫
I
|f − Sn|

2 → 0 as n → ∞. (Riesz-Fischer Theorem
[14, 8.20], [2, 11.16])

Note that for each famous summability method, namely, pointwise, Cesaro, almost everywhere,
and square mean (or L2), we brought a convergence result in latter theorem. Easy part (d) suffices
for all engineering applications, because physical systems respond to the energy of the signals, and
from this perspective the function and its Fourier series are indistinguishable. Carleson Theorem
is surely among the deepest result in analysis.

23Namely, f ′ is continuous on I, except for finitely many points x1, . . . , xN, and at each xj we have f ′−(xj) =

limx→xj− f
′(x) and f ′+(xj) = limx→xj+ f

′(x).
24Namely there exists finite real M such that

∑
16k6N |f(xk) − f(xk−1)| < M for each a = x0 < x1 < · · · < xN = b.
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11 Sturm-Liouville Eigenvalue Problem

Recall that in Example 10.3.2, during the the process of solving one-dimensional heat equation by
the method of separation of variables, the eigenvalue problem

d2X

dx2 = λX, X(0) = X(π) = 0,

showed up. A common general framework for many such eigenvalue problems appearing in solving
second-order linear PDEs is Sturm-Liouville Boundary Value Problem:{

DE : d
dx

(
p(x)dy

dx

)
+ q(x)y+ λr(x)y = 0, a < x < b

BCs : α1y(a) + α2y
′(a) = 0, β1y(b) + β2y

′(b) = 0
, (101)

where p(x), q(x) and (x)r are real-valued functions of real variable x ranging on (a,b), α1 and α2

are real constants not both zero, and β1 and β2 are also real constants not both zero.

Theorem 24. Consider Sturm-Liouville problem (101) with regularity assumptions:

1. a and b are finite;

2. p, p ′, q and r are continuous on [a,b];

3. p and q are strictly positive on [a,b].

For any two functions f and g on [a,b], define inner-product and norm according to

〈f,g〉 :=
∫b
a

r(x)f(x)g(x)dx, ‖f‖ :=
√
〈f, f〉 ,

in case the integrals exist. Then:

1. Eigenvalues are real and countably infinite, say ordered as λ0 < λ1 < λ2 < · · · . Also λn → ∞
as n→∞.

2. Corresponding to each eigenvalue λn is a unique (up to a nonzero multiplicative constant) eigen-
function yn. Also yn has exactly n zeros in (a,b).

3. Eigenvalues corresponding to different eigenvalue are orthogonal in the sense that 〈ym,yn〉 = 0
whenever m 6= n.
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4. Each function f on [a,b] with ‖f‖ <∞, has eigenvalue expansion

f =

∞∑
n=0

〈f,yn〉
〈yn,yn〉

yn ,

in the sense that

lim
N→∞

∥∥∥∥∥f−
N∑
n=0

〈f,yn〉
〈yn,yn〉

yn

∥∥∥∥∥ = 0.

5. If f is piecewise continuously differentiable on [a,b]25, or more generally of bounded variation
on I26, then ∞∑

n=0

〈f,yn〉
〈yn,yn〉

yn(x) =
f(x+) + f(x−)

2
,

for a < x < b.

For proof refer to [25, Theorem 5.11] or [4, chapters 10-11]. Last part is proved in [26, vol. I,
Theorem 1.9].

Remark 11. In Sturm-Liouville Problem, if interval [a,b] is unbounded, or if p or q vanish at
endpoints a or b, then there might be a continuum of eigenvalues. The analysis of these problems,
which very much appear in practice, are ways more harder than regular Sturm-Liouville Problem
studied in Theorem 24. Refer to [27, Theorem 1012.1] or [26]. �

Example 53. Let us study eigenvalue problem{
y ′′ + λy = 0, 0 < x < 1

y ′(0) = y(0), y(1) = 0
.

By Theorem 24, we know that all eigenvalues of real, so we consider three cases.
Case I: λ = α2, α > 0. Applying boundary conditions to the general solution

y = C1 cosαx+ C2 sinαx,

gives
C2α = C1, C1 cosα+ C2 sinα = 0,

25Namely, f ′ is continuous on [a,b], except for finitely many points x1, . . . , xN, and at these points, left and right
derivatives exist and equals corresponding limit of f ′(t).

26Namely there exists finite real M such that
∑

16k6N |f(xk) − f(xk−1)| < M for each a = x0 < x1 < · · · < xN = b.
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which gives nonzero solution exactly when

tanα = −α. (102)

Intersecting the graph of functions tanα and −α we get countably infinite roots

α0 ≈ 2.0288 < α1 ≈ 4.9132 < α2 ≈ 7.9787 < · · · ,

tending to infinity.
Case II: λ = 0. Case III: λ = −α2, α > 0. We leave it an exercise that in these two cases no

eigenvalue exists.
Thus our problem has countably infinite eigenvalues Our whole
and corresponding eigenfunctions

λ0 = α2
0 < λ1 = α2

1 < λ2 = α2
2 < · · · ,

and corresponding eigenfunctions

yn = αn cosαnx+ sinαnx, n = 0, 1, 2, . . . .

�

Example 54. Let us try to solve eigenvalue problem{
x2y ′′ − λ(xy ′ − y) = 0, 1 < x < 2

y(1) = 0, y(2) − y ′(2) = 0
,

which is not of Sturm-Liouville type, so we better not expect assertions of Theorem 24 hold.
The equation is equidimesional studied in Section 6.10. The change of variables z = log x gives

new constant coefficient equation

(Dz(Dz − 1) − λDz + λ)y = 0,

or equivalently (
D2
z − (λ+ 1)Dz + λ

)
y = 0.

Characteristic roots are

r =
λ+ 1±

√
(λ+ 1)2 − 4λ
2

=
λ+ 1±

√
(λ− 1)2

2
= 1 or λ,

so we split into two cases.
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Case I: λ = 1. General solution

y = C1e
t + C2te

t = C1x+ C2x log x,

should satisfy boundary conditions, hence

C1 = 0, 2C1 + C22 log 2 = C1 + C2(log 2 + 1),

which leads to C1 = C2 = 0. Therefore we have no eigenfunction in this case.
Case II: λ 6= 1. General solution

y = C1e
t + C2e

λt = C1x+ C2x
λ,

should satisfy boundary conditions

C1 + C2 = 0, C1 + C22λ−1 (2 − λ) = 0,

which has nontrivial solution exactly when

21−λ = 2 − λ. (103)

The real solutions of this equation are x-coordinates of intersection points of plane curves

y = 2x−1, y =
1

2 − x
,

which are (0, 2−1) and (1, 1), hence we find roots λ = 0 and λ = 1. We can only accept λ = 0,
since we are assuming λ 6= 1. The corresponding eigenfunction is

y = C1x+ C2x
λ = C1x− C1 = C1(x− 1).

To find complex roots of (103), assuming 2−λ = x+ iy, with real x and y, equation (103) becomes

x+ iy = 2x−1+iy = e(x−1+iy) log 2 = 2x−1(cos (y log 2) + i sin (y log 2)),

or equivalently
x = 2x−1 cos (y log 2) , y = 2x−1 sin (y log 2) .

The following figure shows these two curves in xy-plane. It seems like we have infinitely many
complex eigenvalues.
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�

Exercise 77. Consider eigenvalue problem{
y ′′ + y ′ + λ(y ′ + y) = 0, 0 < x < 1

y ′(0) = 0, y(1) = 0
.

(a) Determine all real eigenvalues.
(b) (Optional) Are there any complex eigenvalues? Use a plotter say https: // www. desmos.

com/ calculator .
[Answer. (a) Nothing. (b) Infinitely many.]
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