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Abstract. We employ the techniques of mixed Hodge modules in order to answer
some questions on extension of mixed Hodge structures. Specifically a theorem of
M. Saito tells that, the mixed Hodge modules on a complex algebraic manifold
X, correspond to polarized variation of mixed Hodge structures on Zariski open
dense subsets of X. In this article we concern with the minimal extension of MHM
or PVMHS related to this criteria. In [R] we studied the extension of VMHS
associated to isolated hypersurface singularities. This article generalizes some of
the results there to the admissible VMHS on open dense submanifolds. Some
applications to the Neron models of Hodge structures are also given. Some remarks
on abelian positivity in the positive characteristic case and of height pairing on
arithmetic varieties has been discussed.

Introduction

The question of extension and asymptotic behaviour of mixed Hodge structure is
an important part of Hodge theory. Its history goes back to the works of W. Schmid
and J. Steenbrink to define limit mixed Hodge structure. We study the extensions
of the variation of MHS, and specially the extension of various bilinear forms nat-
urally defined on these structures. For this purpose we have used the techniques
of D-module theory to analyze the asymptotic behavior of (admissible) variation of
mixed Hodge structures and their polarization. Classically, MHS’s appear as solu-
tions to regular holonomic D-modules, what is called a perverse sheaf, ( of course
with Hodge structure) . This is the content of Riemann-Hilbert correspondence.
We will consider the extensions of MHS’s as the corresponding solution to the ex-
tended D-module, which is defined by gluing of vector bundles with connection. The
extension studied in this text is usually called minimal extension. Almost all the
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D-modules under consideration have geometric origins from Hodge theory, that is
they are doubly filtered (W,F ), they are quasi-unipotent and the three filtration
W,F and the Malgrange-Kashiwara V -filtration are compatible. A basic pattern for
our studies is the extension of mixed Hodge structures over normal crossing divisors.

The category of D-modules is equipped with the basic (Grothendieck 6-functor)
sheaf theoretic operations on D-modules. A D-module on an algebraic manifold
X is nothing other than a sheaf of OX-module with an extra C-linear connection
satisfying the Leibnitz rule. It would be the same to regard them as usual sheaves on
cotangent bundle of X. The pull-back and push-forward or their proper analogues
are defined via correspondences on a product of the two manifolds in the case. Thus,
specific considerations are involved as the theory of correspondences. This roughly
speaking is the same as usual sheaf theory on cotangent bundles.

Suppose M is a DX-module. The sheaf HomD(M,OX) is called the solution mod-
ule of M . The derived functors RHomD(M,OX) are called higher solution module
of M . The Riemann-Hilbert correspondence asserts that

RHomD(M,OX) : Db
rh(X)→ Db(X,C)

is an equivalence of categories. A sheaf in Db(X,C) is called perverse if it is isomor-
phic to RHomD(M,OX) or the solution module of some regular holonomic M .

Mixed Hodge modules are defined as the extensions of pure Hodge modules. A
Hodge module will always be polarized, that it always underlies a polarized variation
of Hodge structure defined on a Zariski dense open subset of the ambient space. One
needs to distinguish the extension over open subsets from that to closed subsets.
In the theory of D-modules or perverse sheaves, extensions along open strata of
stratifications of complex manifolds is being done by the Deligne nearby functor,
denoted Ψ (notations ψt, ψf are also used), by requiring a compatibility identity
via restrictions. This leads to the definition of Intersection complex and Intersection
cohomology by an inductive argument. The extension over a closed subvariety is
explained by complexes of vector spaces via nearby and vanishing cycles maps. This
is how to glue two vector space on an open and a closed subset, by the isomorphism
given. One specific case is that of extension over normal crossing divisors. It is based
on the fact that, how to describe the restriction of a vector bundle M to a closed
i : D ↪→ X and an open complement j : U ↪→ X, such that the original vector
bundle becomes a pull back of the gluing of the two. In a more modern language,
it is described as a t-structure on the derived categories of mixed Hodge modules
and perverse sheaves, given by the exact triangles in the derived category of perverse
sheaves

i∗i∗ → 1→ i!i∗, j∗j∗ → 1→ j∗j!
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Here j! and i! are extensions of 0, j! is restriction but i! means sections supported
in the closed subset. The above isomorphisms define distinguished exact triangles in
the derived category of MHM’s and perverse sheaves that explain the gluing process
mutually. We shall explain the gluing using the nearby and vanishing cycle functors.
They satisfy in an important triangle as

i∗ → ψf → φf
−1→

in the derived category of perverse sheaves, where the first map is induced by ad-
junction, f gives a local equation of degeneracy locus. The important fact is that
these two functors do carry perverse sheaves to perverse sheaves (proved by Deligne).
The associated long exact cohomology sequence becomes

..→ H i(ψf )→ H i(φf )→ H i+1(B ∩X0)→ ...

or similar for its dual. It shows that vanishing cycles are homology classes that are
killed in H i(ψf ), via the specialization (contraction) map Xt → X0. Moreover, the

nearby functor would have a decomposition as ψf = ψunf ⊕ ψ 6=1
f , φf = φunf ⊕ φ6=1

f

where by any choice of a generator T ∈ π1(∆∗), 1− T is nilpotent on ψunf . We have
the following well-known exact triangles,

i∗j∗ → ψunf
1−T−→ ψunf → , i∗ → ψunf j∗

1−T−→ φunf →

such that v ◦ u = 1− T . There are homomorphisms u and v as

ψfM
u→ φfM

v→ ψfM, v ◦ u = (N = log Tu)⊗−1/2πi

In such a terminology the module is presented as (MU = ψfM,MD = φfM,u, v).
The way to interprete this 4-tuple in order to get the extended D-module is explained
in section 3.

We do not enter to the discussion of holonomicity, as well as we suppose all the
D-modules in use are holonomic. This condition implies that the underlying solu-
tion sheaf or H0(DR M) is a constructible sheaf, i.e DR M has finite dimensional
cohomology along the strata. The D-modules we will consider would have origins
in Hodge theory, namely mixed Hodge modules, then they would automatically be
regular holonomic, and we will assume they are also quasi-unipotent. Holonomicity
of a filtered D-module (M,F ), means that F is a good filtration of M and

dim
√

annGrF (DX)GrFM = dim(X)

which is the minimum number may be attained. The zero set of the ideal under
the square defines a sub-variety of the cotangent bundle of X, namely characteristic
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variety. The above equation says this variety is a Lagrangian sub-variety of the
cotangent bundle of X, i.e the symplectic form of T ∗X vanishes on this subvariety.
If X is smooth, a MHM on X, is always regular holonomic and is given by a 4-tuple
(M,F,K,W ), where W describes both of the weight filtration of M and K = rat(M).
Then, a morphism is a pair of morphisms compatible with rat and filtrations. A basic
example is given by cohomology along fibers in a local fibration f : X → ∆ with
D = f−1(0) a normal crossing divisor. It leads to the following diagram

(1)

X∞ −−−→ U −−−→ X ←−−− E

f∞

y yf yf y
H

e−−−→ ∆∗ −−−→ ∆ ←−−− 0

namely Specialization diagram. X∞ = X ×∆∗ H is called the canonical fiber. The
Riemann-Hilbert correspondence guarantees the desired mixed Hodge modules as
the filtered Guass-Manin system.

Our discussion of D-modules does not seriously contain the details. However, we
keep the terminology to be clear to prevent of confusions. A major reference for the
extension of perverse sheaves is the article by A. Beilinson; How to Glue Perverse
Sheaves. The interested reader may refer to various articles by M. Saito in references
for more details and technicalities. Some of the materials stated already existed in
the context of D-modules and the hermitian duality, that I have made some small
changes to express them for polarization of VMHS. I already apologize beneath the
experts of D-module theory here.

Notice on the references: In the text whenever a reference cites as [*], it does not
concern the person who first invented the case. It only refers to other places where
the theorem has been cited. In case that the author was sure of the ownership the
case appears as (-).

1. Hodge Modules

Let X be a complex algebraic variety and denote by MHM(X), the abelian cate-
gory of Mixed Hodge Modules on X. MHM(X) is equipped with a forgetful functor

rat : MHM(X)→ Perv(QX)

,

which assigns the underlying perverse sheaf/Q. Sometimes the above concepts would
be understood as elements in DbMHM(X) and Db

c(QX) respectively, and the same
for the functor rat.
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WhenX is smooth, then a mixed Hodge module onX determines a 4-tuple (M,F,K,W )
where M is a holonomic D-module with a good filtration F and, with rational struc-
ture DR(M) ∼= C ⊗ K ∈ Perv(CX), for a perverse sheaf K, and W is a pair of
weight filtrations on M and K compatible with rat functor. DR denotes the de
Rham functor shifted by the dim(X). The de Rham functor is dual to the solution
functor.

If X = pt, Then, MHM(pt) is exactly all the polarizable mixed Hodge structures.

A MHM always has a weight filtration W , and we say it is pure of weight n, if
GrWk = 0 for k 6= n. Normally, the filtration W is involved with a nilpotent operator
on M or the underlying variation of a mixed Hodge structure. A mixed Hodge
modules (def.) is obtained by successive extensions of pure one. If the support of
a pure Hodge module as a sheaf is irreducible such that no sub or quotient module
has smaller support, then we say the module has strict support. Any pure Hodge
module will have a unique decomposition into pure modules with different strict
supports, known as Decomposition Theorem. A pure Hodge module is also called
polarizable HM. MHZ(X,n)p will denote the category of pure Hodge modules with
strict support Z. An M ∈ HMZ(X,n) determines a polarizable variation of Hodge
structure. The converse of this fact is also true, that variation of Hodge structures
determine a MHM, [SAI2]. Thus;

(2) MHZ(X,n)p ' V HSgen(Z, n− dimZ)p

The right side means polarizable variations of Hodge structure of weight n− dimZ
defined on a non-empty smooth sub-variety of Z. Equation (1), explains a deep non-
trivial fact about regular holonomic D-modules, their underlying perverse sheaves
and their polarizations.

The standard operations on the categories of sheaves can also be defined for
MHM(X). Here we have two additional operations namely Deligne nearby functor
ψf and the vanishing cycle functor φf along the fibers of f ∈ Γ(X,OX), which fit
into an exact triangle,

i−1 → ψf
can→ φf

[1]→ ...

ψfF = i−1Rj∗j
−1F, φfF = Cone(i−1F → ψfF )

where i : X0 ↪→ X, j : X \ X0 ↪→ X. The above distinguished triangle can be
considered as the definition of φf , namely vanishing functor along f . The vanishing
cycle functor is the mapping cone of the adjunction morphism i−1F → ΨfF . Thus
we have a diagram
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(3)

i∗F −−−→ ψ∗F
can−−−→ φ∗F −−−→ i∗F [−1]y yT−I yvar y

0 −−−→ ψ∗F
=−−−→ ψ∗F −−−→ 0

Assume QX [n + 1] is a perverse sheaf (in particular dim(X) = n + 1). This is
satisfied if X is a local complete intersection. Denote ψfQX , φfQX , be the nearby
and vanishing cycle complexes on X0 = f−1(0). It is known that ψfQX [n], φfQX [n]
are perverse. Then

ψf,λQX = ker(Ts − λ), φf,1QX = ker(Ts − id)

and φf,λ = ψf,λ for λ 6= 1. We know that

Hj(Fx,Q)λ := Hj(ψf,λQX), H̃j(Fx,Q)λ := Hj(φf,λQX)

and a short exact sequence

0→ H̃n(Fx,Q)→ Hn(Lx, φfQX)→ Kx → 0

where Lx is the link and Kx is the kernel of the natural morphism,

βφ : Hn
c (Fx,Q)(−1)→ Hn(Fx,Q),

Here above βφ is simply induced from the natural map i! → i∗. The reduced coho-

mology H̃j(Fx,Q) is sometimes refereed as vanishing cohomology. The sheaf φfQ
introduced by Deligne is a sheaf supported on X0 whose cohomology calculates the
vanishing cohomology.

In the isolated hypersurface singularity case we have

H̃j(Fx,Q) = 0, j < n

which is actually equivalent to the perversity. The above short exact sequence may
be interpreted as a relation between the cohomology of the milnor fiber and that of
the link of singularity, [DS]. The relation with monodromy is reflected in the Wang
sequence

→ Hj(Lx \X0)→ Hj(Fx)1
N→ Hj(Fx)1(1)→ Hj+1(Lx \X0)→ ...

When U is the complement of a normal crossing divisor D ⊂ X, V a local system
on U underlying a polarized pure Hodge structure of weight n, say V ; such that the
local monodromies around U are quasi-unipotent, then there exists a unique Hodge
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module V Hdg
X of weight (n+dimX) having strict support X and restricting to V Hdg.

The intersection complex

IC•XV = j!∗V , j∗! := image(j! → j∗)

is the unique perverse extension of V [d] with strict supportX. Here j∗! := image(j! →
j∗) is the intermediate extension originally belonged to Deligne. Therefore,

V Hdg
X = j!∗V

The functor Ψf defined before is special case of j!∗. Specifically, j!∗ is the result
of applying Ψ inductively along open strata of a startified manifold. Note that, on
a stratified pseudo-manifold X of dim(X) = n, the intersection complex may be
defined inductively, along the strata, starting from a constant sheaf R, Using the
Deligne extension Ψ we described above. The resulting complex

IC•X = τ≤p̄(n)−nRin∗...τ≤p̄(2)−nRi2∗RX−Σ[n]

where p̄ = {p̄(2), ..., p̄(n)} is the perversity, τ is trunctation of the complex, and
ik : Uk ↪→ Uk+1, Uk = X −Xn−k, X −Σ = U2, [B]. The above identity is some what
obligation by definition, if we extend the sheaf by Ψ. In a simple extension of the
local system H → ∆∗ associated to the Milnor fiberation of f : Cn+1 → C, we have

j!∗H := {
∑
α,l

fα exp(
−N
2πi

log f)mα,l }

Theorem 1.1. [AR] Let U be the complement of a normal crossing divisor in a
compact Kahler manifold X. Then intersection cohomology with coefficient in a
polarized VHS on U is isomorphic to L2 cohomology for a suitable complete Kahler
metric on U .

This theorem shows that L2 cohomology is finite dimensional, and also intersection
cohomology carries a pure Hodge structure. The above theorem also gives a decom-
position theorem for the direct image f∗IC

•
XL, with L a local system on U and f a

proper or projective morphism.

2. Kashiwara-Malgrange V-filtration

The Kashiwara-Malgrange V -filtration of a regular holonomic DX-module asso-
ciated to a subvariety Y ↪→ X is an increasing filtration generally indexed by Q
satisfying simple axiomatic conditions which characterize it. We explain this by
an example. Let X = C with coordinate t and Y = 0. Fix a rational number
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r ∈ (−1, 0), and let M = OC[t−1]tr, with ∂t acting on the left in the usual way. For
each α ∈ Q define VαM ⊂ M to be the C-span of {tn+r|n ∈ Z, n + r > −α}. The
following properties are easy to check

• The filtration is exhaustive and left continuous: ∪VαM = M , and Vα+ε =
VαM , for 0 < ε << 1
• Each VαM is stable under ti∂jt if i > j.
• ∂tVαM ⊂ Vα+1M , and t.VαM ⊂ Vα−1.
• The associated graded

GrVαM = Vα/Vα−ε =

{
Ct−α ifα ∈ r + Z
0 otherwise

is an eigen-space of t∂t with eigenvalue −α.

The last item implies that the set of indices that VαM , jumps is discrete. The
above construction may be generalized to define V -filtration for a regular holonomic
D-module on X that are quasi-unipotent along a closed sub-variety Y . If Y is
smooth, then for such a module, there always exists a unique filtration satisfying
similar properties as listed above, called the V -filtration along Y . Then t would be
replaced by the ideal sheaf of Y ↪→ X. In case Y is not smooth this construction can
be done using embedding by graph. For instance, if f : X → C be a holomorphic
function, and and let ıf : X → X × C = Y be the inclusion by graph. Let t be the
coordinate on C, and let

Vαı∗M = Dx×0〈ti∂jt |i− j > −|α|〉

for α ∈ Q, [AR].

Let X0 = f−1(0) be possibly a singular fiber. A holonomic DX-module M has
quasi-unipotent monodromy along X0, if the monodromy action on ψt(DR M) is
quasi-unipotent. Any regular holonomic DX-module with quasi-unipotent mon-
odromy is specializable along X0, i.e the module can be extended over X0. This
can be done using embedding by graph of f , namely if : X → X × C. In fact the
module

M̃ = i+M =

∫
if

(M,F ) = M [∂t], DR i+M = i∗M

works out here,
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(4) DRX×0Gr
α
V M̃
∼=

{
ψt,λDRXM [−1] − 1 ≤ α < 0,

φt,λDRXM [−1] − 1 < α ≤ 0.

The V -filtration is indexed by Q such that t∂t − α is nilpotent on GrαV , and

t : FpV
αM̃ → FpV

α+1M̃, α > 1

∂t : FpGr
α
V M̃ → FpGr

α−1
V M̃, α > 0

are isomorphisms. By definition,

(5) ψf (M) =
⊕
−1<α≤0

GrαV (M̃), φf (M) =
⊕
−1<α<0

GrαV (M̃)⊕Gr−1
V (M̃)

(6) DRψfM = ψfDR M [−1], DRφfM = φfDR M [−1]

Moreover;

(7) FpM̃ =
∑
i

∂it(V
−1M̃ ∩ j∗j−1Fp−iM̃)

where j : X × C∗ → X × C. This means that the V -filtration together with the
Hodge filtration on the complement of f−1(0) determine the total Hodge filtration
F , [SAI2].

3. Mixed Hodge Modules

Roughly speaking, a mixed Hodge module is obtained by extension of polarized
pure Hodge modules. A mixed Hodge module on complex algebraic manifold X
is given by an open cover {Xi} of X, Ui = Xi − Yi, Yi = t−1

i (0), ti : X → C and
gluing data (M |Ui,M |Yi, ui, vi), [SP]. The phenomenon is a method of gluing vector
bundles. The gluing data is (MU ,MD, u, v) satisfying v ◦ u = N ⊗ −1/2πi. It may
be presented in the diagram,

(ψM = MU)
u→ (φM = MD)

v→ (MU = ψM)

where ψ is the Deligne extension (of course the sequence is not exact).
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Theorem 3.1. [LI] The category of regular holonomic DX-modules is the same as

the category of diagrams M
v
�
u
N of vector spaces, where 1M − uv and 1N − vu are

invertible.

Proof. [BEI] For a vector space V and φ ∈ End(V ), let (V, φ)0 be the maximal
subspace on which φ acts in a nilpotent way. Consider the category C of diagrams
(V ′0 , V

′
1 , φ, u, v), where V ′0 , V

′
1 are vector spaces, φ ∈ AutV ′1 , and (V ′1 , idV ′1 − φ)0 v

�
u
V ′0

are such that v ◦ u = id− φ. Then we have the following equivalence

(8) (V0
v
�
u
V1) 7→ ((V ′0 , u ◦ v)0, V ′1 , idV1 − (v ◦ u), u, v)

�

The category regular holonomic D-modules on (∆∗, 0) is isomorphic to the above
category, since modules over 0 are only vector spaces, and over ∆∗ are vector spaces
with monodromy. Under this identification Ψf (V, T ) = (V, idV − T )0.

The category of perverse sheaves on the disk D which are locally constant on D∗

is equivalent to the category of quivers of the form ψ
c
�
v
φ i.e. finite dimensional

vector spaces ψ, φ with maps as indicated. A quiver ψ
c
�
v
φ corresponds to j∗L[1]

where L = ψ and T = I + v ◦ c. Then

φ = image(c)⊕ ker(v)

The extension of a Hodge module over a normal crossing compactification may be
explained as follows. Assume i : U ↪→ X is the open inclusion and X − U = D, a
normal crossing divisor. A MHM on X determines (in a unique way) two MHM’s , M
on U and M ′ on D with gluing morphisms u : ψunM →M ′ and v : M → ψunM(−1)
such that vu = N , where ψun is the uni-potent (λ = 1) part of ψ, [SAI2], [SAI5].
Then, it is easily verified that

M ′ = Im(u)⊕ ker(v)

and u and v induce morphisms

u : (M,W )→ (M ′,W [1]), v : (M ′,W )→ (M,W [1])

The converse is also true. Given the above filtered maps then N = uv = vu is
nilpotent, and W is the monodromy filtration for M ′. One can show that u, v will
preserve the weight and relative monodromy filtrations.
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A mixed Hodge modules corresponds to a variations of mixed Hodge structure.
This means that M is endowed with an increasing filtration W , called weight filtra-
tion such that GrWi M ’s are polarized Hodge modules of weight i. Here the extension
can not be arbitrary. The imposed conditions are,

• The original mixed Hodge module is polarized.
• The relative weight filtration that is the weight filtration on GrWk M , associ-

ated to the induced nilpotent operator GrkN exists.
• The Hodge filtration extends over Deligne extension.
• The nearby and vanishing cycle functors are well defined for M .
• The filtrations F,W, V (i), (0 ≤ i ≤ n) are compatible, where V (i) are the are

the Kashiwara-Malgrange filtrations along the coordinate hyperplanes.

These conditions together are called admissibility conditions, [SAI5]. Then the un-
derlying perverse sheaves or local system will satisfy similar conditions via the functor
rat.

Theorem 3.2. [SAI2], [SAI5] Admissible variation of mixed Hodge structures are
mixed Hodge modules.

4. Uipotent Local Systems Over C∗

We give a simple explanation of unipotent local systems on C∗. This provides a
picture of general unipotent local systems oarbitrary D-modules. We study the local
system of vector spaces over C of dimension n with a unipotent monodromy given
by

Mun =


1 −1
0 1 −1
...

. . . −1
1


which has a filtration of length n. Lets begin by putting

J (n) :=
n−1∑
k=0

OU . logk

They satisfy a system of inclusions and projections in an obvious way as;

0 ↪→
� J (1) ↪→

� ... ↪→� J (0) ...

Set,
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J a,b
f := J a/J b

Then,

J 0,1 ↪→ J 0,2 ↪→ ... ↪→ J 0,3..., J 0,∞
f = lim

←
J 0,b

J −1,0 ↪→ J −2,0 ↪→ ... ↪→ J −3,0..., J 0,∞
f = lim

→
J a,0

Definition 4.1.

J −∞,∞f = lim
←

lim
→
J a,b, M−∞,∞ = lim

←
lim
→

(M ⊗OC∗ J
a,b)

where M is any D-module on C∗.

We have DJ a,b = HomOC∗ (J a,b,OC∗) ∼= J −b,−a, by

J a,b ⊗ J −b,−a → J 0,1 = OC∗ , 〈f(s), g(s)〉 = Ress=0f(s)g(−s)ds

Therefore,

(9) DJ0,n = J−n,0 ∼= J0,n, D(M ⊗OU J
a,b
f ) = DM ⊗OU J

−b,−a
f

If we have a non-degenerate bilinear (or polarization) pairing

K : M ⊗M → OC∗

then the induced bilinear form,

K̃ : ψλM
−∞,∞ ⊗ ψλM−∞,∞ → C

〈m⊗ f(s), n⊗ g(s)〉 = Ress=αf(s)g(−s)K(m,n)ds

is non-degenerate. Later we use this as an strategy in order to extend the polarization
in a unipotent extension. The combinatorial framework of the D-modules J a,b allows
to explain the duality on Deligne extensions in a simple way, via the trace map and
residue.

Lemma 4.2.
j∗M

−∞,∞ = j!M
−∞,∞

and similarly for M−∞,∞
k .

The point is, if
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α : j!(M ⊗ f ∗J0,n)→ j∗(M ⊗ f ∗J0,n)

be the natural map, then kerα ↪→ Ψun
f and this injection is an equality for n >> 0.

This strategy to study a a unipotent local system Ja,b originally belongs to Beilinson,
in the paper ”How to glue Perverse sheaves”. In his paper, he construct a filtered
ring A with GrA = ⊕Ai/Ai+1 = ⊕Z(i) and defines

〈., .〉 : A× A→ Z(i), 〈f, g〉 = Rest̃=1(f.g−d log t̃)

where g → g− is a natural involution on A. then he sets

A1 = (A−1)⊥, Aa,b := Aa/Ab ∼= Hom(A−b/A−a,Z(−1))

This ring in many ways is like the local system J . The same holds if replace Z(i)
with (Z/ln)(i) and repeating every thing word by word to get,

Aet = lim
→a

lim
←b

Aa,b

5. Polarization

The duality of D-modules is the duality of vector bundles with connections. In
this way it would be a type of Serre duality of coherent sheaves. As a first step is
better we stress that the vector bundle is filtered by a holomorphic filtration F . In
order to reflect the Hodge structure and polarization one is led to consider the graded
structure associated to this filtration. Let (G,∇, F,HQ, S) be a polarized variation
of Hodge structure of weight n. The flat connection ∇ makes the vector bundle G
into a left D-module. Now consider a polarization

S : HQ ×HQ → Q(−n)

of the variation. By definition we have S(F p, F q) = 0 for p+q > n. Thus S descends
to a non-degenerate pairing between GrkFG and Gr−n+k

F G, for all k. Thus, we get an
isomorphism

(10)
⊕
k∈Z

GrkFG →
⊕
k∈Z

HomOX (Grn−kF G,OX)

Moreover, we obtain that, S is flat with respect to the Gauss-Manin connection, and

dS(λ1, λ2) = S(∇λ1, λ2) + S(λ1,∇λ2)
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Definition 5.1. If G = ⊕Gk is a graded module, then its graded dual is defined by

G∨ = ⊕HomOX (G−k,OX)

the i-th derived functor of D is evidently

G∨i = ⊕ExtiOX (G−k,OX)

Definition 5.2. The (Verdier) dual of a D-module is defined by

DM = ExtdD(M,D ⊗O ω−1
X )

A polarization of M is an isomorphism

M ∼= D(M)(−w)

A polarization of a Hodge module is a duality DM = M(n) where (n) is the Tate
twist, which is essentially defined by the shift of the complex by n.

Theorem 5.3. [SCH] Let G be the Hodge module associated to a polarized variation
of Hodge structure (HQ,∇, F, S) of weight n, with S : HQ ⊗ HQ → Q(−n) the
polarization. Then, we have the isomorphism

(11)
⊕
k∈Z

GrkFG →
⊕
k∈Z

HomOX (Grn−kF G,OX)

given by (up to a sign factor) λ→ S(λ,−), for λ ∈ GrkFG.

If f : X → Y is a projective morphism between smooth complex varieties, and M
a (pure) Hodge module on X with strict support and of weight n, then Rkf∗M is a
Hodge module on Y of weight n+ k. If M ∈MH(X)p, then its cohomology carries
a Hodge structure. The Lefschetz decomposition theorem may be stated as;

PGrWi M = ker(GrN i+1 : GrWi M → GrW−i−2M)∑
GrWNm = ⊕PGrWi+2mM

∼= GrWi M

The duality functor is stable under PGrWψf in case the D-module is defined via
the fibration by f . If two graded module or vector-space having a Lefschetz de-
composition relative to a specific nilpotent operators of degree 1. Then, a bilinear
or hermitian form will polarize them if and only if the level graded polarizations
dualize the corresponding primitive sub-spaces. Moreover, the two corresponding
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bilinear forms would be isomorphic if and only if the set of graded polarizations are
isomorphic.

Theorem 5.4. [SAI3] Assume f : X → Y is a morphism of smooth analytic mani-
folds, and (M,F,K;W ) is a mixed Hodge module polarized by, namely S. Then

(−1)j(j−1)/2Rjf∗S ◦ (id⊗ lj) : PlR
jf∗K ⊗ PlRjf∗K → Q

is a polarization on the primitive components, for j ≥ 0.

6. Extension in isolated hypersurface singularity case

Asuume f : Cn+1 → C is a germ of isolated singularity. Then the variation of
mixed Hodge structure (Hn(X∞,C), Flim,W (N)) associated to the cohomology of
the Milnor fibers is polarized namely with S. In this case the V -filtration and the
Brieskorn lattice H ′′ which are vector bundles of rank µ (the Milnor number of f)
can be defined. Moreover the polarization of the Gauss-Manin system is given by
the K. Saito higher residue pairing PS which a flat bilinear form on the disc.

Proposition 6.1. ([H1] prop. 5.1) Assume {(αi, di)} is the spectrum of a germ of
isolated singularity f : Cn+1 → C. There exists elements si ∈ Cαi with the properties

(1) s1, ..., sµ project onto a C-basis of
⊕
−1<α<nGr

α
VH

′′/GrαV ∂
−1
t H ′′.

(2) sµ+1 := 0; there exists a map ν : {1, ..., µ} → {1, ..., µ, µ+ 1} with (t− (αi +
1)∂−1

t )si = sν(i)

(3) There exists an involution κ : {1, ..., µ} → {1, ..., µ} with κ = µ + 1 − i if
αi 6= 1

2
(n− 1) and κ(i) = µ+ 1− i or κ(i) = i if αi = 1

2
(n− 1), and

PS(si, sj) = ±δ(µ+1−i)j.∂
−1−n
t

.

The basis discussed in 6.1 is usually called a good basis. The condition (1) correspond
to the notion of opposite filtrations. Two filtrations F and U on G are called opposite
(cf. [SAI6] sec. 3) if

GrFp Gr
q
UG = 0, for p 6= q

In our situation this amounts to a choice of a section s : H ′′/∂−1
t H ′′ → H ′′ of the

projection pr : H ′′ → H ′′/∂−1
t H ′′ and Image(s) generates ⊕α(H ′′ ∩ Cα).

V αH ′′ is the submodule generated by s(V αΩf ).



16 MOHAMMAD REZA RAHMATI TO CECILIA

Proposition 6.2. ([SAI6] prop. 3.5) The filtration

UpCα := Cα ∩ V α+pH ′′

is opposite to the filtration Hodge filtration F .

The proof of the theorem 6.1 is based on construction of a C-linear isomorphism,

Φ : Hn(X∞,C)→ Ωf
∼= Ωn+1/df ∧ Ωn

The mixed Hodge structure on Ωf is defined by using the isomorphism Φ. This
means that

Wk(Ωf ) = ΦWkH
n(X∞,Q), F p(Ωf ) = ΦF pHn(X∞,C)

and all the data of the Steenbrink MHS on Hn(X∞,C) such as the Q or R-structure
is transformed via the isomorphism Φ to that of Ωf . Specifically; in this way we also
obtain a conjugation map

(12) .̄ : Ωf,Q ⊗ C→ Ωf,Q ⊗ C, Ωf,Q := Φ−1Hn(X∞,Q)

defined from the conjugation on Hn(X∞,C) via this isomorphism.

Theorem 6.3. [R] Assume f : (Cn+1, 0) → (C, 0), is a holomorphic germ with
isolated singularity at 0. Then, the isomorphism Φ makes the following diagram
commutative up to a complex constant;

(13)

R̂esf,0 : Ωf × Ωf −−−→ Cy(Φ−1,Φ−1)

y×∗
S : Hn(X∞)×Hn(X∞) −−−→ C

∗ 6= 0

where,

R̂esf,0 = resf,0 (•, C̃ •)

and C̃ is defined relative to the Deligne decomposition of Ωf , via the isomorphism
Φ. If Jp,q = Φ−1Ip,q is the corresponding subspace of Ωf , then

(14) Ωf =
⊕
p,q

Jp,q C̃|Jp,q = (−1)p
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In other words;

(15) S(Φ−1(ω),Φ−1(η)) = ∗ × resf,0(ω, C̃.η), 0 6= ∗ ∈ C

Remark 6.4. ([PH] page 37) Setting

ψis(ω, τ) =

∫
Γ(i)

e−τfω

ψ̄is(ω
′, τ) =

∫
Γ′(i)

e+τfω′

with ζ = ω
df
, ζ ′ = ω′

df
, the expression (which is the same as in the proof)

(16) Ks([ζ], [ζ ′])(τ) =

µ∑
i=1

ψis(τ, ω)ψ̄is(τ, ω
′) =

∞∑
r=0

Krs([ζ], [ζ ′])(τ).τ−n−r

is a presentation of K. Saito higher residue pairing.

Corollary 6.5. The polarization S of Hn(X∞) will always define a polarization of
Ωf , via the isomorphism Φ. In other words S is also a polarization in the extension.

The Riemann-Hodge bilinear relations for the MHS on Ωf and its polarization R̂es
would be that of an opposite MHS to (Hn(X∞), S).

Corollary 6.6. (Riemann-Hodge bilinear relations for Ωf) Assume f : Cn+1 → C
is a holomorphic germ with isolated singularity. Suppose f is the corresponding map
to N on Hn(X∞), via the isomorphism Φ. Define

Pl = PGrWl := ker(fl+1 : GrWl Ωf → GrW−l−2Ωf )

Going to W -graded pieces;

(17) R̂esl : PGrWl Ωf ⊗C PGr
W
l Ωf → C

is non-degenerate and according to Lefschetz decomposition

GrWl Ωf =
⊕
r

frPl−2r

we will obtain a set of non-degenerate bilinear forms,

(18) R̂esl ◦ (id⊗ fl) : PGrWl Ωf ⊗C PGr
W
l Ωf → C,
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(19) R̂esl = resf,0 (id⊗ C̃. fl)

Then,

• R̂esl(x, y) = 0, x ∈ Pr, y ∈ Ps, r 6= s
• If x 6= 0 in Pl,

const× resf,0 (Clx, C̃. f
l.x̄) > 0

where Cl is the corresponding Weil operator.

7. Extension over smooth divisor and hemitian duality

In the following we explain a method of descent of duality for D-modules, originally
belonged to C. Sabbah and M. Saito cf. [SA4], [SAI3]. Assume X = Z×C, where Z a
complex manifold identified with Z = Z×0, and Let M be a holonomic DX-module.
Define

(20) Mα,p :=

p⊕
k=0

M [t−1]⊗ eα,k

with eα,k = 0 for k < 0 and eα,k = tα(log t)k/k! otherwise. We have natural maps

...�Mα,p �Mα,p+1 �Mα,p+2 → ...

where the composite of the two converse arrow is nilpotent. Then the maps,

GrVαM → GRV
−1Mα,p, m0 7→

⊕p
k=0[−(∂tt+ α)]km0 ⊗ eα,k

GrV−1Mα,p → GrVαM,
∑p

k=0mk ⊗ eα,k 7→
∑p

k=0[−(∂tt+ α)]kmp−k

for p large enough induce isomorphisms;

Coker(t∂t) ∼= GrVαM
∼= ker(t∂t)

The limit is called moderate nearby cycle module, denoted ψmodt,λ M , which plays

the same role as j∗(M ⊗ f ∗J0,n), n >> 0 in section 4. The case of moderate
vanishing cycle module φmodt,1 may be done in some what similar way, by considering
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the inductive system M → M−1,p instead of the single module Mα,p, and the action
of N is the endomorphism −∂t.t on GrV0 M . Then we have,

Can = −∂t : GrV−1M � GrV0 M : t = V ar.

which are isomorphism, [SA4]. Let

S : M ⊗M → C[[t, t−1]]

be a duality. It extends formally to

ψtS : ψtM ⊗ ψtM → Db
mod(0)
C , φtS : φtM ⊗ φtM → Db

mod(0)
C

by

(21) S(

p∑
k=0

µk ⊗ eα,k ,
p∑
l=0

ml ⊗ eα,l) =
∑
k+l=p

(µk,ml)eα,keα,l

Db
mod(0)
C is the ring of C∞ distributions with moderate growth in dimension 1. These

distributions naturally receive a doubly indexed V -filtration w.r.t the coordinates t
and t̄. [SA3]. ∑

α,p

C{t}[t−1]C{t̄}[t̄−1](log |t|)p

which is a DC ⊗ DC̄-module in the obvious way. Then, for −1 ≤ α < 0 we obtain
the induced forms,

(22) ψλS : GrVαM ⊗C Gr
V
αM → C, φ1S : GrV0 M ⊗C Gr

V
0 M → C

with properties;

ψλS(N•, •) = ψλS(•, N•), φ1S(N•, •) = φ1S(•, N•)

which says N is an infinitesimal isometry of the descendants. We also obtain a set
of positive definite bilinear maps,

(23) ψλ,lS ⊗ (id⊗N l) : PGrWl Gr
V
αM ⊗C PGr

W
l Gr

V
αM → C

The form S is non-degenerate in a neighbourhood of Z iff all the forms Pψλ,lS are
non-degenerate. Similar statement is true for hermitian or polarization forms.
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Then the graded pairings ψλS, −1 ≤ α < 0 are given by the formal residue of the
form S at t = α and t = 0 respectively for ψλS and φ1S. We have proved the
following.

Theorem 7.1. Assume M = (M,F,W,K, S) be a polarized MHM (hence regular
holonomic) with quasi-unipotent underlying variation of mixed Hodge structure K,
defined on a Zariski dense open subset U of an algebraic manifold X. Then, afar
from the singular locus of the NC divisor M has a smooth extension to all of X and
the extended MHM is also polarized. The polarizations on the fibers can be described
by residues of the Mellin transform of a formal extension of the polarization S over
the moderate distributions, by the two formulas

ψλS〈
p∑
l=0

ml ⊗ eα,l,
p∑
l=0

ml ⊗ eα,l〉 = ∗. Ress=α〈S̃, |t|2sdt ∧ dt̄〉, ∗ 6= 0, α 6= 0

φ1S(•, •̄) = ∗. Rest=−1〈S̃, |t|2sFlocdt ∧ dt̄〉, ∗ 6= 0

.

Theorem 7.2. Suppose X is a complex algebraic manifold with U ↪→ X an open
algebraic sub-manifold. Let H → U be a quasi-unipotent variation of polarized mixed
Hodge structure over U , namely (H, F,W, S). Suppose He⊗OU is regular holonomic.
Then the fibers of He on X \ U as mixed Hodge structures are polarizable. The
polarizations of nearby and vanishing fibers of He on the whole X can be described
either by residues of the Mellin transform of the formal extension of the polarization
S over the moderate sections or by the Grothendieck residue of the local defining
function the NC divisor near its isolated singularity.

Proof. The first part is a consequence of (2) or the same 9.2. The second part follows
from 6.3 and 7.1 and the discussion at the beginning of this section, noting that near
a normal crossing divisor the degenerate fiber is either smooth or defined by an
isolated singularity fibration, see also 9.1. �

A polarization of mixed Hodge modules also defines a conjugation map CX (or

similar logarithmic one C
mod(Z)
X ). This functor has the following natural properties,

ψmod
t,λ ◦ CX ∼= CZ ◦ ψmod

t,λ , λ 6= 1

φmod
t,1 ◦ CX ∼= CZ ◦ ψmod

t,1 , λ = 1

Both of the isomorphisms commute with the nilpotent operator N and are also com-
patible with the gluing data for regular holonomic D-modules. This is a special case
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of the Kashiwara conjugation functor, [BK] where we have the following commutative
diagram.

(24)

MHM(X)λ
ψmod
t,λ ◦CX−−−−−→ MHM(X)−λ

DRX,λ

y yDRX,−λ
Perv−λ(C) −−−−−→

ψmod
t,λ ◦c

−1
X

Pervλ(C)

8. Fourier-Laplace Transform of Polarization

Another interesting view of extensions of PVMHS is described by Fourier-Laplace
transform of sheaves. For the set up we consider M(∗∞) = M⊗DP1(∗∞) and define
its Fourier-Laplace transform

M̂ := q+(p+M(∗∞))⊗ E−tτ ), E−tτ = (OP1×C,∇ = d− τdt− tdτ)

The Fourier-Laplace transform can also be equivalently defined by;

M̂ = coker(C[τ ]⊗M ∇t−τdt−→ C[τ ]⊗M), τ.m := ∂t.m

This also applies to polarization of D-modules. If we have a polarization,

K : H′ ⊗O H → LR−an

Then it carries over

K̂ : Ĥ′ ⊗O ı+Ĥ → LR−an

where LR−an is set of distributions as in section 7 (Here ı : P1 = C ∩ ∞ → P1 is
z 7→ −z and ı+ is necessary for we use exp(tτ) not exp(−tτ) ). In a way that the
distribution on the the integral is twisted by exp(−tτ). exp(tτ). The product after
Fourier transform is

(
∑

τ imi)dt⊗ (
∑

τ ini)dt 7→ [ψ →
∑
i,j

k(mi, nj)τ
iτ̄ je−tτ .etτψdt ∧ dt̄]

up to a complex constant, [SA4].

Example 8.1. [SA4]
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• M = C[t]〈∂t〉/(t− c) =⇒ K(m, m̄) = δc, K̂(m, m̄) = i/2π exp(cτ − cτ)

• M = C[t]〈∂t〉/(t∂t−α)⇒ K(m, m̄) = |t|2α, K̂(m, m̄) = Γ(α+1)/Γ(−α)|τ |−2(α+1)

Theorem 8.2. Assume M = (M,F,W,K, S) be a polarized MHM (hence regular
holonomic) with quasi-unipotent underlying variation of mixed Hodge structure K,
defined on a Zariski dense open subset U of an algebraic manifold X. Then, M has
a smooth extension to all of X Given by the Fourier-Laplace transform of M , and
similar for the perverse sheaf K. The extended MHM (resp. perverse solution) is
also polarized. The polarizations on the fibers can be described by the Fourier-Laplace
transform of the polarization of M and K.

The theorem follows from 7.2 and the following theorem; by considering a local
defining equation for the normal crossing divisor, noting that the polarization is
unique.

Theorem 8.3. [DW] Assume H′ = Rnf∗CX′ be the local system associated to a
holomorphic isolated singularity f . Consider the map

F : Ωn+1
X → i∗

⋃
z

Hom(Hn(X, f−1(η.
z

|z|
),Z) ∼= ⊕iZΓi,C)

ω 7→ [z → (Γi →
∫

Γ̃i

e−t/zω)],

and define

H := Im(F )

where Γi are the classes of Lefschetz thimbles, and Γ̃i is the extension to infinity.
Then the vector bundle H is exactly the Fourier-Laplace transform of the cohomology
bundle Rnf∗CX′ = ∪tHn(Xt,C), equipped with a connection with poles of order at
most two at ∞.

(H′,∇′) � (H,∇)

The following is a consequence of 6.3 and 8.2.

Corollary 8.4. In case of the PVMHS associated to the Milnor fibration of an
isolated hypersurface singularity f , the modified Grothendieck residue
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R̂esf,0 = resf,0(•, Ĉ•)

where Ĉ is defined relative to the Deligne-Hodge decomposition of Ωf as before, is
the Fourier-Laplace transform of the polarization S on Hn(X∞,C), that is

R̂es = ∗. FS, ∗ 6= 0

The corollary is also a consequence of uniqueness of polarization. Another important
fact is that, a polarization of the form

K : H′ ⊗O H → C[t, t−1]

induces an isomorphism

H′∨ ∼=O H

We can glue the above bundles by this isomorphism obtained from the polariza-
tion. Thus, the process of gluing is equivalent to polarization. Therefore, in former
situation we have

H(0)∨ ∼= G∞, ⇒ Ω∨f
∼= Hn(X∞,C)

as PVMHS, and PMHS respectively. The corresponding connections are given by

∇′ : H′ → 1

z
Ω1 ⊗H′, ∇ : H → zΩ1 ⊗H

respectively, [DW] exp. 1, pages 12, 13.

9. Polarization in normal crossing compactification

In this section we explain the polarization in extentions over normal crossing di-
visors. We present a brief of the work of M. Saito in [SAI5]. It provides a geometric
picture or example that how the already defined concepts works out and also it con-
cretely shows how we are goiing to use D-module theory for extensions of PVMHS
and study Hodge theory. The reader should compare all the set up in this part with
the former definitions in order to remove any ambiguities. We explain nearby and
vanishing cycles inductively through a stratification of the normal crossing divisor.
As the question is local, we may assume, X = ∆n, Di = {xi = 0}, DI = ∩i∈IDi.
Suppose M is a regular holonomic DX-module with quasi-unipotent monodromy
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along Di’s. Then M is given by, Eν
I , ν ∈ (C/Z)n, on the hyper-cover obtained by

the simplicial structure of D, equipped with the morphisms;

cani : Eν
I → Eν

I∪i, Vari : Eν
I → Eν

I\i

such that cani ◦ Vari = Vari ◦ cani = Ni : Eν
I → Eν

I . We shall assume the sheaves
Eν
I are given as

(25) Eν
I = Ψν1

x1
...Ψνn

xnL, Ψνi
xi

=

{
ψνixiL[−1] i /∈ I
φ0
xi
L[−1] otherwise.

and define;

Mα = ∩i(∪i ker((xi∂i − αi)j : M →M))

Thus,

Eν
I = Mα+1I , (ν ≡ α mod Zn, α ∈ Cn), 1I = (..., 1, ...)

Actually, ν ∈ (Q∩ [−1, 0))n+1 would be a set of exponents of different monodromies.
Then, cani = ∂i, Vari = xi, Ni = xi∂i − α, and

ψxi = ker(Tj,s − e(α)),

with the same for φ. Then the Kashiwara-Malgrange V -filtration is by definition,

V
(i)
β = M ∩

∏
α≤β

Mα

.

Suppose now D is defined by a single equation, g = xm = xm1
1 ...xmnn , m ∈ Nn, set

NJ =
∏

i∈J Ni, canJ =
∏

i∈J cani, VarJ =
∏

i∈J Vari. Set

N = log(Tu)

to be the logarithm of monodromy on the punctured disc, normalized by twisting
with (n). Then the specialization of the system is given by

(26) Ẽν
I =


coker{

∏
i∈I∩m̄(Ni −miN) = ÑI}, 0 /∈ I

coker{

(
{(
∏

i∈I∩m̄(Ni −miN)−NI∩m̄}N−1 −V arI∩m̄
canI∩m̄ N

)
= ÑI}
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where the morphisms are injective endomorphisms ofEν′

I\m̄[log(Tu)], and Eν′+ν0m
I\m̄ [N =

log(Tu)]⊕ Eν′

I′ [N = log(Tu)], I
′ = I \ 0, respectively. We continue with,

Ψn+1(ΨgF) ∼= {Ẽν
I , ˜cani, Ṽari, Ñi} ,

Proposition 9.1. [SAI5] Let ((H,F,W ), Ni; S) be a PVMHS of weight w, where
W is the monodromy filtration for

∑
Ni shifted by w. We take T as the monodromy

on the disc, and set s = log(Tu), l = |I|, and

(H̃I ;F,W ) = coker(ÑI : (H[s];F [l],W [−2l])→ (H[s];F,W ))

F p(H[s]) =
∑

j F
p+jH ⊗ sj, Wk(H[s]) =

∑
jWk+2jH ⊗ sj.

Then

((H̃I , F, W ), s = log(Tu), Ni +mi.s; S̃I) ,

extends the original PVMHS over DI and is of weight w + l − 1 , where W is the
monodromy filtration for s+

∑
(Ñi +mis) shifted by w + l − 1 and S̃I is defined

by

S̃I(ũ, ṽ) = Res S(Ñ−1
I ũ, ṽ)

In a way that S is extended to

S : H[s, s−1]⊗H[s, s−1]→ C[s, s−1] ,

by S(u× si, v ⊗ sj) = (−1)iS(u, v)⊗ si+j , and Res (
∑
ai ⊗ si) = a−1.

We sketch the idea of proof from the appendix in [SAI5], due to M. Kashiwara. One
may assume mi = 1 . By definition we have

H̃ = H[s]/coker(
∏
i∈I

(s−Ni)) ∼= ⊕0≤j<1H ⊗ sj

S̃(sj.u, sk.v) = S(u, (−1)jRess=0(
∏
i∈I

(s−Ni)
−1)sj+kv)

where H is identified with H ⊗ 1(⊂ H[s]) and (s−Ni)
−1 = s−1

∑
j≥0N

−1
i s−j. The

proof will proceed by induction on l = |I| and dim(H), and the assertion is clear for
dim(H) = 0. It would also be clear for l = 1, for then H ' H̃. Then the proof of
theorem may be understood to prove an induction criteria using identities
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S ′(can⊗ id) = S(id⊗ Var)

by uniqueness. The morphisms can, Var extend by can ⊗ 1, Var ⊗ 1 etc. More-
over, if you consider the formal structure (R[N ′]/(N ′l), N ′, S ′) of weight 1 − l with
S ′(N ′i, N ′j) = (−1)i, if i+ j = l − 1, and 0 otherwise Then we have

(H̃, S̃) = (H,S)⊗ (R[N ′]/(N ′l), S ′)

Theorem 9.2. [SAI5] For a reduced irreducible separated complex analytic space X
of dimension n, we have an equivalence of categories,

MHX(X,w) ∼= V HSgen(X,w − n)p

where the right hand side is the inductive limit of V HS(U,w)p the category of po-
larizable variations of Hodge structures of weight w with quasi-unipotent local mon-
odromies on smooth dense Zariski open subsets U . Moreover, the polarizations cor-
respond bijectively.

10. Higher Residue pairing

This section provide a concrete form of dulity for mixed Hodge modules, namely
Higher residue pairing. The construction of higher residues and primitive forms
originally belongs to K. Saito, [S2], [LLS]. It provides a standard method to describe
a parametric family of dualities for polarized variation of mixed Hodge structures.
However, conventionally the duality for D-modules is a non-degenerate hermitian
sesqui-linear form. The method of K. Saito is to express a Serre duality between the
Hodge sub-bundles H(−k) ⊃ H(−k−1) of the Hodge filtration and the corresponding
components of a co-filtration Ĥ(k) → Ĥ(k+1)... associated to the Gauss-Manin system.
The method we explain it here is a some what different method explained in the
second reference. It is based on the identification of the complexes

(PV (X) =
∑

PV i,j(X), ∂, ∂̄) � (A(X) =
∑

Ai,j(X), d, d̄)

αI,J∂Iz ⊗ ∂J z̄, � βI,Jdz ∧ dz̄

of smooth poly-vector fields on the left, with the space of smooth complex differential
forms on X. It gives a filtered quasi-isomorphism

(PV (X)((t)), Qf = ∂̄f + t∂)→ (A(X)((t)), d+ t−1df ∧ •)

where Qf is the corresponding coboundary to d+t−1df ∧• via a specific isomorphism
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PV (X)((t)) ∼= A(X)((t))

In fact setting

d+
f := d+

df

t
∧ , d−f := td+ df∧

the maps

Γ+ : (PV (X)((t)),Qf ) ∼= ((A(X)((t)), d+
f ), Γ+ : (PV (X)((t)),Qf ) ∼= ((A(X)((t)), d−f )

are filtered isomorphisms via F kPV (X)((t)) = tk.PV (X)[[t]], and similarly we may
filter the other complex. The natural embedding

ı : (PVc(X)[[t]], Qf ) ↪→ (PV (X)[[t]], Qf )

where c states for compact support, defines a quasi-isomorphism, and if we set

Hf
(0) := H∗(PV (X)[[t]], Qf ), Hf = Hf

(0) ⊗C[[t]] C((t))

In fact, we have all the isomorphisms

Hf
(−k) = tkHf

(0) = H∗(tkPV (X)[[t]], Qf ) = H∗(tkΩ∗X [[t]], d−f ) = H(−k)
f

In this way we obtain a Hodge filtration

F kHf
(0) = Hf

(−k), GrkFH
f
(0) = tkJac(f)

then the trace map

Tr : PVc(X)→ C

provides a C[[t]]-homomorphism R̂es
f

as

Hf
(0) −→ OS,0[[t]], R̂es

f
=
∑
k

R̂es
f

k(•)tk

with R̂es
f

k the higher residues. Similarly, we obtain the higher residue pairing

Kf ( , ) : Hf
(0) ×H

f
(0) → OS,0[[t]], Kf ( , 1) := R̂es

f
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Hf
(0) will also inherits a connection as

∇ : Hf
(0) → t−1.Hf

(0) ⊗ Ω1
S,0

.

The higher residue Kf defines a duality on Hf
(0). We can use the trace map

PVc(X)[[t]]× PVc(X)[[t]]→ C[[t]], (α1.v1(t), α2.v2(t)) 7→ v1(t)v2(−t)Tr(α1, α2)

here the convention α.v(t) = v(−t)α is used. We equip PVc(X)((t)) with the sym-
plectic pairing

ω(α1.v1(t), α2.v2(t)) = Rest=0v1(t)v2(−t)Tr(α1, α2)

If we have an admissible variation of mixed Hodge structure on a Zariski open subset
underlying our MHM on X \f−1(0), the limit Hodge filtration pairs with an opposite
filtration Φ to define a complex variation of MHS. Here by complex we mean we
forget about the real structures. In such a case we always can find a decomposition
Hf = Hf

(0) ⊕ L, such that t−1L ⊂ L. Then we have

Kf (B,B) ⊂ C, Kf (L,L) ⊂ t−2C[t−1], ω(L,L) = 0

Theorem 10.1. [S2], [LLS] Let s1, s2 be local sections of Hf
(0).

• Kf (s1, s2) = Kf (s2, s1).
• Kf (v(t)s1, s2) = Kf (s1, v(−t)s2) = v(t)Kf (s1, s2), v(t) ∈ OS[[t]].
• ∂V .Kf (s1, s2) = Kf (∂V s1, s2) +Kf (s1, ∂V s2), for any local section of TS.
• (t∂t + n)Kf (s1, s2) = Kf (t∂t.s2, s1) +Kf (s1, t∂t.s2)
• The induced pairing on

Hf
(0)/t.H

f
(0) ⊗H

f
(0)/t.H

f
(0) → C

is the classical Grothendieck residue.

As in section (6) we can introduce the formal extensions of the form,

ψtK
f : ψtHf

(0) ⊗ ψtH
f
(0) → Db

mod(0)
C , φtK

f : φtHf
(0) ⊗ φtH

f
(0) → Db

mod(0)
C

Then, for −1 ≤ α < 0 the induced forms,

(27) ψλK
f : GrVαH

f
(0) ⊗C Gr

V
αH

f
(0) → C, φ1K

f : GrV0 H
f
(0) ⊗C Gr

V
0 H

f
(0) → C
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By the same procedure as truncated Jordan blocks as shown the graded pairings
ψλK

f , −1 ≤ α < 0 are given by the formal residue of the form Kf at t = α and
t = 0 respectively, for ψλK

f and φ1K
f , cf. Theorems 6.1 and 6.4.

Theorem 10.2. The duality of the extension of a polarized MHM defined on a
Zariski open dense subset of an algebraic manifold is a pull back of K. Saito higher
residue pairing over the disk. Any choice of such pairing is equivalent to choose a
hermitian duality isomorphisms CX and cX . This form simulteneously descends to
residue pairing and polarization form on D and its open complement X \D, respec-
tively. The residues of the extension of the form Kf on the space of elementary
sections is given by the descendant of the the form Kf itself, i.e the Grothendieck
residue or polarization form, which are sign isomorphic. Finally, because the her-
mitian dual of a regular holonomic D-module is also regular holonomic the above
procedure of extension may be considered conversely, to extend a D-module on a
neighborhood of the nc-divisor D to the other chart. Both of the aforementioned
extensions would be compatible with the nearby and vanishing cycle functors.

The proof is by replacing the duality S in section 7 by Kf the higher residue
pairing.

11. Application to Neron models of PVHS

Naturally one can apply the extensions of HS to their intermediate Jacobians. In
the literature there are several extensions of the bundles of Jacobians, which are quite
different. Here we only consider the one obtained from the aforementioned gluing
procedure. We use the basic facts that the polarization on a family HS naturally
induce the similar operation on their Jacobians to study the asymptotic behaviour
of the pairing in a Neron model associated to these variations. To this end assume
X is a projective complex manifold of dimension d.
Let (H, F ) be a variation of Hodge structure. We are interested to family of inter-
mediate Jacobians

J(Hs) = Hs,Z \Hs,C/F
pHs,C = Ext1

MHM(Z, Hs)

J(H) =
⋃
s∈S∗

J(Hs)

associated to such VMHS, called the Neron model of H (here we have assumed the
weight is 2p-1). The sections of the bundle J(H) are called Normal functions. Define

NF(S∗,H)ad
S := Ext1(ZS∗ ,H)
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called admissible normal functions, where Ext is taken in the category of VMHS(S∗)ad
S

the category of admissible variation of mixed Hodge structures, [SAI8].

To extend J(H) to a space over S, we let M be the polarized Hodge module on
S∗, obtained from the variation H. On S∗ we have an extension of integral local
classes

0→ H→ J → Z→ 0

and therefore an extension

0→M → N → QH
S [n]→ 0

with QH
S [n] the trivial Hodge module of weight n on S. Dualizing the extension and

applying a Tate twist, we also have

0→ QH
S [n]→ N∨ν →M(−1)→ 0

with N∨ = D(N)(−n).

Example 11.1. [SCH2] Consider the trivial family of Elliptic curves E ×∆∗ where
E = C/(Z + τ.Z), has an automorphism of order 6. Consider the trivial family
E ×∆∗, as well as its quotient by Z/6.Z. We denote the local system corresponding
to the quotient by H. By choosing the bases, the monodromy on the cohomology takes
the form;

T =

(
0 1
−1 1

)
with eigen-values τ and τ̄ . The Deligne extension is given by Oe1 ⊕ Oe2 with con-
nection defined by

∇e1 = −e1 ⊗
ds

6s
, ∇e2 = −e2 ⊗

5ds

6s

Admissibility condition can be tested by pulling back along the branch cover s = t6

to make the monodromy unipotent. If we only need to consider the family E ×∆∗,
there is a map g : ∆→ C such that,

g(τ.t)− τ.g(t) ∈ Z + τ.Z

because the normal function is pulled back from the original family, g may be chosen
so that g(τ.t) − τ.g(t) = 0, this choice of g represents the pull back of the extended
normal function, its value over 0 is g(0) = 0. Thus the pull back of any admissible
normal function over E ×∆ go through the origin.
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Theorem 11.2. The limit of the Poincare product on the canonical fibers of the
Neron model of a degenerate admissible variation of Hodge structure is given by the
modification of the residue pairing or the residues in the Theorem 7.1. This process
describes the limit Jacobians as the Jacobians of the Opposite Hodge filtration on the
extended Hodge structure.

Proof. We have the commutative diagram of non-degenerate bilinear forms,

K : M ⊗ M → C[t, t−1]
↓ ↓

KJ : N ⊗ N → C[t, t−1]
↓ ↓

× : QH
S ⊗ QH

S → C[t, t−1]

where the map in the first line is the polarization of the mixed Hodge module M ,
the third map is the product map and the middle one is a descent of the map S on
the Neron model. At the level of local systems we have similar diagram

κ : H ⊗ H → C
↓ ↓

κJ : Jν ⊗ Jν → C
↓ ↓

× : Q ⊗ Q → C

Now tensoring with J −∞,∞ and taking the residue as in sec. 4 or sec 7, we get the
residue pairing or the residues as in 7.1. One should note that, extension amounts
to exchange the Hodge filtration with the opposite one by [SAI10].

�

The polarization (here we mean Hodge theoretic polarization) of the limit Ja-
cobian and the former polarization on the canonical Jacobian fiber would become
isomorphic. In this way one can use one polarization for both.

12. Weil Adeles

We include this sections to give some ideas that can be applied in positive char-
acteristic. The duality of vector bundles or variation of mixed Hodge structures can
be explained in Weil language of adeles (also called Beilinson addeles, or classes of
repartitions due to Rosenlicht). I closely follow [SE] in this section. Assume we have
a MHM (M,F,W,H, Kf , S) on the complex manifold X, with the polarization S on
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the local system, which for simplicity we assume carries a pure Hodge structure. We
may also assume dim(X) = 1. Then, we have a definite duality of the form

Sk : GrkFH⊗Grn−kF H → C

A repartition or adeles η is a family {ηp}p∈X , where ηp ∈Mp⊗OX,p for almost all p,
where OX,p is the local ring of p ∈ X. The repartitions form a module AM over the
field C. The abelian group C(X)⊗AM is a sub-module of AM , by f ⊗{mp⊗ ap} →
{mp ⊗ f.ap}. The filtration F k induces a filtration on AM , denoted Fk, by asking
the corresponding sections of Mp belong to F k

p . Let

M =
⊕
p,q

Ip,q

be the Deligne-Hodge decomposition, and denote by AkM the subspace where mp ∈

GrkFM = ⊕qIk,q. Let Ik =
AM

AkM + C(X)AM
. Then we will have the following short

exact sequence,

0→ AkM →M ⊗ C(X)→ M × C(X)

AkM
→ 0

The long exact sequence of cohomology shows that,

H1(AkM) =
AM

AkM +M ⊗ C(X)

Now consider the dual of the vector space I(k), denoted J (k). The vector spaces
J (k) form an increasing sequence. Set J = limJ (k). In fact J (k) is the topological

dual of
AM

M ⊗ C(X)
w.r.t the topology defined by the subspaces {AkM}. Now consider

Ωk
M := Ω⊗Grn−kF M ∼= Ω

⊗
⊕qIn−k,q. For any ω⊗{np} ∈ Ωk

M , define the linear form

θ(ω ⊗ {bp}) : {mp ⊗ ap} →
∑
p∈X

S(mp, np)Resp(ap.ω)

.

One can show that if θ(ω⊗{bp}) ∈ J (k), then ω⊗{bp} ∈ Ωk
M . It is also easy to see

that θ is injective, via the non-degeneracy of Sk. The surjectivity of θ follows from
the fact that J has dimension 1 over C(X), [SE] (Chap. 2, sec. 5).

The above method is essentially similar to section 4, and section 7. It follows that
if we have an analogue of V -filtration which is compatible with the weight filtrations,
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then we can repeat the proof of 7.1. In positive characteristic the weights are defined
via the Weil conjectures.

Remark 12.1. The scalar product defined by θ between I(k) and H0(X,ΩM(k))
can be interpreted as cup product with values in H1(X,ΩM). Therefore the above
construction defines a duality by

H1(X,M)×H0(X,M∨)→ H1(X,Ω)

where M∨ = HomO(M,Ω).

One of the advantages of using repartitions is that it can be used for families
defined over an arbitrary algebraically closed field in positive characteristic, and also
over a singular base by a little modification, cf. [SE]. This method also allows to
formulate the duality of D-modules as different cup products on the components
of repartitions when the point is fixed. The method also explains a proof of how
we introduced the polarization in sections 4 and 7, which also works in positive
characteristic.

13. Positive characteristic case

We give a brief discussion of polarization in a family of abelian varieties in positive
characteristic. Let A be any abelian variety over a field k, and A∨ be its dual. The
canonical isomorphism H1(Ak̄, µn) = A∨(k̄)n, for (n, char k) = 1 shows,

H1(Ak̄,Zl(1)) = TlA
∨
k̄

Thus, we get pairings

A(k̄)n ⊗ A∨(k̄)n → µn, TlA(k̄)× TlA∨(k̄)→ Zl(1).

which is induced by a divisor D on A. If D is ample then, the induced pairing on
TlAk̄ is non-degenerate, as is the same for the pairing induced on TlBk̄ for B an
abelian sub-variety of A. D induces a morphism φD : A→ A∨. φD(a) is defined by
the divisor T ∗aDk̄ −Dk̄, where Ta is translation by a, [SAI7].

Theorem 13.1. [SAI7] Let C be a smooth projective curve over a field k, having
a k-rational point, and J its Jacobian. Then we have a canonical isomorphism
H1(Ck̄,Zl(1)) = TlJ(k̄), such that the Poincare duality of H1(Ck̄,Zl(1)) is identified
with the pairing of TlJ(k̄), given by the canonical pairing, given by the theta divisor.

The proof is an standard technique in the theory of abelian varieties.
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Theorem 13.2. Assume we have a degenerate family of curves C over an arbitrary
field k, and J the corresponding family of their Jacobians TlJt(k̄) polarized by a
the Poincare duality of H1(Ct,k̄,Zl(1)). Suppose the monodromy of the fibration is
quasi-unipotent, such that the Jacobian bundle extends over the degenerate point, as
a compactification of the original Neron model. Then the new Jacobian is polarized
by the same polarization form.

Proof. (sketch) By theorem 11.2 and the method of its proof we need to prove the
extension on the corresponding perverse sheaves or mixed Hodge modules. This
amounts to check that the method of extending the polarization explained in section
4 and section 7 can be stated over p-adic fields (see the discution at the end of
section 4). This can be done in a similar way, noting that the weights in this case
are calculated via the Weil conjectures. �

Now assume f : C → J is the natural map, It is well known that

f ∗ : H1(Jk̄,Zl) ∼= H1(Ck̄,Zl), f∗ : H1(Jk̄,Zl) ∼= H2g−1(Jk̄,Zl(g − l))

are dual to each other, and the pairing on H1(Ck̄,Zl(1)) corresponds to that on
H1(Jk̄,Zl), given by Poincare duality and f∗ ◦ f ∗. A pairing of a Ql-module V , with
a continuous action of G := Gal(k̄/k) is called abelian positive, if there exists an
abelian variety with an ample divisor D, such that V is isomorphic to TlAk̄ ⊗Zl Ql

up to a Tate twist as a Q[G]-module, and the pairing corresponds to the one on TlAk̄
defined by the divisor D, [SAI7].

14. Arithmetic intersections and Asymptotic of Height pairings

Let X be an arithmetic variety, i.e a projective and flat variety over Spec(Z), which
has a smooth generic fiber XQ, with the complex conjugation F∞ : X(C) → X(C).
The intersection theory on the arithmetic Chow groups can be defined similar to

the usual Chow groups. For X an arithmetic variety, let ĈH(X)0 be the subgroup
of algebraic cycles which are homologically equivalent to 0. Also assume h to be a
Kahler metric on X(C) invariant under F∞. The pair (X̄, h) are called an Arakelov
variety. The Arakelov Chow group CHp(X̄), is considered as the subgroup corre-
sponded to harmonic forms. Let f : X → Y be a morphism of arithmetic varieties,
with Y regular, [KU]. The arithmetic degree map is defined by;

(28) d̂eg : ĈH0(X)→ R, d̂eg(Z, g) = log \(Z) +
1

2

∫
X

g.
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When X, Y are Arakelov varieties, we get a pairing,

(29) CHp(Ȳ )× CHp(X̄)→d̂eg→ R

Then the induced pairing,

(30) CHp(X)0 × CHd+1−p(X)0 → R

does not depend on the choice of Kahler metric, [KU]. We X = Y , we have

(31) CHp(X̄)0 × CHd+1−p(X̄)0 d̂eg→ R

As example take the case of a curve CK of positive genus, that is geometrically
irreducible. After a finite extension of K, we may assume that CK has a regular
model over Spec(OK), that the height pairing is well-defined and by a result of G.
Faltings and Hriljac, the height pairing has a description in terms of the Neron-Tate
pairing on the Jacobian of CK̄ . If λC : Jac(CK̄) → Jac(CK̄)∨ be the canonical
polarization and

(32) θ1 : A1(CK) = CH1(CK)→ Jac(CK̄)(K̄)

be the Abel-Jacobi map.

Theorem 14.1. (Faltings, Hriljac) [KU], [HR] The height pairing is given by;

(33)
1

[K : Q]
〈x, y〉 = −(θ1(x), λC ◦ θ1(y))Jac(C)Q̄

The here above identity says that after possibly a finite extension of the number field
K the height pairing is given by the corresponding polarization of Jacobian of the
curves over Q̄, up to multiplication by an integer constant. Therefore, by theorem
12.2 we obtain

Theorem 14.2. Assume we are given a degenerate family of Arakelov curves over
A1
K with K a number field, and the fiber over 0 is the degenerate fiber. Then, the

asymptotic of corresponding height pairings is given by the similar formula (41) where
the polarization is replaced by the asymptotic one.

Proof. The theorem follows from 14.1 and the fact that λC is the cup product on
H1(C, K̄). One can apply 11.2 or 10.2 or 9.1 or 7.2 in this case. �

Under some mild assumptions, cf. [KU], a similar formula to Theorem 13.1 can be
stated for a variety X of dimension d as

(34)
1

[K : Q]
〈x, y〉 = −(θp(x), λd+1−p

X ◦ θd+1−p(y))Picp(XK̄
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where λd+1−p
X is the polarization on higher picard variety Picp(XK̄), and

θd+1−p : CHp(X)→ Picp(X)/K

are universal Picard homomorphisms, [KU]. Thus, one naturally expects the possi-
bility to state similar theorem for families in higher dimensions.
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